File size: 34,799 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
"""This module should not be used directly as its API is subject to change. Instead,
use the `gr.Blocks.load()` or `gr.load()` functions."""

from __future__ import annotations

import json
import os
import re
import tempfile
import warnings
from collections.abc import Callable, Generator
from pathlib import Path
from typing import TYPE_CHECKING, Literal

import httpx
import huggingface_hub
from gradio_client import Client
from gradio_client.client import Endpoint
from gradio_client.documentation import document
from gradio_client.utils import encode_url_or_file_to_base64
from packaging import version

import gradio as gr
from gradio import components, external_utils, utils
from gradio.components.multimodal_textbox import MultimodalValue
from gradio.context import Context
from gradio.exceptions import (
    GradioVersionIncompatibleError,
    TooManyRequestsError,
)
from gradio.processing_utils import save_base64_to_cache, to_binary

if TYPE_CHECKING:
    from huggingface_hub.inference._providers import PROVIDER_T

    from gradio.blocks import Blocks
    from gradio.chat_interface import ChatInterface
    from gradio.components.chatbot import MessageDict
    from gradio.components.login_button import LoginButton
    from gradio.interface import Interface


@document()
def load(
    name: str,
    src: Callable[[str, str | None], Blocks]
    | Literal["models", "spaces"]
    | None = None,
    token: str | None = None,
    hf_token: str | None = None,
    accept_token: bool | LoginButton = False,
    provider: PROVIDER_T | None = None,
    **kwargs,
) -> Blocks:
    """
    Constructs a Gradio app automatically from a Hugging Face model/Space repo name or a 3rd-party API provider. Note that if a Space repo is loaded, certain high-level attributes of the Blocks (e.g. custom `css`, `js`, and `head` attributes) will not be loaded.
    Parameters:
        name: the name of the model (e.g. "google/vit-base-patch16-224") or Space (e.g. "flax-community/spanish-gpt2"). This is the first parameter passed into the `src` function. Can also be formatted as {src}/{repo name} (e.g. "models/google/vit-base-patch16-224") if `src` is not provided.
        src: function that accepts a string model `name` and a string or None `token` and returns a Gradio app. Alternatively, this parameter takes one of two strings for convenience: "models" (for loading a Hugging Face model through the Inference API) or "spaces" (for loading a Hugging Face Space). If None, uses the prefix of the `name` parameter to determine `src`.
        token: optional token that is passed as the second parameter to the `src` function. If not explicitly provided, will use the HF_TOKEN environment variable or fallback to the locally-saved HF token when loading models but not Spaces (when loading Spaces, only provide a token if you are loading a trusted private Space as the token can be read by the Space you are loading). Find your HF tokens here: https://huggingface.co/settings/tokens.
        accept_token: if True, a Textbox component is first rendered to allow the user to provide a token, which will be used instead of the `token` parameter when calling the loaded model or Space. Can also provide an instance of a gr.LoginButton in the same Blocks scope, which allows the user to login with a Hugging Face account whose token will be used instead of the `token` parameter when calling the loaded model or Space.
        kwargs: additional keyword parameters to pass into the `src` function. If `src` is "models" or "Spaces", these parameters are passed into the `gr.Interface` or `gr.ChatInterface` constructor.
        provider: the name of the third-party (non-Hugging Face) providers to use for model inference (e.g. "replicate", "sambanova", "fal-ai", etc). Should be one of the providers supported by `huggingface_hub.InferenceClient`. This parameter is only used when `src` is "models"
    Returns:
        a Gradio Blocks app for the given model
    Example:
        import gradio as gr
        demo = gr.load("gradio/question-answering", src="spaces")
        demo.launch()
    """
    if hf_token is not None and token is None:
        token = hf_token
        warnings.warn(
            "The `hf_token` parameter is deprecated. Please use the equivalent `token` parameter instead."
        )
    if src is None:
        # Separate the repo type (e.g. "model") from repo name (e.g. "google/vit-base-patch16-224")
        parts = name.split("/")
        if len(parts) <= 1:
            raise ValueError(
                "Either `src` parameter must be provided, or `name` must be formatted as {src}/{repo name}"
            )
        src = parts[0]  # type: ignore
        name = "/".join(parts[1:])
    assert src is not None  # noqa: S101
    if not isinstance(src, Callable) and src not in ["models", "spaces", "huggingface"]:
        raise ValueError(
            "The `src` parameter must be one of 'huggingface', 'models', 'spaces', or a function that accepts a model name (and optionally, a token), and returns a Gradio app."
        )
    if (
        token is None
        and src in ["models", "huggingface"]
        and os.environ.get("HF_TOKEN") is not None
    ):
        token = os.environ.get("HF_TOKEN")

    if isinstance(src, Callable):
        return src(name, token, **kwargs)

    if not accept_token:
        return load_blocks_from_huggingface(
            name=name, src=src, hf_token=token, provider=provider, **kwargs
        )
    elif isinstance(accept_token, gr.LoginButton):
        with gr.Blocks(fill_height=True) as demo:
            if not accept_token.is_rendered:
                accept_token.render()

            @gr.render(triggers=[demo.load])
            def create_blocks(oauth_token: gr.OAuthToken | None):
                token_value = None if oauth_token is None else oauth_token.token
                return load_blocks_from_huggingface(
                    name=name,
                    src=src,
                    hf_token=token_value,
                    provider=provider,
                    **kwargs,
                )

        return demo
    else:
        with gr.Blocks(fill_height=True) as demo:
            with gr.Accordion("Enter your token and press enter") as accordion:
                textbox = gr.Textbox(
                    type="password",
                    show_label=False,
                    container=False,
                )
                remember_token = gr.Checkbox(
                    label="Remember me on this device", value=False, container=False
                )
                browser_state = gr.BrowserState()

            @gr.on([textbox.submit], outputs=accordion)
            def hide_accordion():
                return gr.Accordion("Token settings", open=False)

            @gr.on(
                [textbox.submit, remember_token.change],
                inputs=[textbox, remember_token],
                outputs=[browser_state, remember_token],
            )
            def save_token(token_value, remember_token_value):
                if remember_token_value and token_value:
                    return token_value, gr.Checkbox(
                        label="Remember me on this device (saved!)", value=True
                    )
                else:
                    return "", gr.Checkbox(label="Remember me on this device")

            @gr.on(demo.load, inputs=[browser_state], outputs=[textbox, remember_token])
            def load_token(token_value):
                if token_value:
                    return token_value, True
                else:
                    return "", False

            @gr.render(inputs=[textbox], triggers=[textbox.submit])
            def create(token_value):
                return load_blocks_from_huggingface(
                    name=name,
                    src=src,
                    hf_token=token_value,
                    provider=provider,
                    **kwargs,
                )

        return demo


def load_blocks_from_huggingface(
    name: str,
    src: str,
    hf_token: str | None = None,
    alias: str | None = None,
    provider: PROVIDER_T | None = None,
    **kwargs,
) -> Blocks:
    """Creates and returns a Blocks instance from a Hugging Face model or Space repo."""
    if hf_token is not None:
        if Context.hf_token is not None and Context.hf_token != hf_token:
            warnings.warn(
                """You are loading a model/Space with a different access token than the one you used to load a previous model/Space. This is not recommended, as it may cause unexpected behavior."""
            )
        Context.hf_token = hf_token

    if src == "spaces":
        # Spaces can read the token, so we don't want to pass it in unless the user explicitly provides it
        token = False if hf_token is None else hf_token
        blocks = from_spaces(
            name, hf_token=token, alias=alias, provider=provider, **kwargs
        )
    else:
        blocks = from_model(
            name, hf_token=hf_token, alias=alias, provider=provider, **kwargs
        )
    return blocks


def from_model(
    model_name: str,
    hf_token: str | None,
    alias: str | None,
    provider: PROVIDER_T | None = None,
    **kwargs,
) -> Blocks:
    headers = {"X-Wait-For-Model": "true"}
    client = huggingface_hub.InferenceClient(
        model=model_name, headers=headers, token=hf_token, provider=provider
    )
    p, tags = external_utils.get_model_info(model_name, hf_token)

    # For tasks that are not yet supported by the InferenceClient
    api_url = f"https://api-inference.huggingface.co/models/{model_name}"
    GRADIO_CACHE = os.environ.get("GRADIO_TEMP_DIR") or str(  # noqa: N806
        Path(tempfile.gettempdir()) / "gradio"
    )

    def custom_post_binary(data):
        data = to_binary({"path": data})
        response = httpx.request("POST", api_url, headers=headers, content=data)
        return save_base64_to_cache(
            external_utils.encode_to_base64(response), cache_dir=GRADIO_CACHE
        )

    preprocess = None
    postprocess = None
    examples = None

    # example model: ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition
    if p == "audio-classification":
        inputs = components.Audio(type="filepath", label="Input")
        outputs = components.Label(label="Class")
        postprocess = external_utils.postprocess_label
        examples = [
            "https://gradio-builds.s3.amazonaws.com/demo-files/audio_sample.wav"
        ]
        fn = client.audio_classification
    # example model: facebook/xm_transformer_sm_all-en
    elif p == "audio-to-audio":
        inputs = components.Audio(type="filepath", label="Input")
        outputs = components.Audio(label="Output")
        examples = [
            "https://gradio-builds.s3.amazonaws.com/demo-files/audio_sample.wav"
        ]
        fn = custom_post_binary
    # example model: facebook/wav2vec2-base-960h
    elif p == "automatic-speech-recognition":
        inputs = components.Audio(type="filepath", label="Input")
        outputs = components.Textbox(label="Output")
        examples = [
            "https://gradio-builds.s3.amazonaws.com/demo-files/audio_sample.wav"
        ]
        fn = client.automatic_speech_recognition
        postprocess = lambda x: x.text  # noqa: E731
    # example model: julien-c/distilbert-feature-extraction
    elif p == "feature-extraction":
        inputs = components.Textbox(label="Input")
        outputs = components.Dataframe(label="Output")
        fn = client.feature_extraction
        postprocess = utils.resolve_singleton
    # example model: distilbert/distilbert-base-uncased
    elif p == "fill-mask":
        inputs = components.Textbox(label="Input")
        outputs = components.Label(label="Classification")
        examples = [
            "Hugging Face is the AI community, working together, to [MASK] the future."
        ]
        postprocess = external_utils.postprocess_mask_tokens
        fn = client.fill_mask
    # Example: google/vit-base-patch16-224
    elif p == "image-classification":
        inputs = components.Image(type="filepath", label="Input Image")
        outputs = components.Label(label="Classification")
        postprocess = external_utils.postprocess_label
        examples = ["https://gradio-builds.s3.amazonaws.com/demo-files/cheetah-002.jpg"]
        fn = client.image_classification
    # Example: deepset/xlm-roberta-base-squad2
    elif p == "question-answering":
        inputs = [
            components.Textbox(label="Question"),
            components.Textbox(lines=7, label="Context"),
        ]
        outputs = [
            components.Textbox(label="Answer"),
            components.Label(label="Score"),
        ]
        examples = [
            [
                "What entity was responsible for the Apollo program?",
                "The Apollo program, also known as Project Apollo, was the third United States human spaceflight"
                " program carried out by the National Aeronautics and Space Administration (NASA), which accomplished"
                " landing the first humans on the Moon from 1969 to 1972.",
            ]
        ]
        postprocess = external_utils.postprocess_question_answering
        fn = client.question_answering
    # Example: facebook/bart-large-cnn
    elif p == "summarization":
        inputs = components.Textbox(label="Input")
        outputs = components.Textbox(label="Summary")
        examples = [
            [
                "The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct."
            ]
        ]
        postprocess = lambda x: x.summary_text  # noqa: E731
        fn = client.summarization
    # Example: distilbert-base-uncased-finetuned-sst-2-english
    elif p == "text-classification":
        inputs = components.Textbox(label="Input")
        outputs = components.Label(label="Classification")
        examples = ["I feel great"]
        postprocess = external_utils.postprocess_label
        fn = client.text_classification
    # Example: gpt2
    elif p == "text-generation":
        # Example: meta-llama/Meta-Llama-3-8B-Instruct
        if tags and "conversational" in tags:
            from gradio import ChatInterface
            from gradio.components import Chatbot

            fn = external_utils.conversational_wrapper(client)
            examples = [
                "What is the capital of Pakistan?",
                "Tell me a joke about calculus.",
                "Explain gravity to a 5-year-old.",
                "What were the main causes of World War I?",
            ]
            chat_interface_kwargs = {
                "examples": examples,
            }
            kwargs = dict(chat_interface_kwargs, **kwargs)
            chatbot = Chatbot(scale=1, type="messages", allow_tags=True)
            return ChatInterface(fn, chatbot=chatbot, type="messages", **kwargs)  # type: ignore
        inputs = components.Textbox(label="Text")
        outputs = inputs
        examples = ["Once upon a time"]
        fn = external_utils.text_generation_wrapper(client)
    # Example: valhalla/t5-small-qa-qg-hl
    elif p == "text2text-generation":
        inputs = components.Textbox(label="Input")
        outputs = components.Textbox(label="Generated Text")
        examples = ["Translate English to Arabic: How are you?"]
        fn = client.text_generation
    # Example: Helsinki-NLP/opus-mt-en-ar
    elif p == "translation":
        inputs = components.Textbox(label="Input")
        outputs = components.Textbox(label="Translation")
        postprocess = lambda x: x.translation_text  # noqa: E731
        examples = ["Hello, how are you?"]
        fn = client.translation
    # Example: facebook/bart-large-mnli
    elif p == "zero-shot-classification":
        inputs = [
            components.Textbox(label="Input"),
            components.Textbox(label="Possible class names (comma-separated)"),
            components.Checkbox(label="Allow multiple true classes"),
        ]
        outputs = components.Label(label="Classification")
        postprocess = external_utils.postprocess_label
        examples = [["I feel great", "happy, sad", False]]
        fn = external_utils.zero_shot_classification_wrapper(client)
    # Example: sentence-transformers/distilbert-base-nli-stsb-mean-tokens
    elif p == "sentence-similarity":
        inputs = [
            components.Textbox(
                label="Source Sentence",
                placeholder="Enter an original sentence",
            ),
            components.Textbox(
                lines=7,
                placeholder="Sentences to compare to -- separate each sentence by a newline",
                label="Sentences to compare to",
            ),
        ]
        outputs = components.JSON(label="Similarity scores")
        examples = [["That is a happy person", "That person is very happy"]]
        fn = external_utils.sentence_similarity_wrapper(client)
    # Example: julien-c/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train
    elif p == "text-to-speech":
        inputs = components.Textbox(label="Input")
        outputs = components.Audio(label="Audio")
        examples = ["Hello, how are you?"]
        fn = client.text_to_speech
    # example model: osanseviero/BigGAN-deep-128
    elif p == "text-to-image":
        inputs = components.Textbox(label="Input")
        outputs = components.Image(label="Output")
        examples = ["A beautiful sunset"]
        fn = client.text_to_image
    # example model: huggingface-course/bert-finetuned-ner
    elif p == "token-classification":
        inputs = components.Textbox(label="Input")
        outputs = components.HighlightedText(label="Output")
        examples = [
            "Hugging Face is a company based in Paris and New York City that acquired Gradio in 2021."
        ]
        fn = external_utils.token_classification_wrapper(client)
    # example model: impira/layoutlm-document-qa
    elif p == "document-question-answering":
        inputs = [
            components.Image(type="filepath", label="Input Document"),
            components.Textbox(label="Question"),
        ]
        postprocess = external_utils.postprocess_label
        outputs = components.Label(label="Label")
        fn = client.document_question_answering
    # example model: dandelin/vilt-b32-finetuned-vqa
    elif p == "visual-question-answering":
        inputs = [
            components.Image(type="filepath", label="Input Image"),
            components.Textbox(label="Question"),
        ]
        outputs = components.Label(label="Label")
        postprocess = external_utils.postprocess_visual_question_answering
        examples = [
            [
                "https://gradio-builds.s3.amazonaws.com/demo-files/cheetah-002.jpg",
                "What animal is in the image?",
            ]
        ]
        fn = client.visual_question_answering
    # example model: Salesforce/blip-image-captioning-base
    elif p == "image-to-text":
        inputs = components.Image(type="filepath", label="Input Image")
        outputs = components.Textbox(label="Generated Text")
        examples = ["https://gradio-builds.s3.amazonaws.com/demo-files/cheetah-002.jpg"]
        fn = client.image_to_text
    # example model: rajistics/autotrain-Adult-934630783
    elif p in ["tabular-classification", "tabular-regression"]:
        examples = external_utils.get_tabular_examples(model_name)
        col_names, examples = external_utils.cols_to_rows(examples)  # type: ignore
        examples = [[examples]] if examples else None
        inputs = components.Dataframe(
            label="Input Rows",
            type="pandas",
            headers=col_names,
            col_count=(len(col_names), "fixed"),
            render=False,
        )
        outputs = components.Dataframe(
            label="Predictions", type="array", headers=["prediction"]
        )
        fn = external_utils.tabular_wrapper
    # example model: microsoft/table-transformer-detection
    elif p == "object-detection":
        inputs = components.Image(type="filepath", label="Input Image")
        outputs = components.AnnotatedImage(label="Annotations")
        fn = external_utils.object_detection_wrapper(client)
    # example model: stabilityai/stable-diffusion-xl-refiner-1.0
    elif p == "image-to-image":
        inputs = [
            components.Image(type="filepath", label="Input Image"),
            components.Textbox(label="Input"),
        ]
        outputs = components.Image(label="Output")
        examples = [
            [
                "https://gradio-builds.s3.amazonaws.com/demo-files/cheetah-002.jpg",
                "Photo of a cheetah with green eyes",
            ]
        ]
        fn = client.image_to_image
    else:
        raise ValueError(f"Unsupported pipeline type: {p}")

    def query_huggingface_inference_endpoints(*data):
        if preprocess is not None:
            data = preprocess(*data)
        try:
            data = fn(*data)
        except Exception as e:
            external_utils.handle_hf_error(e)

        if postprocess is not None:
            data = postprocess(data)  # type: ignore
        return data

    query_huggingface_inference_endpoints.__name__ = alias or model_name

    interface_info = {
        "fn": query_huggingface_inference_endpoints,
        "inputs": inputs,
        "outputs": outputs,
        "title": model_name,
        "examples": examples,
        "cache_examples": False,
    }

    kwargs = dict(interface_info, **kwargs)
    interface = gr.Interface(**kwargs)
    return interface


def from_spaces(
    space_name: str,
    hf_token: str | None | Literal[False],
    alias: str | None,
    provider: PROVIDER_T | None = None,
    **kwargs,
) -> Blocks:
    if provider is not None:
        warnings.warn(
            "The `provider` parameter is not supported when loading Spaces. It will be ignored."
        )

    space_url = f"https://huggingface.co/spaces/{space_name}"

    print(f"Fetching Space from: {space_url}")

    headers = {}
    if hf_token not in [False, None]:
        headers["Authorization"] = f"Bearer {hf_token}"
    iframe_url = (
        httpx.get(
            f"https://huggingface.co/api/spaces/{space_name}/host", headers=headers
        )
        .json()
        .get("host")
    )

    if iframe_url is None:
        raise ValueError(
            f"Could not find Space: {space_name}. If it is a private or gated Space, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `hf_token` parameter."
        )

    config_request = httpx.get(iframe_url + "/config", headers=headers)
    if config_request.status_code == 404:
        r = httpx.get(iframe_url, headers=headers)

        result = re.search(
            r"window.gradio_config = (.*?);[\s]*</script>", r.text
        )  # some basic regex to extract the config
        try:
            config = json.loads(result.group(1))  # type: ignore
        except AttributeError as ae:
            raise ValueError(f"Could not load the Space: {space_name}") from ae
    elif config_request.status_code == 200:
        config = config_request.json()
    else:
        raise ValueError(
            f"Could not load the Space: {space_name} because the config could not be fetched."
        )
    if "allow_flagging" in config:  # Create an Interface for Gradio 2.x Spaces
        return from_spaces_interface(
            space_name, config, alias, hf_token, iframe_url, **kwargs
        )
    else:  # Create a Blocks for Gradio 3.x Spaces
        if kwargs:
            warnings.warn(
                "You cannot override parameters for this Space by passing in kwargs. "
                "Instead, please load the Space as a function and use it to create a "
                "Blocks or Interface locally. You may find this Guide helpful: "
                "https://gradio.app/using_blocks_like_functions/"
            )
        return from_spaces_blocks(space=space_name, hf_token=hf_token)


def from_spaces_blocks(space: str, hf_token: str | None | Literal[False]) -> Blocks:
    client = Client(
        space,
        hf_token=hf_token,
        download_files=False,
        _skip_components=False,
    )
    # We set deserialize to False to avoid downloading output files from the server.
    # Instead, we serve them as URLs using the /proxy/ endpoint directly from the server.

    if client.app_version < version.Version("4.0.0b14"):
        raise GradioVersionIncompatibleError(
            f"Gradio version 4.x cannot load spaces with versions less than 4.x ({client.app_version})."
            "Please downgrade to version 3 to load this space."
        )

    # Use end_to_end_fn here to properly upload/download all files
    predict_fns = []
    for fn_index, endpoint in client.endpoints.items():
        if not isinstance(endpoint, Endpoint):
            raise TypeError(
                f"Expected endpoint to be an Endpoint, but got {type(endpoint)}"
            )
        helper = client.new_helper(fn_index)
        if endpoint.backend_fn:
            predict_fns.append(endpoint.make_end_to_end_fn(helper))
        else:
            predict_fns.append(None)
    return gr.Blocks.from_config(client.config, predict_fns, client.src)  # type: ignore


def from_spaces_interface(
    model_name: str,
    config: dict,
    alias: str | None,
    hf_token: str | None | Literal[False],
    iframe_url: str,
    **kwargs,
) -> Interface:
    config = external_utils.streamline_spaces_interface(config)
    api_url = f"{iframe_url}/api/predict/"
    headers = {"Content-Type": "application/json"}
    if hf_token not in [False, None]:
        headers["Authorization"] = f"Bearer {hf_token}"

    # The function should call the API with preprocessed data
    def fn(*data):
        data = json.dumps({"data": data})
        response = httpx.post(api_url, headers=headers, data=data)  # type: ignore
        result = json.loads(response.content.decode("utf-8"))
        if "error" in result and "429" in result["error"]:
            raise TooManyRequestsError("Too many requests to the Hugging Face API")
        try:
            output = result["data"]
        except KeyError as ke:
            raise KeyError(
                f"Could not find 'data' key in response from external Space. Response received: {result}"
            ) from ke
        if (
            len(config["outputs"]) == 1
        ):  # if the fn is supposed to return a single value, pop it
            output = output[0]
        if (
            len(config["outputs"]) == 1 and isinstance(output, list)
        ):  # Needed to support Output.Image() returning bounding boxes as well (TODO: handle different versions of gradio since they have slightly different APIs)
            output = output[0]
        return output

    fn.__name__ = alias if (alias is not None) else model_name
    config["fn"] = fn

    kwargs = dict(config, **kwargs)
    kwargs["_api_mode"] = True
    interface = gr.Interface(**kwargs)
    return interface


TEXT_FILE_EXTENSIONS = (
    ".doc",
    ".docx",
    ".rtf",
    ".epub",
    ".odt",
    ".odp",
    ".pptx",
    ".txt",
    ".md",
    ".py",
    ".ipynb",
    ".js",
    ".jsx",
    ".html",
    ".css",
    ".java",
    ".cs",
    ".php",
    ".c",
    ".cc",
    ".cpp",
    ".cxx",
    ".cts",
    ".h",
    ".hh",
    ".hpp",
    ".rs",
    ".R",
    ".Rmd",
    ".swift",
    ".go",
    ".rb",
    ".kt",
    ".kts",
    ".ts",
    ".tsx",
    ".m",
    ".mm",
    ".mts",
    ".scala",
    ".dart",
    ".lua",
    ".pl",
    ".pm",
    ".t",
    ".sh",
    ".bash",
    ".zsh",
    ".bat",
    ".coffee",
    ".csv",
    ".log",
    ".ini",
    ".cfg",
    ".config",
    ".json",
    ".proto",
    ".yaml",
    ".yml",
    ".toml",
    ".sql",
)
IMAGE_FILE_EXTENSIONS = (".png", ".jpg", ".jpeg", ".gif", ".webp")


def format_conversation(
    history: list[MessageDict], new_message: str | MultimodalValue
) -> list[dict]:
    conversation = []
    for message in history:
        if isinstance(message["content"], str):
            conversation.append(
                {"role": message["role"], "content": message["content"]}
            )
        elif isinstance(message["content"], tuple):
            image_message = {
                "role": message["role"],
                "content": [
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": encode_url_or_file_to_base64(message["content"][0])
                        },
                    }
                ],
            }
            conversation.append(image_message)
        else:
            raise ValueError(
                f"Invalid message format: {message['content']}. Messages must be either strings or tuples."
            )
    if isinstance(new_message, str):
        text = new_message
        files = []
    else:
        text = new_message.get("text", None)
        files = new_message.get("files", [])
    image_files, text_encoded = [], []
    for file in files:
        if file.lower().endswith(TEXT_FILE_EXTENSIONS):
            text_encoded.append(file)
        else:
            image_files.append(file)

    for image in image_files:
        conversation.append(
            {
                "role": "user",
                "content": [
                    {
                        "type": "image_url",
                        "image_url": {"url": encode_url_or_file_to_base64(image)},
                    }
                ],
            }
        )
    if text or text_encoded:
        text = text or ""
        text += "\n".join(
            [
                f"\n## {Path(file).name}\n{Path(file).read_text()}"
                for file in text_encoded
            ]
        )
        conversation.append(
            {"role": "user", "content": [{"type": "text", "text": text}]}
        )
    return conversation


@document()
def load_chat(
    base_url: str,
    model: str,
    token: str | None = None,
    *,
    file_types: Literal["text_encoded", "image"]
    | list[Literal["text_encoded", "image"]]
    | None = "text_encoded",
    system_message: str | None = None,
    streaming: bool = True,
    **kwargs,
) -> ChatInterface:
    """
    Load a chat interface from an OpenAI API chat compatible endpoint.
    Parameters:
        base_url: The base URL of the endpoint, e.g. "http://localhost:11434/v1/"
        model: The name of the model you are loading, e.g. "llama3.2"
        token: The API token or a placeholder string if you are using a local model, e.g. "ollama"
        file_types: The file types allowed to be uploaded by the user. "text_encoded" allows uploading any text-encoded file (which is simply appended to the prompt), and "image" adds image upload support. Set to None to disable file uploads.
        system_message: The system message to use for the conversation, if any.
        streaming: Whether the response should be streamed.
        kwargs: Additional keyword arguments to pass into ChatInterface for customization.
    Example:
        import gradio as gr
        gr.load_chat(
            "http://localhost:11434/v1/",
            model="qwen2.5",
            token="***",
            file_types=["text_encoded", "image"],
            system_message="You are a silly assistant.",
        ).launch()
    """
    try:
        from openai import OpenAI
    except ImportError as e:
        raise ImportError(
            "To use OpenAI API Client, you must install the `openai` package. You can install it with `pip install openai`."
        ) from e
    from gradio.chat_interface import ChatInterface

    client = OpenAI(api_key=token, base_url=base_url)
    start_message = (
        [{"role": "system", "content": system_message}] if system_message else []
    )
    file_types = utils.none_or_singleton_to_list(file_types)

    def open_api(message: str | MultimodalValue, history: list | None) -> str | None:
        history = history or start_message
        if len(history) > 0 and isinstance(history[0], (list, tuple)):
            history = ChatInterface._tuples_to_messages(history)
        conversation = format_conversation(history, message)  # type: ignore
        return (
            client.chat.completions.create(
                model=model,
                messages=conversation,  # type: ignore
            )
            .choices[0]
            .message.content
        )

    def open_api_stream(
        message: str | MultimodalValue, history: list | None
    ) -> Generator[str, None, None]:
        history = history or start_message
        if len(history) > 0 and isinstance(history[0], (list, tuple)):
            history = ChatInterface._tuples_to_messages(history)
        conversation = format_conversation(history, message)  # type: ignore
        stream = client.chat.completions.create(
            model=model,
            messages=conversation,  # type: ignore
            stream=True,
        )
        response = ""
        for chunk in stream:
            if chunk.choices[0].delta.content is not None:
                response += chunk.choices[0].delta.content
                yield response

    supported_extensions = []
    for file_type in file_types:
        if file_type == "text_encoded":
            supported_extensions += TEXT_FILE_EXTENSIONS
        elif file_type == "image":
            supported_extensions += IMAGE_FILE_EXTENSIONS
        else:
            raise ValueError(
                f"Invalid file type: {file_type}. Must be 'text_encoded' or 'image'."
            )

    if "chatbot" not in kwargs:
        from gradio.components import Chatbot

        kwargs["chatbot"] = Chatbot(type="messages", scale=1, allow_tags=True)

    return ChatInterface(
        open_api_stream if streaming else open_api,
        type="messages",
        multimodal=bool(file_types),
        textbox=gr.MultimodalTextbox(file_types=supported_extensions)
        if file_types
        else None,
        **kwargs,
    )