jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from cpython.pycapsule cimport PyCapsule_CheckExact, PyCapsule_GetPointer, PyCapsule_New
from collections import namedtuple
import warnings
from cython import sizeof
cpdef enum MetadataVersion:
V1 = <char> CMetadataVersion_V1
V2 = <char> CMetadataVersion_V2
V3 = <char> CMetadataVersion_V3
V4 = <char> CMetadataVersion_V4
V5 = <char> CMetadataVersion_V5
cdef object _wrap_metadata_version(CMetadataVersion version):
return MetadataVersion(<char> version)
cdef CMetadataVersion _unwrap_metadata_version(
MetadataVersion version) except *:
if version == MetadataVersion.V1:
return CMetadataVersion_V1
elif version == MetadataVersion.V2:
return CMetadataVersion_V2
elif version == MetadataVersion.V3:
return CMetadataVersion_V3
elif version == MetadataVersion.V4:
return CMetadataVersion_V4
elif version == MetadataVersion.V5:
return CMetadataVersion_V5
raise ValueError("Not a metadata version: " + repr(version))
_WriteStats = namedtuple(
'WriteStats',
('num_messages', 'num_record_batches', 'num_dictionary_batches',
'num_dictionary_deltas', 'num_replaced_dictionaries'))
class WriteStats(_WriteStats):
"""IPC write statistics
Parameters
----------
num_messages : int
Number of messages.
num_record_batches : int
Number of record batches.
num_dictionary_batches : int
Number of dictionary batches.
num_dictionary_deltas : int
Delta of dictionaries.
num_replaced_dictionaries : int
Number of replaced dictionaries.
"""
__slots__ = ()
@staticmethod
cdef _wrap_write_stats(CIpcWriteStats c):
return WriteStats(c.num_messages, c.num_record_batches,
c.num_dictionary_batches, c.num_dictionary_deltas,
c.num_replaced_dictionaries)
_ReadStats = namedtuple(
'ReadStats',
('num_messages', 'num_record_batches', 'num_dictionary_batches',
'num_dictionary_deltas', 'num_replaced_dictionaries'))
class ReadStats(_ReadStats):
"""IPC read statistics
Parameters
----------
num_messages : int
Number of messages.
num_record_batches : int
Number of record batches.
num_dictionary_batches : int
Number of dictionary batches.
num_dictionary_deltas : int
Delta of dictionaries.
num_replaced_dictionaries : int
Number of replaced dictionaries.
"""
__slots__ = ()
@staticmethod
cdef _wrap_read_stats(CIpcReadStats c):
return ReadStats(c.num_messages, c.num_record_batches,
c.num_dictionary_batches, c.num_dictionary_deltas,
c.num_replaced_dictionaries)
cdef class IpcReadOptions(_Weakrefable):
"""
Serialization options for reading IPC format.
Parameters
----------
ensure_native_endian : bool, default True
Whether to convert incoming data to platform-native endianness.
use_threads : bool
Whether to use the global CPU thread pool to parallelize any
computational tasks like decompression
included_fields : list
If empty (the default), return all deserialized fields.
If non-empty, the values are the indices of fields to read on
the top-level schema
"""
__slots__ = ()
# cdef block is in lib.pxd
def __init__(self, *, bint ensure_native_endian=True,
bint use_threads=True, list included_fields=None):
self.c_options = CIpcReadOptions.Defaults()
self.ensure_native_endian = ensure_native_endian
self.use_threads = use_threads
if included_fields is not None:
self.included_fields = included_fields
@property
def ensure_native_endian(self):
return self.c_options.ensure_native_endian
@ensure_native_endian.setter
def ensure_native_endian(self, bint value):
self.c_options.ensure_native_endian = value
@property
def use_threads(self):
return self.c_options.use_threads
@use_threads.setter
def use_threads(self, bint value):
self.c_options.use_threads = value
@property
def included_fields(self):
return self.c_options.included_fields
@included_fields.setter
def included_fields(self, list value not None):
self.c_options.included_fields = value
cdef class IpcWriteOptions(_Weakrefable):
"""
Serialization options for the IPC format.
Parameters
----------
metadata_version : MetadataVersion, default MetadataVersion.V5
The metadata version to write. V5 is the current and latest,
V4 is the pre-1.0 metadata version (with incompatible Union layout).
allow_64bit : bool, default False
If true, allow field lengths that don't fit in a signed 32-bit int.
use_legacy_format : bool, default False
Whether to use the pre-Arrow 0.15 IPC format.
compression : str, Codec, or None
compression codec to use for record batch buffers.
If None then batch buffers will be uncompressed.
Must be "lz4", "zstd" or None.
To specify a compression_level use `pyarrow.Codec`
use_threads : bool
Whether to use the global CPU thread pool to parallelize any
computational tasks like compression.
emit_dictionary_deltas : bool
Whether to emit dictionary deltas. Default is false for maximum
stream compatibility.
unify_dictionaries : bool
If true then calls to write_table will attempt to unify dictionaries
across all batches in the table. This can help avoid the need for
replacement dictionaries (which the file format does not support)
but requires computing the unified dictionary and then remapping
the indices arrays.
This parameter is ignored when writing to the IPC stream format as
the IPC stream format can support replacement dictionaries.
"""
__slots__ = ()
# cdef block is in lib.pxd
def __init__(self, *, metadata_version=MetadataVersion.V5,
bint allow_64bit=False, use_legacy_format=False,
compression=None, bint use_threads=True,
bint emit_dictionary_deltas=False,
bint unify_dictionaries=False):
self.c_options = CIpcWriteOptions.Defaults()
self.allow_64bit = allow_64bit
self.use_legacy_format = use_legacy_format
self.metadata_version = metadata_version
if compression is not None:
self.compression = compression
self.use_threads = use_threads
self.emit_dictionary_deltas = emit_dictionary_deltas
self.unify_dictionaries = unify_dictionaries
@property
def allow_64bit(self):
return self.c_options.allow_64bit
@allow_64bit.setter
def allow_64bit(self, bint value):
self.c_options.allow_64bit = value
@property
def use_legacy_format(self):
return self.c_options.write_legacy_ipc_format
@use_legacy_format.setter
def use_legacy_format(self, bint value):
self.c_options.write_legacy_ipc_format = value
@property
def metadata_version(self):
return _wrap_metadata_version(self.c_options.metadata_version)
@metadata_version.setter
def metadata_version(self, value):
self.c_options.metadata_version = _unwrap_metadata_version(value)
@property
def compression(self):
if self.c_options.codec == nullptr:
return None
else:
return frombytes(self.c_options.codec.get().name())
@compression.setter
def compression(self, value):
if value is None:
self.c_options.codec.reset()
elif isinstance(value, str):
codec_type = _ensure_compression(value)
if codec_type != CCompressionType_ZSTD and codec_type != CCompressionType_LZ4_FRAME:
raise ValueError("Compression type must be lz4, zstd or None")
self.c_options.codec = shared_ptr[CCodec](GetResultValue(
CCodec.Create(codec_type)).release())
elif isinstance(value, Codec):
if value.name != "lz4" and value.name != "zstd":
raise ValueError("Compression type must be lz4, zstd or None")
self.c_options.codec = (<Codec>value).wrapped
else:
raise TypeError(
"Property `compression` must be None, str, or pyarrow.Codec")
@property
def use_threads(self):
return self.c_options.use_threads
@use_threads.setter
def use_threads(self, bint value):
self.c_options.use_threads = value
@property
def emit_dictionary_deltas(self):
return self.c_options.emit_dictionary_deltas
@emit_dictionary_deltas.setter
def emit_dictionary_deltas(self, bint value):
self.c_options.emit_dictionary_deltas = value
@property
def unify_dictionaries(self):
return self.c_options.unify_dictionaries
@unify_dictionaries.setter
def unify_dictionaries(self, bint value):
self.c_options.unify_dictionaries = value
cdef class Message(_Weakrefable):
"""
Container for an Arrow IPC message with metadata and optional body
"""
def __cinit__(self):
pass
def __init__(self):
raise TypeError("Do not call {}'s constructor directly, use "
"`pyarrow.ipc.read_message` function instead."
.format(self.__class__.__name__))
@property
def type(self):
return frombytes(FormatMessageType(self.message.get().type()))
@property
def metadata(self):
return pyarrow_wrap_buffer(self.message.get().metadata())
@property
def metadata_version(self):
return _wrap_metadata_version(self.message.get().metadata_version())
@property
def body(self):
cdef shared_ptr[CBuffer] body = self.message.get().body()
if body.get() == NULL:
return None
else:
return pyarrow_wrap_buffer(body)
def equals(self, Message other):
"""
Returns True if the message contents (metadata and body) are identical
Parameters
----------
other : Message
Returns
-------
are_equal : bool
"""
cdef c_bool result
with nogil:
result = self.message.get().Equals(deref(other.message.get()))
return result
def serialize_to(self, NativeFile sink, alignment=8, memory_pool=None):
"""
Write message to generic OutputStream
Parameters
----------
sink : NativeFile
alignment : int, default 8
Byte alignment for metadata and body
memory_pool : MemoryPool, default None
Uses default memory pool if not specified
"""
cdef:
int64_t output_length = 0
COutputStream* out
CIpcWriteOptions options
options.alignment = alignment
out = sink.get_output_stream().get()
with nogil:
check_status(self.message.get()
.SerializeTo(out, options, &output_length))
def serialize(self, alignment=8, memory_pool=None):
"""
Write message as encapsulated IPC message
Parameters
----------
alignment : int, default 8
Byte alignment for metadata and body
memory_pool : MemoryPool, default None
Uses default memory pool if not specified
Returns
-------
serialized : Buffer
"""
stream = BufferOutputStream(memory_pool)
self.serialize_to(stream, alignment=alignment, memory_pool=memory_pool)
return stream.getvalue()
def __repr__(self):
if self.message == nullptr:
return """pyarrow.Message(uninitialized)"""
metadata_len = self.metadata.size
body = self.body
body_len = 0 if body is None else body.size
return """pyarrow.Message
type: {0}
metadata length: {1}
body length: {2}""".format(self.type, metadata_len, body_len)
cdef class MessageReader(_Weakrefable):
"""
Interface for reading Message objects from some source (like an
InputStream)
"""
cdef:
unique_ptr[CMessageReader] reader
def __cinit__(self):
pass
def __init__(self):
raise TypeError("Do not call {}'s constructor directly, use "
"`pyarrow.ipc.MessageReader.open_stream` function "
"instead.".format(self.__class__.__name__))
@staticmethod
def open_stream(source):
"""
Open stream from source, if you want to use memory map use
MemoryMappedFile as source.
Parameters
----------
source : bytes/buffer-like, pyarrow.NativeFile, or file-like Python object
A readable source, like an InputStream
"""
cdef:
MessageReader result = MessageReader.__new__(MessageReader)
shared_ptr[CInputStream] in_stream
unique_ptr[CMessageReader] reader
_get_input_stream(source, &in_stream)
with nogil:
reader = CMessageReader.Open(in_stream)
result.reader.reset(reader.release())
return result
def __iter__(self):
return self
def __next__(self):
return self.read_next_message()
def read_next_message(self):
"""
Read next Message from the stream.
Raises
------
StopIteration
At end of stream
"""
cdef Message result = Message.__new__(Message)
with nogil:
result.message = move(GetResultValue(self.reader.get()
.ReadNextMessage()))
if result.message.get() == NULL:
raise StopIteration
return result
# ----------------------------------------------------------------------
# File and stream readers and writers
cdef class _CRecordBatchWriter(_Weakrefable):
"""The base RecordBatchWriter wrapper.
Provides common implementations of convenience methods. Should not
be instantiated directly by user code.
"""
# cdef block is in lib.pxd
def write(self, table_or_batch):
"""
Write RecordBatch or Table to stream.
Parameters
----------
table_or_batch : {RecordBatch, Table}
"""
if isinstance(table_or_batch, RecordBatch):
self.write_batch(table_or_batch)
elif isinstance(table_or_batch, Table):
self.write_table(table_or_batch)
else:
raise ValueError(type(table_or_batch))
def write_batch(self, RecordBatch batch, custom_metadata=None):
"""
Write RecordBatch to stream.
Parameters
----------
batch : RecordBatch
custom_metadata : mapping or KeyValueMetadata
Keys and values must be string-like / coercible to bytes
"""
metadata = ensure_metadata(custom_metadata, allow_none=True)
c_meta = pyarrow_unwrap_metadata(metadata)
with nogil:
check_status(self.writer.get()
.WriteRecordBatch(deref(batch.batch), c_meta))
def write_table(self, Table table, max_chunksize=None):
"""
Write Table to stream in (contiguous) RecordBatch objects.
Parameters
----------
table : Table
max_chunksize : int, default None
Maximum number of rows for RecordBatch chunks. Individual chunks may
be smaller depending on the chunk layout of individual columns.
"""
cdef:
# max_chunksize must be > 0 to have any impact
int64_t c_max_chunksize = -1
if max_chunksize is not None:
c_max_chunksize = max_chunksize
with nogil:
check_status(self.writer.get().WriteTable(table.table[0],
c_max_chunksize))
def close(self):
"""
Close stream and write end-of-stream 0 marker.
"""
with nogil:
check_status(self.writer.get().Close())
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.close()
@property
def stats(self):
"""
Current IPC write statistics.
"""
if not self.writer:
raise ValueError("Operation on closed writer")
return _wrap_write_stats(self.writer.get().stats())
cdef class _RecordBatchStreamWriter(_CRecordBatchWriter):
cdef:
CIpcWriteOptions options
bint closed
def __cinit__(self):
pass
def __dealloc__(self):
pass
@property
def _use_legacy_format(self):
# For testing (see test_ipc.py)
return self.options.write_legacy_ipc_format
@property
def _metadata_version(self):
# For testing (see test_ipc.py)
return _wrap_metadata_version(self.options.metadata_version)
def _open(self, sink, Schema schema not None,
IpcWriteOptions options=IpcWriteOptions()):
cdef:
shared_ptr[COutputStream] c_sink
self.options = options.c_options
get_writer(sink, &c_sink)
with nogil:
self.writer = GetResultValue(
MakeStreamWriter(c_sink, schema.sp_schema,
self.options))
cdef _get_input_stream(object source, shared_ptr[CInputStream]* out):
try:
source = as_buffer(source)
except TypeError:
# Non-buffer-like
pass
get_input_stream(source, True, out)
class _ReadPandasMixin:
def read_pandas(self, **options):
"""
Read contents of stream to a pandas.DataFrame.
Read all record batches as a pyarrow.Table then convert it to a
pandas.DataFrame using Table.to_pandas.
Parameters
----------
**options
Arguments to forward to :meth:`Table.to_pandas`.
Returns
-------
df : pandas.DataFrame
"""
table = self.read_all()
return table.to_pandas(**options)
cdef class RecordBatchReader(_Weakrefable):
"""Base class for reading stream of record batches.
Record batch readers function as iterators of record batches that also
provide the schema (without the need to get any batches).
Warnings
--------
Do not call this class's constructor directly, use one of the
``RecordBatchReader.from_*`` functions instead.
Notes
-----
To import and export using the Arrow C stream interface, use the
``_import_from_c`` and ``_export_to_c`` methods. However, keep in mind this
interface is intended for expert users.
Examples
--------
>>> import pyarrow as pa
>>> schema = pa.schema([('x', pa.int64())])
>>> def iter_record_batches():
... for i in range(2):
... yield pa.RecordBatch.from_arrays([pa.array([1, 2, 3])], schema=schema)
>>> reader = pa.RecordBatchReader.from_batches(schema, iter_record_batches())
>>> print(reader.schema)
x: int64
>>> for batch in reader:
... print(batch)
pyarrow.RecordBatch
x: int64
----
x: [1,2,3]
pyarrow.RecordBatch
x: int64
----
x: [1,2,3]
"""
# cdef block is in lib.pxd
def __init__(self):
raise TypeError("Do not call {}'s constructor directly, "
"use one of the RecordBatchReader.from_* functions instead."
.format(self.__class__.__name__))
def __iter__(self):
return self
def __next__(self):
return self.read_next_batch()
@property
def schema(self):
"""
Shared schema of the record batches in the stream.
Returns
-------
Schema
"""
cdef shared_ptr[CSchema] c_schema
with nogil:
c_schema = self.reader.get().schema()
return pyarrow_wrap_schema(c_schema)
def read_next_batch(self):
"""
Read next RecordBatch from the stream.
Raises
------
StopIteration:
At end of stream.
Returns
-------
RecordBatch
"""
cdef shared_ptr[CRecordBatch] batch
with nogil:
check_status(self.reader.get().ReadNext(&batch))
if batch.get() == NULL:
raise StopIteration
return pyarrow_wrap_batch(batch)
def read_next_batch_with_custom_metadata(self):
"""
Read next RecordBatch from the stream along with its custom metadata.
Raises
------
StopIteration:
At end of stream.
Returns
-------
batch : RecordBatch
custom_metadata : KeyValueMetadata
"""
cdef:
CRecordBatchWithMetadata batch_with_metadata
with nogil:
batch_with_metadata = GetResultValue(self.reader.get().ReadNext())
if batch_with_metadata.batch.get() == NULL:
raise StopIteration
return _wrap_record_batch_with_metadata(batch_with_metadata)
def iter_batches_with_custom_metadata(self):
"""
Iterate over record batches from the stream along with their custom
metadata.
Yields
------
RecordBatchWithMetadata
"""
while True:
try:
yield self.read_next_batch_with_custom_metadata()
except StopIteration:
return
def read_all(self):
"""
Read all record batches as a pyarrow.Table.
Returns
-------
Table
"""
cdef shared_ptr[CTable] table
with nogil:
check_status(self.reader.get().ToTable().Value(&table))
return pyarrow_wrap_table(table)
read_pandas = _ReadPandasMixin.read_pandas
def close(self):
"""
Release any resources associated with the reader.
"""
with nogil:
check_status(self.reader.get().Close())
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.close()
def cast(self, target_schema):
"""
Wrap this reader with one that casts each batch lazily as it is pulled.
Currently only a safe cast to target_schema is implemented.
Parameters
----------
target_schema : Schema
Schema to cast to, the names and order of fields must match.
Returns
-------
RecordBatchReader
"""
cdef:
shared_ptr[CSchema] c_schema
shared_ptr[CRecordBatchReader] c_reader
RecordBatchReader out
if self.schema.names != target_schema.names:
raise ValueError("Target schema's field names are not matching "
f"the table's field names: {self.schema.names}, "
f"{target_schema.names}")
c_schema = pyarrow_unwrap_schema(target_schema)
c_reader = GetResultValue(CCastingRecordBatchReader.Make(
self.reader, c_schema))
out = RecordBatchReader.__new__(RecordBatchReader)
out.reader = c_reader
return out
def _export_to_c(self, out_ptr):
"""
Export to a C ArrowArrayStream struct, given its pointer.
Parameters
----------
out_ptr: int
The raw pointer to a C ArrowArrayStream struct.
Be careful: if you don't pass the ArrowArrayStream struct to a
consumer, array memory will leak. This is a low-level function
intended for expert users.
"""
cdef:
void* c_ptr = _as_c_pointer(out_ptr)
with nogil:
check_status(ExportRecordBatchReader(
self.reader, <ArrowArrayStream*> c_ptr))
@staticmethod
def _import_from_c(in_ptr):
"""
Import RecordBatchReader from a C ArrowArrayStream struct,
given its pointer.
Parameters
----------
in_ptr: int
The raw pointer to a C ArrowArrayStream struct.
This is a low-level function intended for expert users.
"""
cdef:
void* c_ptr = _as_c_pointer(in_ptr)
shared_ptr[CRecordBatchReader] c_reader
RecordBatchReader self
with nogil:
c_reader = GetResultValue(ImportRecordBatchReader(
<ArrowArrayStream*> c_ptr))
self = RecordBatchReader.__new__(RecordBatchReader)
self.reader = c_reader
return self
def __arrow_c_stream__(self, requested_schema=None):
"""
Export to a C ArrowArrayStream PyCapsule.
Parameters
----------
requested_schema : PyCapsule, default None
The schema to which the stream should be casted, passed as a
PyCapsule containing a C ArrowSchema representation of the
requested schema.
Returns
-------
PyCapsule
A capsule containing a C ArrowArrayStream struct.
"""
cdef:
ArrowArrayStream* c_stream
if requested_schema is not None:
out_schema = Schema._import_from_c_capsule(requested_schema)
if self.schema != out_schema:
return self.cast(out_schema).__arrow_c_stream__()
stream_capsule = alloc_c_stream(&c_stream)
with nogil:
check_status(ExportRecordBatchReader(self.reader, c_stream))
return stream_capsule
@staticmethod
def _import_from_c_capsule(stream):
"""
Import RecordBatchReader from a C ArrowArrayStream PyCapsule.
Parameters
----------
stream: PyCapsule
A capsule containing a C ArrowArrayStream PyCapsule.
Returns
-------
RecordBatchReader
"""
cdef:
ArrowArrayStream* c_stream
shared_ptr[CRecordBatchReader] c_reader
RecordBatchReader self
c_stream = <ArrowArrayStream*>PyCapsule_GetPointer(
stream, 'arrow_array_stream'
)
with nogil:
c_reader = GetResultValue(ImportRecordBatchReader(c_stream))
self = RecordBatchReader.__new__(RecordBatchReader)
self.reader = c_reader
return self
@staticmethod
def from_stream(data, schema=None):
"""
Create RecordBatchReader from a Arrow-compatible stream object.
This accepts objects implementing the Arrow PyCapsule Protocol for
streams, i.e. objects that have a ``__arrow_c_stream__`` method.
Parameters
----------
data : Arrow-compatible stream object
Any object that implements the Arrow PyCapsule Protocol for
streams.
schema : Schema, default None
The schema to which the stream should be casted, if supported
by the stream object.
Returns
-------
RecordBatchReader
"""
if not hasattr(data, "__arrow_c_stream__"):
raise TypeError(
"Expected an object implementing the Arrow PyCapsule Protocol for "
"streams (i.e. having a `__arrow_c_stream__` method), "
f"got {type(data)!r}."
)
if schema is not None:
if not hasattr(schema, "__arrow_c_schema__"):
raise TypeError(
"Expected an object implementing the Arrow PyCapsule Protocol for "
"schema (i.e. having a `__arrow_c_schema__` method), "
f"got {type(schema)!r}."
)
requested = schema.__arrow_c_schema__()
else:
requested = None
capsule = data.__arrow_c_stream__(requested)
return RecordBatchReader._import_from_c_capsule(capsule)
@staticmethod
def from_batches(Schema schema not None, batches):
"""
Create RecordBatchReader from an iterable of batches.
Parameters
----------
schema : Schema
The shared schema of the record batches
batches : Iterable[RecordBatch]
The batches that this reader will return.
Returns
-------
reader : RecordBatchReader
"""
cdef:
shared_ptr[CSchema] c_schema
shared_ptr[CRecordBatchReader] c_reader
RecordBatchReader self
c_schema = pyarrow_unwrap_schema(schema)
c_reader = GetResultValue(CPyRecordBatchReader.Make(
c_schema, batches))
self = RecordBatchReader.__new__(RecordBatchReader)
self.reader = c_reader
return self
cdef class _RecordBatchStreamReader(RecordBatchReader):
cdef:
shared_ptr[CInputStream] in_stream
CIpcReadOptions options
CRecordBatchStreamReader* stream_reader
def __cinit__(self):
pass
def _open(self, source, IpcReadOptions options=IpcReadOptions(),
MemoryPool memory_pool=None):
self.options = options.c_options
self.options.memory_pool = maybe_unbox_memory_pool(memory_pool)
_get_input_stream(source, &self.in_stream)
with nogil:
self.reader = GetResultValue(CRecordBatchStreamReader.Open(
self.in_stream, self.options))
self.stream_reader = <CRecordBatchStreamReader*> self.reader.get()
@property
def stats(self):
"""
Current IPC read statistics.
"""
if not self.reader:
raise ValueError("Operation on closed reader")
return _wrap_read_stats(self.stream_reader.stats())
cdef class _RecordBatchFileWriter(_RecordBatchStreamWriter):
def _open(self, sink, Schema schema not None,
IpcWriteOptions options=IpcWriteOptions()):
cdef:
shared_ptr[COutputStream] c_sink
self.options = options.c_options
get_writer(sink, &c_sink)
with nogil:
self.writer = GetResultValue(
MakeFileWriter(c_sink, schema.sp_schema, self.options))
_RecordBatchWithMetadata = namedtuple(
'RecordBatchWithMetadata',
('batch', 'custom_metadata'))
class RecordBatchWithMetadata(_RecordBatchWithMetadata):
"""RecordBatch with its custom metadata
Parameters
----------
batch : RecordBatch
custom_metadata : KeyValueMetadata
"""
__slots__ = ()
@staticmethod
cdef _wrap_record_batch_with_metadata(CRecordBatchWithMetadata c):
return RecordBatchWithMetadata(pyarrow_wrap_batch(c.batch),
pyarrow_wrap_metadata(c.custom_metadata))
cdef class _RecordBatchFileReader(_Weakrefable):
cdef:
SharedPtrNoGIL[CRecordBatchFileReader] reader
shared_ptr[CRandomAccessFile] file
CIpcReadOptions options
cdef readonly:
Schema schema
def __cinit__(self):
pass
def _open(self, source, footer_offset=None,
IpcReadOptions options=IpcReadOptions(),
MemoryPool memory_pool=None):
self.options = options.c_options
self.options.memory_pool = maybe_unbox_memory_pool(memory_pool)
try:
source = as_buffer(source)
except TypeError:
pass
get_reader(source, False, &self.file)
cdef int64_t offset = 0
if footer_offset is not None:
offset = footer_offset
with nogil:
if offset != 0:
self.reader = GetResultValue(
CRecordBatchFileReader.Open2(self.file.get(), offset,
self.options))
else:
self.reader = GetResultValue(
CRecordBatchFileReader.Open(self.file.get(),
self.options))
self.schema = pyarrow_wrap_schema(self.reader.get().schema())
@property
def num_record_batches(self):
"""
The number of record batches in the IPC file.
"""
return self.reader.get().num_record_batches()
def get_batch(self, int i):
"""
Read the record batch with the given index.
Parameters
----------
i : int
The index of the record batch in the IPC file.
Returns
-------
batch : RecordBatch
"""
cdef shared_ptr[CRecordBatch] batch
if i < 0 or i >= self.num_record_batches:
raise ValueError('Batch number {0} out of range'.format(i))
with nogil:
batch = GetResultValue(self.reader.get().ReadRecordBatch(i))
return pyarrow_wrap_batch(batch)
# TODO(wesm): ARROW-503: Function was renamed. Remove after a period of
# time has passed
get_record_batch = get_batch
def get_batch_with_custom_metadata(self, int i):
"""
Read the record batch with the given index along with
its custom metadata
Parameters
----------
i : int
The index of the record batch in the IPC file.
Returns
-------
batch : RecordBatch
custom_metadata : KeyValueMetadata
"""
cdef:
CRecordBatchWithMetadata batch_with_metadata
if i < 0 or i >= self.num_record_batches:
raise ValueError('Batch number {0} out of range'.format(i))
with nogil:
batch_with_metadata = GetResultValue(
self.reader.get().ReadRecordBatchWithCustomMetadata(i))
return _wrap_record_batch_with_metadata(batch_with_metadata)
def read_all(self):
"""
Read all record batches as a pyarrow.Table
"""
cdef:
vector[shared_ptr[CRecordBatch]] batches
shared_ptr[CTable] table
int i, nbatches
nbatches = self.num_record_batches
batches.resize(nbatches)
with nogil:
for i in range(nbatches):
batches[i] = GetResultValue(self.reader.get()
.ReadRecordBatch(i))
table = GetResultValue(
CTable.FromRecordBatches(self.schema.sp_schema, move(batches)))
return pyarrow_wrap_table(table)
read_pandas = _ReadPandasMixin.read_pandas
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
pass
@property
def stats(self):
"""
Current IPC read statistics.
"""
if not self.reader:
raise ValueError("Operation on closed reader")
return _wrap_read_stats(self.reader.get().stats())
def get_tensor_size(Tensor tensor):
"""
Return total size of serialized Tensor including metadata and padding.
Parameters
----------
tensor : Tensor
The tensor for which we want to known the size.
"""
cdef int64_t size
with nogil:
check_status(GetTensorSize(deref(tensor.tp), &size))
return size
def get_record_batch_size(RecordBatch batch):
"""
Return total size of serialized RecordBatch including metadata and padding.
Parameters
----------
batch : RecordBatch
The recordbatch for which we want to know the size.
"""
cdef int64_t size
with nogil:
check_status(GetRecordBatchSize(deref(batch.batch), &size))
return size
def write_tensor(Tensor tensor, NativeFile dest):
"""
Write pyarrow.Tensor to pyarrow.NativeFile object its current position.
Parameters
----------
tensor : pyarrow.Tensor
dest : pyarrow.NativeFile
Returns
-------
bytes_written : int
Total number of bytes written to the file
"""
cdef:
int32_t metadata_length
int64_t body_length
handle = dest.get_output_stream()
with nogil:
check_status(
WriteTensor(deref(tensor.tp), handle.get(),
&metadata_length, &body_length))
return metadata_length + body_length
cdef NativeFile as_native_file(source):
if not isinstance(source, NativeFile):
if hasattr(source, 'read'):
source = PythonFile(source)
else:
source = BufferReader(source)
if not isinstance(source, NativeFile):
raise ValueError('Unable to read message from object with type: {0}'
.format(type(source)))
return source
def read_tensor(source):
"""Read pyarrow.Tensor from pyarrow.NativeFile object from current
position. If the file source supports zero copy (e.g. a memory map), then
this operation does not allocate any memory. This function not assume that
the stream is aligned
Parameters
----------
source : pyarrow.NativeFile
Returns
-------
tensor : Tensor
"""
cdef:
shared_ptr[CTensor] sp_tensor
CInputStream* c_stream
NativeFile nf = as_native_file(source)
c_stream = nf.get_input_stream().get()
with nogil:
sp_tensor = GetResultValue(ReadTensor(c_stream))
return pyarrow_wrap_tensor(sp_tensor)
def read_message(source):
"""
Read length-prefixed message from file or buffer-like object
Parameters
----------
source : pyarrow.NativeFile, file-like object, or buffer-like object
Returns
-------
message : Message
"""
cdef:
Message result = Message.__new__(Message)
CInputStream* c_stream
cdef NativeFile nf = as_native_file(source)
c_stream = nf.get_input_stream().get()
with nogil:
result.message = move(
GetResultValue(ReadMessage(c_stream, c_default_memory_pool())))
if result.message == nullptr:
raise EOFError("End of Arrow stream")
return result
def read_schema(obj, DictionaryMemo dictionary_memo=None):
"""
Read Schema from message or buffer
Parameters
----------
obj : buffer or Message
dictionary_memo : DictionaryMemo, optional
Needed to be able to reconstruct dictionary-encoded fields
with read_record_batch
Returns
-------
schema : Schema
"""
cdef:
shared_ptr[CSchema] result
shared_ptr[CRandomAccessFile] cpp_file
Message message
CDictionaryMemo temp_memo
CDictionaryMemo* arg_dict_memo
if dictionary_memo is not None:
arg_dict_memo = dictionary_memo.memo
else:
arg_dict_memo = &temp_memo
if isinstance(obj, Message):
message = obj
with nogil:
result = GetResultValue(ReadSchema(
deref(message.message.get()), arg_dict_memo))
else:
get_reader(obj, False, &cpp_file)
with nogil:
result = GetResultValue(ReadSchema(cpp_file.get(), arg_dict_memo))
return pyarrow_wrap_schema(result)
def read_record_batch(obj, Schema schema,
DictionaryMemo dictionary_memo=None):
"""
Read RecordBatch from message, given a known schema. If reading data from a
complete IPC stream, use ipc.open_stream instead
Parameters
----------
obj : Message or Buffer-like
schema : Schema
dictionary_memo : DictionaryMemo, optional
If message contains dictionaries, must pass a populated
DictionaryMemo
Returns
-------
batch : RecordBatch
"""
cdef:
shared_ptr[CRecordBatch] result
Message message
CDictionaryMemo temp_memo
CDictionaryMemo* arg_dict_memo
if isinstance(obj, Message):
message = obj
else:
message = read_message(obj)
if dictionary_memo is not None:
arg_dict_memo = dictionary_memo.memo
else:
arg_dict_memo = &temp_memo
with nogil:
result = GetResultValue(
ReadRecordBatch(deref(message.message.get()),
schema.sp_schema,
arg_dict_memo,
CIpcReadOptions.Defaults()))
return pyarrow_wrap_batch(result)