|
"""This module should not be used directly as its API is subject to change. Instead, |
|
use the `gr.Blocks.load()` or `gr.load()` functions.""" |
|
|
|
from __future__ import annotations |
|
|
|
import json |
|
import os |
|
import re |
|
import tempfile |
|
import warnings |
|
from collections.abc import Callable, Generator |
|
from pathlib import Path |
|
from typing import TYPE_CHECKING, Literal |
|
|
|
import httpx |
|
import huggingface_hub |
|
from gradio_client import Client |
|
from gradio_client.client import Endpoint |
|
from gradio_client.documentation import document |
|
from gradio_client.utils import encode_url_or_file_to_base64 |
|
from packaging import version |
|
|
|
import gradio as gr |
|
from gradio import components, external_utils, utils |
|
from gradio.components.multimodal_textbox import MultimodalValue |
|
from gradio.context import Context |
|
from gradio.exceptions import ( |
|
GradioVersionIncompatibleError, |
|
TooManyRequestsError, |
|
) |
|
from gradio.processing_utils import save_base64_to_cache, to_binary |
|
|
|
if TYPE_CHECKING: |
|
from huggingface_hub.inference._providers import PROVIDER_T |
|
|
|
from gradio.blocks import Blocks |
|
from gradio.chat_interface import ChatInterface |
|
from gradio.components.chatbot import MessageDict |
|
from gradio.components.login_button import LoginButton |
|
from gradio.interface import Interface |
|
|
|
|
|
@document() |
|
def load( |
|
name: str, |
|
src: Callable[[str, str | None], Blocks] |
|
| Literal["models", "spaces"] |
|
| None = None, |
|
token: str | None = None, |
|
hf_token: str | None = None, |
|
accept_token: bool | LoginButton = False, |
|
provider: PROVIDER_T | None = None, |
|
**kwargs, |
|
) -> Blocks: |
|
""" |
|
Constructs a Gradio app automatically from a Hugging Face model/Space repo name or a 3rd-party API provider. Note that if a Space repo is loaded, certain high-level attributes of the Blocks (e.g. custom `css`, `js`, and `head` attributes) will not be loaded. |
|
Parameters: |
|
name: the name of the model (e.g. "google/vit-base-patch16-224") or Space (e.g. "flax-community/spanish-gpt2"). This is the first parameter passed into the `src` function. Can also be formatted as {src}/{repo name} (e.g. "models/google/vit-base-patch16-224") if `src` is not provided. |
|
src: function that accepts a string model `name` and a string or None `token` and returns a Gradio app. Alternatively, this parameter takes one of two strings for convenience: "models" (for loading a Hugging Face model through the Inference API) or "spaces" (for loading a Hugging Face Space). If None, uses the prefix of the `name` parameter to determine `src`. |
|
token: optional token that is passed as the second parameter to the `src` function. If not explicitly provided, will use the HF_TOKEN environment variable or fallback to the locally-saved HF token when loading models but not Spaces (when loading Spaces, only provide a token if you are loading a trusted private Space as the token can be read by the Space you are loading). Find your HF tokens here: https://huggingface.co/settings/tokens. |
|
accept_token: if True, a Textbox component is first rendered to allow the user to provide a token, which will be used instead of the `token` parameter when calling the loaded model or Space. Can also provide an instance of a gr.LoginButton in the same Blocks scope, which allows the user to login with a Hugging Face account whose token will be used instead of the `token` parameter when calling the loaded model or Space. |
|
kwargs: additional keyword parameters to pass into the `src` function. If `src` is "models" or "Spaces", these parameters are passed into the `gr.Interface` or `gr.ChatInterface` constructor. |
|
provider: the name of the third-party (non-Hugging Face) providers to use for model inference (e.g. "replicate", "sambanova", "fal-ai", etc). Should be one of the providers supported by `huggingface_hub.InferenceClient`. This parameter is only used when `src` is "models" |
|
Returns: |
|
a Gradio Blocks app for the given model |
|
Example: |
|
import gradio as gr |
|
demo = gr.load("gradio/question-answering", src="spaces") |
|
demo.launch() |
|
""" |
|
if hf_token is not None and token is None: |
|
token = hf_token |
|
warnings.warn( |
|
"The `hf_token` parameter is deprecated. Please use the equivalent `token` parameter instead." |
|
) |
|
if src is None: |
|
|
|
parts = name.split("/") |
|
if len(parts) <= 1: |
|
raise ValueError( |
|
"Either `src` parameter must be provided, or `name` must be formatted as {src}/{repo name}" |
|
) |
|
src = parts[0] |
|
name = "/".join(parts[1:]) |
|
assert src is not None |
|
if not isinstance(src, Callable) and src not in ["models", "spaces", "huggingface"]: |
|
raise ValueError( |
|
"The `src` parameter must be one of 'huggingface', 'models', 'spaces', or a function that accepts a model name (and optionally, a token), and returns a Gradio app." |
|
) |
|
if ( |
|
token is None |
|
and src in ["models", "huggingface"] |
|
and os.environ.get("HF_TOKEN") is not None |
|
): |
|
token = os.environ.get("HF_TOKEN") |
|
|
|
if isinstance(src, Callable): |
|
return src(name, token, **kwargs) |
|
|
|
if not accept_token: |
|
return load_blocks_from_huggingface( |
|
name=name, src=src, hf_token=token, provider=provider, **kwargs |
|
) |
|
elif isinstance(accept_token, gr.LoginButton): |
|
with gr.Blocks(fill_height=True) as demo: |
|
if not accept_token.is_rendered: |
|
accept_token.render() |
|
|
|
@gr.render(triggers=[demo.load]) |
|
def create_blocks(oauth_token: gr.OAuthToken | None): |
|
token_value = None if oauth_token is None else oauth_token.token |
|
return load_blocks_from_huggingface( |
|
name=name, |
|
src=src, |
|
hf_token=token_value, |
|
provider=provider, |
|
**kwargs, |
|
) |
|
|
|
return demo |
|
else: |
|
with gr.Blocks(fill_height=True) as demo: |
|
with gr.Accordion("Enter your token and press enter") as accordion: |
|
textbox = gr.Textbox( |
|
type="password", |
|
show_label=False, |
|
container=False, |
|
) |
|
remember_token = gr.Checkbox( |
|
label="Remember me on this device", value=False, container=False |
|
) |
|
browser_state = gr.BrowserState() |
|
|
|
@gr.on([textbox.submit], outputs=accordion) |
|
def hide_accordion(): |
|
return gr.Accordion("Token settings", open=False) |
|
|
|
@gr.on( |
|
[textbox.submit, remember_token.change], |
|
inputs=[textbox, remember_token], |
|
outputs=[browser_state, remember_token], |
|
) |
|
def save_token(token_value, remember_token_value): |
|
if remember_token_value and token_value: |
|
return token_value, gr.Checkbox( |
|
label="Remember me on this device (saved!)", value=True |
|
) |
|
else: |
|
return "", gr.Checkbox(label="Remember me on this device") |
|
|
|
@gr.on(demo.load, inputs=[browser_state], outputs=[textbox, remember_token]) |
|
def load_token(token_value): |
|
if token_value: |
|
return token_value, True |
|
else: |
|
return "", False |
|
|
|
@gr.render(inputs=[textbox], triggers=[textbox.submit]) |
|
def create(token_value): |
|
return load_blocks_from_huggingface( |
|
name=name, |
|
src=src, |
|
hf_token=token_value, |
|
provider=provider, |
|
**kwargs, |
|
) |
|
|
|
return demo |
|
|
|
|
|
def load_blocks_from_huggingface( |
|
name: str, |
|
src: str, |
|
hf_token: str | None = None, |
|
alias: str | None = None, |
|
provider: PROVIDER_T | None = None, |
|
**kwargs, |
|
) -> Blocks: |
|
"""Creates and returns a Blocks instance from a Hugging Face model or Space repo.""" |
|
if hf_token is not None: |
|
if Context.hf_token is not None and Context.hf_token != hf_token: |
|
warnings.warn( |
|
"""You are loading a model/Space with a different access token than the one you used to load a previous model/Space. This is not recommended, as it may cause unexpected behavior.""" |
|
) |
|
Context.hf_token = hf_token |
|
|
|
if src == "spaces": |
|
|
|
token = False if hf_token is None else hf_token |
|
blocks = from_spaces( |
|
name, hf_token=token, alias=alias, provider=provider, **kwargs |
|
) |
|
else: |
|
blocks = from_model( |
|
name, hf_token=hf_token, alias=alias, provider=provider, **kwargs |
|
) |
|
return blocks |
|
|
|
|
|
def from_model( |
|
model_name: str, |
|
hf_token: str | None, |
|
alias: str | None, |
|
provider: PROVIDER_T | None = None, |
|
**kwargs, |
|
) -> Blocks: |
|
headers = {"X-Wait-For-Model": "true"} |
|
client = huggingface_hub.InferenceClient( |
|
model=model_name, headers=headers, token=hf_token, provider=provider |
|
) |
|
p, tags = external_utils.get_model_info(model_name, hf_token) |
|
|
|
|
|
api_url = f"https://api-inference.huggingface.co/models/{model_name}" |
|
GRADIO_CACHE = os.environ.get("GRADIO_TEMP_DIR") or str( |
|
Path(tempfile.gettempdir()) / "gradio" |
|
) |
|
|
|
def custom_post_binary(data): |
|
data = to_binary({"path": data}) |
|
response = httpx.request("POST", api_url, headers=headers, content=data) |
|
return save_base64_to_cache( |
|
external_utils.encode_to_base64(response), cache_dir=GRADIO_CACHE |
|
) |
|
|
|
preprocess = None |
|
postprocess = None |
|
examples = None |
|
|
|
|
|
if p == "audio-classification": |
|
inputs = components.Audio(type="filepath", label="Input") |
|
outputs = components.Label(label="Class") |
|
postprocess = external_utils.postprocess_label |
|
examples = [ |
|
"https://gradio-builds.s3.amazonaws.com/demo-files/audio_sample.wav" |
|
] |
|
fn = client.audio_classification |
|
|
|
elif p == "audio-to-audio": |
|
inputs = components.Audio(type="filepath", label="Input") |
|
outputs = components.Audio(label="Output") |
|
examples = [ |
|
"https://gradio-builds.s3.amazonaws.com/demo-files/audio_sample.wav" |
|
] |
|
fn = custom_post_binary |
|
|
|
elif p == "automatic-speech-recognition": |
|
inputs = components.Audio(type="filepath", label="Input") |
|
outputs = components.Textbox(label="Output") |
|
examples = [ |
|
"https://gradio-builds.s3.amazonaws.com/demo-files/audio_sample.wav" |
|
] |
|
fn = client.automatic_speech_recognition |
|
postprocess = lambda x: x.text |
|
|
|
elif p == "feature-extraction": |
|
inputs = components.Textbox(label="Input") |
|
outputs = components.Dataframe(label="Output") |
|
fn = client.feature_extraction |
|
postprocess = utils.resolve_singleton |
|
|
|
elif p == "fill-mask": |
|
inputs = components.Textbox(label="Input") |
|
outputs = components.Label(label="Classification") |
|
examples = [ |
|
"Hugging Face is the AI community, working together, to [MASK] the future." |
|
] |
|
postprocess = external_utils.postprocess_mask_tokens |
|
fn = client.fill_mask |
|
|
|
elif p == "image-classification": |
|
inputs = components.Image(type="filepath", label="Input Image") |
|
outputs = components.Label(label="Classification") |
|
postprocess = external_utils.postprocess_label |
|
examples = ["https://gradio-builds.s3.amazonaws.com/demo-files/cheetah-002.jpg"] |
|
fn = client.image_classification |
|
|
|
elif p == "question-answering": |
|
inputs = [ |
|
components.Textbox(label="Question"), |
|
components.Textbox(lines=7, label="Context"), |
|
] |
|
outputs = [ |
|
components.Textbox(label="Answer"), |
|
components.Label(label="Score"), |
|
] |
|
examples = [ |
|
[ |
|
"What entity was responsible for the Apollo program?", |
|
"The Apollo program, also known as Project Apollo, was the third United States human spaceflight" |
|
" program carried out by the National Aeronautics and Space Administration (NASA), which accomplished" |
|
" landing the first humans on the Moon from 1969 to 1972.", |
|
] |
|
] |
|
postprocess = external_utils.postprocess_question_answering |
|
fn = client.question_answering |
|
|
|
elif p == "summarization": |
|
inputs = components.Textbox(label="Input") |
|
outputs = components.Textbox(label="Summary") |
|
examples = [ |
|
[ |
|
"The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct." |
|
] |
|
] |
|
postprocess = lambda x: x.summary_text |
|
fn = client.summarization |
|
|
|
elif p == "text-classification": |
|
inputs = components.Textbox(label="Input") |
|
outputs = components.Label(label="Classification") |
|
examples = ["I feel great"] |
|
postprocess = external_utils.postprocess_label |
|
fn = client.text_classification |
|
|
|
elif p == "text-generation": |
|
|
|
if tags and "conversational" in tags: |
|
from gradio import ChatInterface |
|
from gradio.components import Chatbot |
|
|
|
fn = external_utils.conversational_wrapper(client) |
|
examples = [ |
|
"What is the capital of Pakistan?", |
|
"Tell me a joke about calculus.", |
|
"Explain gravity to a 5-year-old.", |
|
"What were the main causes of World War I?", |
|
] |
|
chat_interface_kwargs = { |
|
"examples": examples, |
|
} |
|
kwargs = dict(chat_interface_kwargs, **kwargs) |
|
chatbot = Chatbot(scale=1, type="messages", allow_tags=True) |
|
return ChatInterface(fn, chatbot=chatbot, type="messages", **kwargs) |
|
inputs = components.Textbox(label="Text") |
|
outputs = inputs |
|
examples = ["Once upon a time"] |
|
fn = external_utils.text_generation_wrapper(client) |
|
|
|
elif p == "text2text-generation": |
|
inputs = components.Textbox(label="Input") |
|
outputs = components.Textbox(label="Generated Text") |
|
examples = ["Translate English to Arabic: How are you?"] |
|
fn = client.text_generation |
|
|
|
elif p == "translation": |
|
inputs = components.Textbox(label="Input") |
|
outputs = components.Textbox(label="Translation") |
|
postprocess = lambda x: x.translation_text |
|
examples = ["Hello, how are you?"] |
|
fn = client.translation |
|
|
|
elif p == "zero-shot-classification": |
|
inputs = [ |
|
components.Textbox(label="Input"), |
|
components.Textbox(label="Possible class names (comma-separated)"), |
|
components.Checkbox(label="Allow multiple true classes"), |
|
] |
|
outputs = components.Label(label="Classification") |
|
postprocess = external_utils.postprocess_label |
|
examples = [["I feel great", "happy, sad", False]] |
|
fn = external_utils.zero_shot_classification_wrapper(client) |
|
|
|
elif p == "sentence-similarity": |
|
inputs = [ |
|
components.Textbox( |
|
label="Source Sentence", |
|
placeholder="Enter an original sentence", |
|
), |
|
components.Textbox( |
|
lines=7, |
|
placeholder="Sentences to compare to -- separate each sentence by a newline", |
|
label="Sentences to compare to", |
|
), |
|
] |
|
outputs = components.JSON(label="Similarity scores") |
|
examples = [["That is a happy person", "That person is very happy"]] |
|
fn = external_utils.sentence_similarity_wrapper(client) |
|
|
|
elif p == "text-to-speech": |
|
inputs = components.Textbox(label="Input") |
|
outputs = components.Audio(label="Audio") |
|
examples = ["Hello, how are you?"] |
|
fn = client.text_to_speech |
|
|
|
elif p == "text-to-image": |
|
inputs = components.Textbox(label="Input") |
|
outputs = components.Image(label="Output") |
|
examples = ["A beautiful sunset"] |
|
fn = client.text_to_image |
|
|
|
elif p == "token-classification": |
|
inputs = components.Textbox(label="Input") |
|
outputs = components.HighlightedText(label="Output") |
|
examples = [ |
|
"Hugging Face is a company based in Paris and New York City that acquired Gradio in 2021." |
|
] |
|
fn = external_utils.token_classification_wrapper(client) |
|
|
|
elif p == "document-question-answering": |
|
inputs = [ |
|
components.Image(type="filepath", label="Input Document"), |
|
components.Textbox(label="Question"), |
|
] |
|
postprocess = external_utils.postprocess_label |
|
outputs = components.Label(label="Label") |
|
fn = client.document_question_answering |
|
|
|
elif p == "visual-question-answering": |
|
inputs = [ |
|
components.Image(type="filepath", label="Input Image"), |
|
components.Textbox(label="Question"), |
|
] |
|
outputs = components.Label(label="Label") |
|
postprocess = external_utils.postprocess_visual_question_answering |
|
examples = [ |
|
[ |
|
"https://gradio-builds.s3.amazonaws.com/demo-files/cheetah-002.jpg", |
|
"What animal is in the image?", |
|
] |
|
] |
|
fn = client.visual_question_answering |
|
|
|
elif p == "image-to-text": |
|
inputs = components.Image(type="filepath", label="Input Image") |
|
outputs = components.Textbox(label="Generated Text") |
|
examples = ["https://gradio-builds.s3.amazonaws.com/demo-files/cheetah-002.jpg"] |
|
fn = client.image_to_text |
|
|
|
elif p in ["tabular-classification", "tabular-regression"]: |
|
examples = external_utils.get_tabular_examples(model_name) |
|
col_names, examples = external_utils.cols_to_rows(examples) |
|
examples = [[examples]] if examples else None |
|
inputs = components.Dataframe( |
|
label="Input Rows", |
|
type="pandas", |
|
headers=col_names, |
|
col_count=(len(col_names), "fixed"), |
|
render=False, |
|
) |
|
outputs = components.Dataframe( |
|
label="Predictions", type="array", headers=["prediction"] |
|
) |
|
fn = external_utils.tabular_wrapper |
|
|
|
elif p == "object-detection": |
|
inputs = components.Image(type="filepath", label="Input Image") |
|
outputs = components.AnnotatedImage(label="Annotations") |
|
fn = external_utils.object_detection_wrapper(client) |
|
|
|
elif p == "image-to-image": |
|
inputs = [ |
|
components.Image(type="filepath", label="Input Image"), |
|
components.Textbox(label="Input"), |
|
] |
|
outputs = components.Image(label="Output") |
|
examples = [ |
|
[ |
|
"https://gradio-builds.s3.amazonaws.com/demo-files/cheetah-002.jpg", |
|
"Photo of a cheetah with green eyes", |
|
] |
|
] |
|
fn = client.image_to_image |
|
else: |
|
raise ValueError(f"Unsupported pipeline type: {p}") |
|
|
|
def query_huggingface_inference_endpoints(*data): |
|
if preprocess is not None: |
|
data = preprocess(*data) |
|
try: |
|
data = fn(*data) |
|
except Exception as e: |
|
external_utils.handle_hf_error(e) |
|
|
|
if postprocess is not None: |
|
data = postprocess(data) |
|
return data |
|
|
|
query_huggingface_inference_endpoints.__name__ = alias or model_name |
|
|
|
interface_info = { |
|
"fn": query_huggingface_inference_endpoints, |
|
"inputs": inputs, |
|
"outputs": outputs, |
|
"title": model_name, |
|
"examples": examples, |
|
"cache_examples": False, |
|
} |
|
|
|
kwargs = dict(interface_info, **kwargs) |
|
interface = gr.Interface(**kwargs) |
|
return interface |
|
|
|
|
|
def from_spaces( |
|
space_name: str, |
|
hf_token: str | None | Literal[False], |
|
alias: str | None, |
|
provider: PROVIDER_T | None = None, |
|
**kwargs, |
|
) -> Blocks: |
|
if provider is not None: |
|
warnings.warn( |
|
"The `provider` parameter is not supported when loading Spaces. It will be ignored." |
|
) |
|
|
|
space_url = f"https://huggingface.co/spaces/{space_name}" |
|
|
|
print(f"Fetching Space from: {space_url}") |
|
|
|
headers = {} |
|
if hf_token not in [False, None]: |
|
headers["Authorization"] = f"Bearer {hf_token}" |
|
iframe_url = ( |
|
httpx.get( |
|
f"https://huggingface.co/api/spaces/{space_name}/host", headers=headers |
|
) |
|
.json() |
|
.get("host") |
|
) |
|
|
|
if iframe_url is None: |
|
raise ValueError( |
|
f"Could not find Space: {space_name}. If it is a private or gated Space, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `hf_token` parameter." |
|
) |
|
|
|
config_request = httpx.get(iframe_url + "/config", headers=headers) |
|
if config_request.status_code == 404: |
|
r = httpx.get(iframe_url, headers=headers) |
|
|
|
result = re.search( |
|
r"window.gradio_config = (.*?);[\s]*</script>", r.text |
|
) |
|
try: |
|
config = json.loads(result.group(1)) |
|
except AttributeError as ae: |
|
raise ValueError(f"Could not load the Space: {space_name}") from ae |
|
elif config_request.status_code == 200: |
|
config = config_request.json() |
|
else: |
|
raise ValueError( |
|
f"Could not load the Space: {space_name} because the config could not be fetched." |
|
) |
|
if "allow_flagging" in config: |
|
return from_spaces_interface( |
|
space_name, config, alias, hf_token, iframe_url, **kwargs |
|
) |
|
else: |
|
if kwargs: |
|
warnings.warn( |
|
"You cannot override parameters for this Space by passing in kwargs. " |
|
"Instead, please load the Space as a function and use it to create a " |
|
"Blocks or Interface locally. You may find this Guide helpful: " |
|
"https://gradio.app/using_blocks_like_functions/" |
|
) |
|
return from_spaces_blocks(space=space_name, hf_token=hf_token) |
|
|
|
|
|
def from_spaces_blocks(space: str, hf_token: str | None | Literal[False]) -> Blocks: |
|
client = Client( |
|
space, |
|
hf_token=hf_token, |
|
download_files=False, |
|
_skip_components=False, |
|
) |
|
|
|
|
|
|
|
if client.app_version < version.Version("4.0.0b14"): |
|
raise GradioVersionIncompatibleError( |
|
f"Gradio version 4.x cannot load spaces with versions less than 4.x ({client.app_version})." |
|
"Please downgrade to version 3 to load this space." |
|
) |
|
|
|
|
|
predict_fns = [] |
|
for fn_index, endpoint in client.endpoints.items(): |
|
if not isinstance(endpoint, Endpoint): |
|
raise TypeError( |
|
f"Expected endpoint to be an Endpoint, but got {type(endpoint)}" |
|
) |
|
helper = client.new_helper(fn_index) |
|
if endpoint.backend_fn: |
|
predict_fns.append(endpoint.make_end_to_end_fn(helper)) |
|
else: |
|
predict_fns.append(None) |
|
return gr.Blocks.from_config(client.config, predict_fns, client.src) |
|
|
|
|
|
def from_spaces_interface( |
|
model_name: str, |
|
config: dict, |
|
alias: str | None, |
|
hf_token: str | None | Literal[False], |
|
iframe_url: str, |
|
**kwargs, |
|
) -> Interface: |
|
config = external_utils.streamline_spaces_interface(config) |
|
api_url = f"{iframe_url}/api/predict/" |
|
headers = {"Content-Type": "application/json"} |
|
if hf_token not in [False, None]: |
|
headers["Authorization"] = f"Bearer {hf_token}" |
|
|
|
|
|
def fn(*data): |
|
data = json.dumps({"data": data}) |
|
response = httpx.post(api_url, headers=headers, data=data) |
|
result = json.loads(response.content.decode("utf-8")) |
|
if "error" in result and "429" in result["error"]: |
|
raise TooManyRequestsError("Too many requests to the Hugging Face API") |
|
try: |
|
output = result["data"] |
|
except KeyError as ke: |
|
raise KeyError( |
|
f"Could not find 'data' key in response from external Space. Response received: {result}" |
|
) from ke |
|
if ( |
|
len(config["outputs"]) == 1 |
|
): |
|
output = output[0] |
|
if ( |
|
len(config["outputs"]) == 1 and isinstance(output, list) |
|
): |
|
output = output[0] |
|
return output |
|
|
|
fn.__name__ = alias if (alias is not None) else model_name |
|
config["fn"] = fn |
|
|
|
kwargs = dict(config, **kwargs) |
|
kwargs["_api_mode"] = True |
|
interface = gr.Interface(**kwargs) |
|
return interface |
|
|
|
|
|
TEXT_FILE_EXTENSIONS = ( |
|
".doc", |
|
".docx", |
|
".rtf", |
|
".epub", |
|
".odt", |
|
".odp", |
|
".pptx", |
|
".txt", |
|
".md", |
|
".py", |
|
".ipynb", |
|
".js", |
|
".jsx", |
|
".html", |
|
".css", |
|
".java", |
|
".cs", |
|
".php", |
|
".c", |
|
".cc", |
|
".cpp", |
|
".cxx", |
|
".cts", |
|
".h", |
|
".hh", |
|
".hpp", |
|
".rs", |
|
".R", |
|
".Rmd", |
|
".swift", |
|
".go", |
|
".rb", |
|
".kt", |
|
".kts", |
|
".ts", |
|
".tsx", |
|
".m", |
|
".mm", |
|
".mts", |
|
".scala", |
|
".dart", |
|
".lua", |
|
".pl", |
|
".pm", |
|
".t", |
|
".sh", |
|
".bash", |
|
".zsh", |
|
".bat", |
|
".coffee", |
|
".csv", |
|
".log", |
|
".ini", |
|
".cfg", |
|
".config", |
|
".json", |
|
".proto", |
|
".yaml", |
|
".yml", |
|
".toml", |
|
".sql", |
|
) |
|
IMAGE_FILE_EXTENSIONS = (".png", ".jpg", ".jpeg", ".gif", ".webp") |
|
|
|
|
|
def format_conversation( |
|
history: list[MessageDict], new_message: str | MultimodalValue |
|
) -> list[dict]: |
|
conversation = [] |
|
for message in history: |
|
if isinstance(message["content"], str): |
|
conversation.append( |
|
{"role": message["role"], "content": message["content"]} |
|
) |
|
elif isinstance(message["content"], tuple): |
|
image_message = { |
|
"role": message["role"], |
|
"content": [ |
|
{ |
|
"type": "image_url", |
|
"image_url": { |
|
"url": encode_url_or_file_to_base64(message["content"][0]) |
|
}, |
|
} |
|
], |
|
} |
|
conversation.append(image_message) |
|
else: |
|
raise ValueError( |
|
f"Invalid message format: {message['content']}. Messages must be either strings or tuples." |
|
) |
|
if isinstance(new_message, str): |
|
text = new_message |
|
files = [] |
|
else: |
|
text = new_message.get("text", None) |
|
files = new_message.get("files", []) |
|
image_files, text_encoded = [], [] |
|
for file in files: |
|
if file.lower().endswith(TEXT_FILE_EXTENSIONS): |
|
text_encoded.append(file) |
|
else: |
|
image_files.append(file) |
|
|
|
for image in image_files: |
|
conversation.append( |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "image_url", |
|
"image_url": {"url": encode_url_or_file_to_base64(image)}, |
|
} |
|
], |
|
} |
|
) |
|
if text or text_encoded: |
|
text = text or "" |
|
text += "\n".join( |
|
[ |
|
f"\n## {Path(file).name}\n{Path(file).read_text()}" |
|
for file in text_encoded |
|
] |
|
) |
|
conversation.append( |
|
{"role": "user", "content": [{"type": "text", "text": text}]} |
|
) |
|
return conversation |
|
|
|
|
|
@document() |
|
def load_chat( |
|
base_url: str, |
|
model: str, |
|
token: str | None = None, |
|
*, |
|
file_types: Literal["text_encoded", "image"] |
|
| list[Literal["text_encoded", "image"]] |
|
| None = "text_encoded", |
|
system_message: str | None = None, |
|
streaming: bool = True, |
|
**kwargs, |
|
) -> ChatInterface: |
|
""" |
|
Load a chat interface from an OpenAI API chat compatible endpoint. |
|
Parameters: |
|
base_url: The base URL of the endpoint, e.g. "http://localhost:11434/v1/" |
|
model: The name of the model you are loading, e.g. "llama3.2" |
|
token: The API token or a placeholder string if you are using a local model, e.g. "ollama" |
|
file_types: The file types allowed to be uploaded by the user. "text_encoded" allows uploading any text-encoded file (which is simply appended to the prompt), and "image" adds image upload support. Set to None to disable file uploads. |
|
system_message: The system message to use for the conversation, if any. |
|
streaming: Whether the response should be streamed. |
|
kwargs: Additional keyword arguments to pass into ChatInterface for customization. |
|
Example: |
|
import gradio as gr |
|
gr.load_chat( |
|
"http://localhost:11434/v1/", |
|
model="qwen2.5", |
|
token="***", |
|
file_types=["text_encoded", "image"], |
|
system_message="You are a silly assistant.", |
|
).launch() |
|
""" |
|
try: |
|
from openai import OpenAI |
|
except ImportError as e: |
|
raise ImportError( |
|
"To use OpenAI API Client, you must install the `openai` package. You can install it with `pip install openai`." |
|
) from e |
|
from gradio.chat_interface import ChatInterface |
|
|
|
client = OpenAI(api_key=token, base_url=base_url) |
|
start_message = ( |
|
[{"role": "system", "content": system_message}] if system_message else [] |
|
) |
|
file_types = utils.none_or_singleton_to_list(file_types) |
|
|
|
def open_api(message: str | MultimodalValue, history: list | None) -> str | None: |
|
history = history or start_message |
|
if len(history) > 0 and isinstance(history[0], (list, tuple)): |
|
history = ChatInterface._tuples_to_messages(history) |
|
conversation = format_conversation(history, message) |
|
return ( |
|
client.chat.completions.create( |
|
model=model, |
|
messages=conversation, |
|
) |
|
.choices[0] |
|
.message.content |
|
) |
|
|
|
def open_api_stream( |
|
message: str | MultimodalValue, history: list | None |
|
) -> Generator[str, None, None]: |
|
history = history or start_message |
|
if len(history) > 0 and isinstance(history[0], (list, tuple)): |
|
history = ChatInterface._tuples_to_messages(history) |
|
conversation = format_conversation(history, message) |
|
stream = client.chat.completions.create( |
|
model=model, |
|
messages=conversation, |
|
stream=True, |
|
) |
|
response = "" |
|
for chunk in stream: |
|
if chunk.choices[0].delta.content is not None: |
|
response += chunk.choices[0].delta.content |
|
yield response |
|
|
|
supported_extensions = [] |
|
for file_type in file_types: |
|
if file_type == "text_encoded": |
|
supported_extensions += TEXT_FILE_EXTENSIONS |
|
elif file_type == "image": |
|
supported_extensions += IMAGE_FILE_EXTENSIONS |
|
else: |
|
raise ValueError( |
|
f"Invalid file type: {file_type}. Must be 'text_encoded' or 'image'." |
|
) |
|
|
|
if "chatbot" not in kwargs: |
|
from gradio.components import Chatbot |
|
|
|
kwargs["chatbot"] = Chatbot(type="messages", scale=1, allow_tags=True) |
|
|
|
return ChatInterface( |
|
open_api_stream if streaming else open_api, |
|
type="messages", |
|
multimodal=bool(file_types), |
|
textbox=gr.MultimodalTextbox(file_types=supported_extensions) |
|
if file_types |
|
else None, |
|
**kwargs, |
|
) |
|
|