File size: 41,081 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from cpython.pycapsule cimport PyCapsule_CheckExact, PyCapsule_GetPointer, PyCapsule_New
from collections import namedtuple
import warnings
from cython import sizeof
cpdef enum MetadataVersion:
V1 = <char> CMetadataVersion_V1
V2 = <char> CMetadataVersion_V2
V3 = <char> CMetadataVersion_V3
V4 = <char> CMetadataVersion_V4
V5 = <char> CMetadataVersion_V5
cdef object _wrap_metadata_version(CMetadataVersion version):
return MetadataVersion(<char> version)
cdef CMetadataVersion _unwrap_metadata_version(
MetadataVersion version) except *:
if version == MetadataVersion.V1:
return CMetadataVersion_V1
elif version == MetadataVersion.V2:
return CMetadataVersion_V2
elif version == MetadataVersion.V3:
return CMetadataVersion_V3
elif version == MetadataVersion.V4:
return CMetadataVersion_V4
elif version == MetadataVersion.V5:
return CMetadataVersion_V5
raise ValueError("Not a metadata version: " + repr(version))
_WriteStats = namedtuple(
'WriteStats',
('num_messages', 'num_record_batches', 'num_dictionary_batches',
'num_dictionary_deltas', 'num_replaced_dictionaries'))
class WriteStats(_WriteStats):
"""IPC write statistics
Parameters
----------
num_messages : int
Number of messages.
num_record_batches : int
Number of record batches.
num_dictionary_batches : int
Number of dictionary batches.
num_dictionary_deltas : int
Delta of dictionaries.
num_replaced_dictionaries : int
Number of replaced dictionaries.
"""
__slots__ = ()
@staticmethod
cdef _wrap_write_stats(CIpcWriteStats c):
return WriteStats(c.num_messages, c.num_record_batches,
c.num_dictionary_batches, c.num_dictionary_deltas,
c.num_replaced_dictionaries)
_ReadStats = namedtuple(
'ReadStats',
('num_messages', 'num_record_batches', 'num_dictionary_batches',
'num_dictionary_deltas', 'num_replaced_dictionaries'))
class ReadStats(_ReadStats):
"""IPC read statistics
Parameters
----------
num_messages : int
Number of messages.
num_record_batches : int
Number of record batches.
num_dictionary_batches : int
Number of dictionary batches.
num_dictionary_deltas : int
Delta of dictionaries.
num_replaced_dictionaries : int
Number of replaced dictionaries.
"""
__slots__ = ()
@staticmethod
cdef _wrap_read_stats(CIpcReadStats c):
return ReadStats(c.num_messages, c.num_record_batches,
c.num_dictionary_batches, c.num_dictionary_deltas,
c.num_replaced_dictionaries)
cdef class IpcReadOptions(_Weakrefable):
"""
Serialization options for reading IPC format.
Parameters
----------
ensure_native_endian : bool, default True
Whether to convert incoming data to platform-native endianness.
use_threads : bool
Whether to use the global CPU thread pool to parallelize any
computational tasks like decompression
included_fields : list
If empty (the default), return all deserialized fields.
If non-empty, the values are the indices of fields to read on
the top-level schema
"""
__slots__ = ()
# cdef block is in lib.pxd
def __init__(self, *, bint ensure_native_endian=True,
bint use_threads=True, list included_fields=None):
self.c_options = CIpcReadOptions.Defaults()
self.ensure_native_endian = ensure_native_endian
self.use_threads = use_threads
if included_fields is not None:
self.included_fields = included_fields
@property
def ensure_native_endian(self):
return self.c_options.ensure_native_endian
@ensure_native_endian.setter
def ensure_native_endian(self, bint value):
self.c_options.ensure_native_endian = value
@property
def use_threads(self):
return self.c_options.use_threads
@use_threads.setter
def use_threads(self, bint value):
self.c_options.use_threads = value
@property
def included_fields(self):
return self.c_options.included_fields
@included_fields.setter
def included_fields(self, list value not None):
self.c_options.included_fields = value
cdef class IpcWriteOptions(_Weakrefable):
"""
Serialization options for the IPC format.
Parameters
----------
metadata_version : MetadataVersion, default MetadataVersion.V5
The metadata version to write. V5 is the current and latest,
V4 is the pre-1.0 metadata version (with incompatible Union layout).
allow_64bit : bool, default False
If true, allow field lengths that don't fit in a signed 32-bit int.
use_legacy_format : bool, default False
Whether to use the pre-Arrow 0.15 IPC format.
compression : str, Codec, or None
compression codec to use for record batch buffers.
If None then batch buffers will be uncompressed.
Must be "lz4", "zstd" or None.
To specify a compression_level use `pyarrow.Codec`
use_threads : bool
Whether to use the global CPU thread pool to parallelize any
computational tasks like compression.
emit_dictionary_deltas : bool
Whether to emit dictionary deltas. Default is false for maximum
stream compatibility.
unify_dictionaries : bool
If true then calls to write_table will attempt to unify dictionaries
across all batches in the table. This can help avoid the need for
replacement dictionaries (which the file format does not support)
but requires computing the unified dictionary and then remapping
the indices arrays.
This parameter is ignored when writing to the IPC stream format as
the IPC stream format can support replacement dictionaries.
"""
__slots__ = ()
# cdef block is in lib.pxd
def __init__(self, *, metadata_version=MetadataVersion.V5,
bint allow_64bit=False, use_legacy_format=False,
compression=None, bint use_threads=True,
bint emit_dictionary_deltas=False,
bint unify_dictionaries=False):
self.c_options = CIpcWriteOptions.Defaults()
self.allow_64bit = allow_64bit
self.use_legacy_format = use_legacy_format
self.metadata_version = metadata_version
if compression is not None:
self.compression = compression
self.use_threads = use_threads
self.emit_dictionary_deltas = emit_dictionary_deltas
self.unify_dictionaries = unify_dictionaries
@property
def allow_64bit(self):
return self.c_options.allow_64bit
@allow_64bit.setter
def allow_64bit(self, bint value):
self.c_options.allow_64bit = value
@property
def use_legacy_format(self):
return self.c_options.write_legacy_ipc_format
@use_legacy_format.setter
def use_legacy_format(self, bint value):
self.c_options.write_legacy_ipc_format = value
@property
def metadata_version(self):
return _wrap_metadata_version(self.c_options.metadata_version)
@metadata_version.setter
def metadata_version(self, value):
self.c_options.metadata_version = _unwrap_metadata_version(value)
@property
def compression(self):
if self.c_options.codec == nullptr:
return None
else:
return frombytes(self.c_options.codec.get().name())
@compression.setter
def compression(self, value):
if value is None:
self.c_options.codec.reset()
elif isinstance(value, str):
codec_type = _ensure_compression(value)
if codec_type != CCompressionType_ZSTD and codec_type != CCompressionType_LZ4_FRAME:
raise ValueError("Compression type must be lz4, zstd or None")
self.c_options.codec = shared_ptr[CCodec](GetResultValue(
CCodec.Create(codec_type)).release())
elif isinstance(value, Codec):
if value.name != "lz4" and value.name != "zstd":
raise ValueError("Compression type must be lz4, zstd or None")
self.c_options.codec = (<Codec>value).wrapped
else:
raise TypeError(
"Property `compression` must be None, str, or pyarrow.Codec")
@property
def use_threads(self):
return self.c_options.use_threads
@use_threads.setter
def use_threads(self, bint value):
self.c_options.use_threads = value
@property
def emit_dictionary_deltas(self):
return self.c_options.emit_dictionary_deltas
@emit_dictionary_deltas.setter
def emit_dictionary_deltas(self, bint value):
self.c_options.emit_dictionary_deltas = value
@property
def unify_dictionaries(self):
return self.c_options.unify_dictionaries
@unify_dictionaries.setter
def unify_dictionaries(self, bint value):
self.c_options.unify_dictionaries = value
cdef class Message(_Weakrefable):
"""
Container for an Arrow IPC message with metadata and optional body
"""
def __cinit__(self):
pass
def __init__(self):
raise TypeError("Do not call {}'s constructor directly, use "
"`pyarrow.ipc.read_message` function instead."
.format(self.__class__.__name__))
@property
def type(self):
return frombytes(FormatMessageType(self.message.get().type()))
@property
def metadata(self):
return pyarrow_wrap_buffer(self.message.get().metadata())
@property
def metadata_version(self):
return _wrap_metadata_version(self.message.get().metadata_version())
@property
def body(self):
cdef shared_ptr[CBuffer] body = self.message.get().body()
if body.get() == NULL:
return None
else:
return pyarrow_wrap_buffer(body)
def equals(self, Message other):
"""
Returns True if the message contents (metadata and body) are identical
Parameters
----------
other : Message
Returns
-------
are_equal : bool
"""
cdef c_bool result
with nogil:
result = self.message.get().Equals(deref(other.message.get()))
return result
def serialize_to(self, NativeFile sink, alignment=8, memory_pool=None):
"""
Write message to generic OutputStream
Parameters
----------
sink : NativeFile
alignment : int, default 8
Byte alignment for metadata and body
memory_pool : MemoryPool, default None
Uses default memory pool if not specified
"""
cdef:
int64_t output_length = 0
COutputStream* out
CIpcWriteOptions options
options.alignment = alignment
out = sink.get_output_stream().get()
with nogil:
check_status(self.message.get()
.SerializeTo(out, options, &output_length))
def serialize(self, alignment=8, memory_pool=None):
"""
Write message as encapsulated IPC message
Parameters
----------
alignment : int, default 8
Byte alignment for metadata and body
memory_pool : MemoryPool, default None
Uses default memory pool if not specified
Returns
-------
serialized : Buffer
"""
stream = BufferOutputStream(memory_pool)
self.serialize_to(stream, alignment=alignment, memory_pool=memory_pool)
return stream.getvalue()
def __repr__(self):
if self.message == nullptr:
return """pyarrow.Message(uninitialized)"""
metadata_len = self.metadata.size
body = self.body
body_len = 0 if body is None else body.size
return """pyarrow.Message
type: {0}
metadata length: {1}
body length: {2}""".format(self.type, metadata_len, body_len)
cdef class MessageReader(_Weakrefable):
"""
Interface for reading Message objects from some source (like an
InputStream)
"""
cdef:
unique_ptr[CMessageReader] reader
def __cinit__(self):
pass
def __init__(self):
raise TypeError("Do not call {}'s constructor directly, use "
"`pyarrow.ipc.MessageReader.open_stream` function "
"instead.".format(self.__class__.__name__))
@staticmethod
def open_stream(source):
"""
Open stream from source, if you want to use memory map use
MemoryMappedFile as source.
Parameters
----------
source : bytes/buffer-like, pyarrow.NativeFile, or file-like Python object
A readable source, like an InputStream
"""
cdef:
MessageReader result = MessageReader.__new__(MessageReader)
shared_ptr[CInputStream] in_stream
unique_ptr[CMessageReader] reader
_get_input_stream(source, &in_stream)
with nogil:
reader = CMessageReader.Open(in_stream)
result.reader.reset(reader.release())
return result
def __iter__(self):
return self
def __next__(self):
return self.read_next_message()
def read_next_message(self):
"""
Read next Message from the stream.
Raises
------
StopIteration
At end of stream
"""
cdef Message result = Message.__new__(Message)
with nogil:
result.message = move(GetResultValue(self.reader.get()
.ReadNextMessage()))
if result.message.get() == NULL:
raise StopIteration
return result
# ----------------------------------------------------------------------
# File and stream readers and writers
cdef class _CRecordBatchWriter(_Weakrefable):
"""The base RecordBatchWriter wrapper.
Provides common implementations of convenience methods. Should not
be instantiated directly by user code.
"""
# cdef block is in lib.pxd
def write(self, table_or_batch):
"""
Write RecordBatch or Table to stream.
Parameters
----------
table_or_batch : {RecordBatch, Table}
"""
if isinstance(table_or_batch, RecordBatch):
self.write_batch(table_or_batch)
elif isinstance(table_or_batch, Table):
self.write_table(table_or_batch)
else:
raise ValueError(type(table_or_batch))
def write_batch(self, RecordBatch batch, custom_metadata=None):
"""
Write RecordBatch to stream.
Parameters
----------
batch : RecordBatch
custom_metadata : mapping or KeyValueMetadata
Keys and values must be string-like / coercible to bytes
"""
metadata = ensure_metadata(custom_metadata, allow_none=True)
c_meta = pyarrow_unwrap_metadata(metadata)
with nogil:
check_status(self.writer.get()
.WriteRecordBatch(deref(batch.batch), c_meta))
def write_table(self, Table table, max_chunksize=None):
"""
Write Table to stream in (contiguous) RecordBatch objects.
Parameters
----------
table : Table
max_chunksize : int, default None
Maximum number of rows for RecordBatch chunks. Individual chunks may
be smaller depending on the chunk layout of individual columns.
"""
cdef:
# max_chunksize must be > 0 to have any impact
int64_t c_max_chunksize = -1
if max_chunksize is not None:
c_max_chunksize = max_chunksize
with nogil:
check_status(self.writer.get().WriteTable(table.table[0],
c_max_chunksize))
def close(self):
"""
Close stream and write end-of-stream 0 marker.
"""
with nogil:
check_status(self.writer.get().Close())
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.close()
@property
def stats(self):
"""
Current IPC write statistics.
"""
if not self.writer:
raise ValueError("Operation on closed writer")
return _wrap_write_stats(self.writer.get().stats())
cdef class _RecordBatchStreamWriter(_CRecordBatchWriter):
cdef:
CIpcWriteOptions options
bint closed
def __cinit__(self):
pass
def __dealloc__(self):
pass
@property
def _use_legacy_format(self):
# For testing (see test_ipc.py)
return self.options.write_legacy_ipc_format
@property
def _metadata_version(self):
# For testing (see test_ipc.py)
return _wrap_metadata_version(self.options.metadata_version)
def _open(self, sink, Schema schema not None,
IpcWriteOptions options=IpcWriteOptions()):
cdef:
shared_ptr[COutputStream] c_sink
self.options = options.c_options
get_writer(sink, &c_sink)
with nogil:
self.writer = GetResultValue(
MakeStreamWriter(c_sink, schema.sp_schema,
self.options))
cdef _get_input_stream(object source, shared_ptr[CInputStream]* out):
try:
source = as_buffer(source)
except TypeError:
# Non-buffer-like
pass
get_input_stream(source, True, out)
class _ReadPandasMixin:
def read_pandas(self, **options):
"""
Read contents of stream to a pandas.DataFrame.
Read all record batches as a pyarrow.Table then convert it to a
pandas.DataFrame using Table.to_pandas.
Parameters
----------
**options
Arguments to forward to :meth:`Table.to_pandas`.
Returns
-------
df : pandas.DataFrame
"""
table = self.read_all()
return table.to_pandas(**options)
cdef class RecordBatchReader(_Weakrefable):
"""Base class for reading stream of record batches.
Record batch readers function as iterators of record batches that also
provide the schema (without the need to get any batches).
Warnings
--------
Do not call this class's constructor directly, use one of the
``RecordBatchReader.from_*`` functions instead.
Notes
-----
To import and export using the Arrow C stream interface, use the
``_import_from_c`` and ``_export_to_c`` methods. However, keep in mind this
interface is intended for expert users.
Examples
--------
>>> import pyarrow as pa
>>> schema = pa.schema([('x', pa.int64())])
>>> def iter_record_batches():
... for i in range(2):
... yield pa.RecordBatch.from_arrays([pa.array([1, 2, 3])], schema=schema)
>>> reader = pa.RecordBatchReader.from_batches(schema, iter_record_batches())
>>> print(reader.schema)
x: int64
>>> for batch in reader:
... print(batch)
pyarrow.RecordBatch
x: int64
----
x: [1,2,3]
pyarrow.RecordBatch
x: int64
----
x: [1,2,3]
"""
# cdef block is in lib.pxd
def __init__(self):
raise TypeError("Do not call {}'s constructor directly, "
"use one of the RecordBatchReader.from_* functions instead."
.format(self.__class__.__name__))
def __iter__(self):
return self
def __next__(self):
return self.read_next_batch()
@property
def schema(self):
"""
Shared schema of the record batches in the stream.
Returns
-------
Schema
"""
cdef shared_ptr[CSchema] c_schema
with nogil:
c_schema = self.reader.get().schema()
return pyarrow_wrap_schema(c_schema)
def read_next_batch(self):
"""
Read next RecordBatch from the stream.
Raises
------
StopIteration:
At end of stream.
Returns
-------
RecordBatch
"""
cdef shared_ptr[CRecordBatch] batch
with nogil:
check_status(self.reader.get().ReadNext(&batch))
if batch.get() == NULL:
raise StopIteration
return pyarrow_wrap_batch(batch)
def read_next_batch_with_custom_metadata(self):
"""
Read next RecordBatch from the stream along with its custom metadata.
Raises
------
StopIteration:
At end of stream.
Returns
-------
batch : RecordBatch
custom_metadata : KeyValueMetadata
"""
cdef:
CRecordBatchWithMetadata batch_with_metadata
with nogil:
batch_with_metadata = GetResultValue(self.reader.get().ReadNext())
if batch_with_metadata.batch.get() == NULL:
raise StopIteration
return _wrap_record_batch_with_metadata(batch_with_metadata)
def iter_batches_with_custom_metadata(self):
"""
Iterate over record batches from the stream along with their custom
metadata.
Yields
------
RecordBatchWithMetadata
"""
while True:
try:
yield self.read_next_batch_with_custom_metadata()
except StopIteration:
return
def read_all(self):
"""
Read all record batches as a pyarrow.Table.
Returns
-------
Table
"""
cdef shared_ptr[CTable] table
with nogil:
check_status(self.reader.get().ToTable().Value(&table))
return pyarrow_wrap_table(table)
read_pandas = _ReadPandasMixin.read_pandas
def close(self):
"""
Release any resources associated with the reader.
"""
with nogil:
check_status(self.reader.get().Close())
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.close()
def cast(self, target_schema):
"""
Wrap this reader with one that casts each batch lazily as it is pulled.
Currently only a safe cast to target_schema is implemented.
Parameters
----------
target_schema : Schema
Schema to cast to, the names and order of fields must match.
Returns
-------
RecordBatchReader
"""
cdef:
shared_ptr[CSchema] c_schema
shared_ptr[CRecordBatchReader] c_reader
RecordBatchReader out
if self.schema.names != target_schema.names:
raise ValueError("Target schema's field names are not matching "
f"the table's field names: {self.schema.names}, "
f"{target_schema.names}")
c_schema = pyarrow_unwrap_schema(target_schema)
c_reader = GetResultValue(CCastingRecordBatchReader.Make(
self.reader, c_schema))
out = RecordBatchReader.__new__(RecordBatchReader)
out.reader = c_reader
return out
def _export_to_c(self, out_ptr):
"""
Export to a C ArrowArrayStream struct, given its pointer.
Parameters
----------
out_ptr: int
The raw pointer to a C ArrowArrayStream struct.
Be careful: if you don't pass the ArrowArrayStream struct to a
consumer, array memory will leak. This is a low-level function
intended for expert users.
"""
cdef:
void* c_ptr = _as_c_pointer(out_ptr)
with nogil:
check_status(ExportRecordBatchReader(
self.reader, <ArrowArrayStream*> c_ptr))
@staticmethod
def _import_from_c(in_ptr):
"""
Import RecordBatchReader from a C ArrowArrayStream struct,
given its pointer.
Parameters
----------
in_ptr: int
The raw pointer to a C ArrowArrayStream struct.
This is a low-level function intended for expert users.
"""
cdef:
void* c_ptr = _as_c_pointer(in_ptr)
shared_ptr[CRecordBatchReader] c_reader
RecordBatchReader self
with nogil:
c_reader = GetResultValue(ImportRecordBatchReader(
<ArrowArrayStream*> c_ptr))
self = RecordBatchReader.__new__(RecordBatchReader)
self.reader = c_reader
return self
def __arrow_c_stream__(self, requested_schema=None):
"""
Export to a C ArrowArrayStream PyCapsule.
Parameters
----------
requested_schema : PyCapsule, default None
The schema to which the stream should be casted, passed as a
PyCapsule containing a C ArrowSchema representation of the
requested schema.
Returns
-------
PyCapsule
A capsule containing a C ArrowArrayStream struct.
"""
cdef:
ArrowArrayStream* c_stream
if requested_schema is not None:
out_schema = Schema._import_from_c_capsule(requested_schema)
if self.schema != out_schema:
return self.cast(out_schema).__arrow_c_stream__()
stream_capsule = alloc_c_stream(&c_stream)
with nogil:
check_status(ExportRecordBatchReader(self.reader, c_stream))
return stream_capsule
@staticmethod
def _import_from_c_capsule(stream):
"""
Import RecordBatchReader from a C ArrowArrayStream PyCapsule.
Parameters
----------
stream: PyCapsule
A capsule containing a C ArrowArrayStream PyCapsule.
Returns
-------
RecordBatchReader
"""
cdef:
ArrowArrayStream* c_stream
shared_ptr[CRecordBatchReader] c_reader
RecordBatchReader self
c_stream = <ArrowArrayStream*>PyCapsule_GetPointer(
stream, 'arrow_array_stream'
)
with nogil:
c_reader = GetResultValue(ImportRecordBatchReader(c_stream))
self = RecordBatchReader.__new__(RecordBatchReader)
self.reader = c_reader
return self
@staticmethod
def from_stream(data, schema=None):
"""
Create RecordBatchReader from a Arrow-compatible stream object.
This accepts objects implementing the Arrow PyCapsule Protocol for
streams, i.e. objects that have a ``__arrow_c_stream__`` method.
Parameters
----------
data : Arrow-compatible stream object
Any object that implements the Arrow PyCapsule Protocol for
streams.
schema : Schema, default None
The schema to which the stream should be casted, if supported
by the stream object.
Returns
-------
RecordBatchReader
"""
if not hasattr(data, "__arrow_c_stream__"):
raise TypeError(
"Expected an object implementing the Arrow PyCapsule Protocol for "
"streams (i.e. having a `__arrow_c_stream__` method), "
f"got {type(data)!r}."
)
if schema is not None:
if not hasattr(schema, "__arrow_c_schema__"):
raise TypeError(
"Expected an object implementing the Arrow PyCapsule Protocol for "
"schema (i.e. having a `__arrow_c_schema__` method), "
f"got {type(schema)!r}."
)
requested = schema.__arrow_c_schema__()
else:
requested = None
capsule = data.__arrow_c_stream__(requested)
return RecordBatchReader._import_from_c_capsule(capsule)
@staticmethod
def from_batches(Schema schema not None, batches):
"""
Create RecordBatchReader from an iterable of batches.
Parameters
----------
schema : Schema
The shared schema of the record batches
batches : Iterable[RecordBatch]
The batches that this reader will return.
Returns
-------
reader : RecordBatchReader
"""
cdef:
shared_ptr[CSchema] c_schema
shared_ptr[CRecordBatchReader] c_reader
RecordBatchReader self
c_schema = pyarrow_unwrap_schema(schema)
c_reader = GetResultValue(CPyRecordBatchReader.Make(
c_schema, batches))
self = RecordBatchReader.__new__(RecordBatchReader)
self.reader = c_reader
return self
cdef class _RecordBatchStreamReader(RecordBatchReader):
cdef:
shared_ptr[CInputStream] in_stream
CIpcReadOptions options
CRecordBatchStreamReader* stream_reader
def __cinit__(self):
pass
def _open(self, source, IpcReadOptions options=IpcReadOptions(),
MemoryPool memory_pool=None):
self.options = options.c_options
self.options.memory_pool = maybe_unbox_memory_pool(memory_pool)
_get_input_stream(source, &self.in_stream)
with nogil:
self.reader = GetResultValue(CRecordBatchStreamReader.Open(
self.in_stream, self.options))
self.stream_reader = <CRecordBatchStreamReader*> self.reader.get()
@property
def stats(self):
"""
Current IPC read statistics.
"""
if not self.reader:
raise ValueError("Operation on closed reader")
return _wrap_read_stats(self.stream_reader.stats())
cdef class _RecordBatchFileWriter(_RecordBatchStreamWriter):
def _open(self, sink, Schema schema not None,
IpcWriteOptions options=IpcWriteOptions()):
cdef:
shared_ptr[COutputStream] c_sink
self.options = options.c_options
get_writer(sink, &c_sink)
with nogil:
self.writer = GetResultValue(
MakeFileWriter(c_sink, schema.sp_schema, self.options))
_RecordBatchWithMetadata = namedtuple(
'RecordBatchWithMetadata',
('batch', 'custom_metadata'))
class RecordBatchWithMetadata(_RecordBatchWithMetadata):
"""RecordBatch with its custom metadata
Parameters
----------
batch : RecordBatch
custom_metadata : KeyValueMetadata
"""
__slots__ = ()
@staticmethod
cdef _wrap_record_batch_with_metadata(CRecordBatchWithMetadata c):
return RecordBatchWithMetadata(pyarrow_wrap_batch(c.batch),
pyarrow_wrap_metadata(c.custom_metadata))
cdef class _RecordBatchFileReader(_Weakrefable):
cdef:
SharedPtrNoGIL[CRecordBatchFileReader] reader
shared_ptr[CRandomAccessFile] file
CIpcReadOptions options
cdef readonly:
Schema schema
def __cinit__(self):
pass
def _open(self, source, footer_offset=None,
IpcReadOptions options=IpcReadOptions(),
MemoryPool memory_pool=None):
self.options = options.c_options
self.options.memory_pool = maybe_unbox_memory_pool(memory_pool)
try:
source = as_buffer(source)
except TypeError:
pass
get_reader(source, False, &self.file)
cdef int64_t offset = 0
if footer_offset is not None:
offset = footer_offset
with nogil:
if offset != 0:
self.reader = GetResultValue(
CRecordBatchFileReader.Open2(self.file.get(), offset,
self.options))
else:
self.reader = GetResultValue(
CRecordBatchFileReader.Open(self.file.get(),
self.options))
self.schema = pyarrow_wrap_schema(self.reader.get().schema())
@property
def num_record_batches(self):
"""
The number of record batches in the IPC file.
"""
return self.reader.get().num_record_batches()
def get_batch(self, int i):
"""
Read the record batch with the given index.
Parameters
----------
i : int
The index of the record batch in the IPC file.
Returns
-------
batch : RecordBatch
"""
cdef shared_ptr[CRecordBatch] batch
if i < 0 or i >= self.num_record_batches:
raise ValueError('Batch number {0} out of range'.format(i))
with nogil:
batch = GetResultValue(self.reader.get().ReadRecordBatch(i))
return pyarrow_wrap_batch(batch)
# TODO(wesm): ARROW-503: Function was renamed. Remove after a period of
# time has passed
get_record_batch = get_batch
def get_batch_with_custom_metadata(self, int i):
"""
Read the record batch with the given index along with
its custom metadata
Parameters
----------
i : int
The index of the record batch in the IPC file.
Returns
-------
batch : RecordBatch
custom_metadata : KeyValueMetadata
"""
cdef:
CRecordBatchWithMetadata batch_with_metadata
if i < 0 or i >= self.num_record_batches:
raise ValueError('Batch number {0} out of range'.format(i))
with nogil:
batch_with_metadata = GetResultValue(
self.reader.get().ReadRecordBatchWithCustomMetadata(i))
return _wrap_record_batch_with_metadata(batch_with_metadata)
def read_all(self):
"""
Read all record batches as a pyarrow.Table
"""
cdef:
vector[shared_ptr[CRecordBatch]] batches
shared_ptr[CTable] table
int i, nbatches
nbatches = self.num_record_batches
batches.resize(nbatches)
with nogil:
for i in range(nbatches):
batches[i] = GetResultValue(self.reader.get()
.ReadRecordBatch(i))
table = GetResultValue(
CTable.FromRecordBatches(self.schema.sp_schema, move(batches)))
return pyarrow_wrap_table(table)
read_pandas = _ReadPandasMixin.read_pandas
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
pass
@property
def stats(self):
"""
Current IPC read statistics.
"""
if not self.reader:
raise ValueError("Operation on closed reader")
return _wrap_read_stats(self.reader.get().stats())
def get_tensor_size(Tensor tensor):
"""
Return total size of serialized Tensor including metadata and padding.
Parameters
----------
tensor : Tensor
The tensor for which we want to known the size.
"""
cdef int64_t size
with nogil:
check_status(GetTensorSize(deref(tensor.tp), &size))
return size
def get_record_batch_size(RecordBatch batch):
"""
Return total size of serialized RecordBatch including metadata and padding.
Parameters
----------
batch : RecordBatch
The recordbatch for which we want to know the size.
"""
cdef int64_t size
with nogil:
check_status(GetRecordBatchSize(deref(batch.batch), &size))
return size
def write_tensor(Tensor tensor, NativeFile dest):
"""
Write pyarrow.Tensor to pyarrow.NativeFile object its current position.
Parameters
----------
tensor : pyarrow.Tensor
dest : pyarrow.NativeFile
Returns
-------
bytes_written : int
Total number of bytes written to the file
"""
cdef:
int32_t metadata_length
int64_t body_length
handle = dest.get_output_stream()
with nogil:
check_status(
WriteTensor(deref(tensor.tp), handle.get(),
&metadata_length, &body_length))
return metadata_length + body_length
cdef NativeFile as_native_file(source):
if not isinstance(source, NativeFile):
if hasattr(source, 'read'):
source = PythonFile(source)
else:
source = BufferReader(source)
if not isinstance(source, NativeFile):
raise ValueError('Unable to read message from object with type: {0}'
.format(type(source)))
return source
def read_tensor(source):
"""Read pyarrow.Tensor from pyarrow.NativeFile object from current
position. If the file source supports zero copy (e.g. a memory map), then
this operation does not allocate any memory. This function not assume that
the stream is aligned
Parameters
----------
source : pyarrow.NativeFile
Returns
-------
tensor : Tensor
"""
cdef:
shared_ptr[CTensor] sp_tensor
CInputStream* c_stream
NativeFile nf = as_native_file(source)
c_stream = nf.get_input_stream().get()
with nogil:
sp_tensor = GetResultValue(ReadTensor(c_stream))
return pyarrow_wrap_tensor(sp_tensor)
def read_message(source):
"""
Read length-prefixed message from file or buffer-like object
Parameters
----------
source : pyarrow.NativeFile, file-like object, or buffer-like object
Returns
-------
message : Message
"""
cdef:
Message result = Message.__new__(Message)
CInputStream* c_stream
cdef NativeFile nf = as_native_file(source)
c_stream = nf.get_input_stream().get()
with nogil:
result.message = move(
GetResultValue(ReadMessage(c_stream, c_default_memory_pool())))
if result.message == nullptr:
raise EOFError("End of Arrow stream")
return result
def read_schema(obj, DictionaryMemo dictionary_memo=None):
"""
Read Schema from message or buffer
Parameters
----------
obj : buffer or Message
dictionary_memo : DictionaryMemo, optional
Needed to be able to reconstruct dictionary-encoded fields
with read_record_batch
Returns
-------
schema : Schema
"""
cdef:
shared_ptr[CSchema] result
shared_ptr[CRandomAccessFile] cpp_file
Message message
CDictionaryMemo temp_memo
CDictionaryMemo* arg_dict_memo
if dictionary_memo is not None:
arg_dict_memo = dictionary_memo.memo
else:
arg_dict_memo = &temp_memo
if isinstance(obj, Message):
message = obj
with nogil:
result = GetResultValue(ReadSchema(
deref(message.message.get()), arg_dict_memo))
else:
get_reader(obj, False, &cpp_file)
with nogil:
result = GetResultValue(ReadSchema(cpp_file.get(), arg_dict_memo))
return pyarrow_wrap_schema(result)
def read_record_batch(obj, Schema schema,
DictionaryMemo dictionary_memo=None):
"""
Read RecordBatch from message, given a known schema. If reading data from a
complete IPC stream, use ipc.open_stream instead
Parameters
----------
obj : Message or Buffer-like
schema : Schema
dictionary_memo : DictionaryMemo, optional
If message contains dictionaries, must pass a populated
DictionaryMemo
Returns
-------
batch : RecordBatch
"""
cdef:
shared_ptr[CRecordBatch] result
Message message
CDictionaryMemo temp_memo
CDictionaryMemo* arg_dict_memo
if isinstance(obj, Message):
message = obj
else:
message = read_message(obj)
if dictionary_memo is not None:
arg_dict_memo = dictionary_memo.memo
else:
arg_dict_memo = &temp_memo
with nogil:
result = GetResultValue(
ReadRecordBatch(deref(message.message.get()),
schema.sp_schema,
arg_dict_memo,
CIpcReadOptions.Defaults()))
return pyarrow_wrap_batch(result)
|