jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
# Implementation of Top2Gating described in https://arxiv.org/pdf/2006.16668.pdf
# Code is inspired by Top2GatingOnLogits from lingvo:
# https://github.com/tensorflow/lingvo/blob/21b8106c5f1d30a196c98eedc441d4fd70833b11/lingvo/core/moe_layers.py#L477
from typing import Callable, Dict, Tuple
import torch
from torch import Tensor
import torch.nn.functional as F
gumbel_map: Dict[torch.device, Callable] = {}
def gumbel_rsample(shape: Tuple, device: torch.device) -> Tensor:
gumbel = gumbel_map.get(device)
if gumbel is None:
one = torch.tensor(1.0, device=device)
zero = torch.tensor(0.0, device=device)
gumbel = torch.distributions.gumbel.Gumbel(zero, one).rsample # type: ignore
gumbel_map[device] = gumbel
return gumbel(shape)
def one_hot(tensor: torch.Tensor, num_classes: int) -> Tensor:
"""Workaround for https://github.com/pytorch/pytorch/issues/55579"""
assert num_classes > 0, "num_classes must be a positive integer"
ret = torch.zeros(tensor.shape + (num_classes,), device=tensor.device, dtype=tensor.dtype)
ret.scatter_(-1, tensor.unsqueeze(-1), 1)
return ret
def top2gating(logits: torch.Tensor) -> Tuple[Tensor, Tensor, Tensor]:
"""Implements Top2Gating on logits."""
# NOTE(msb) softmax requires FP32: https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/
gates = F.softmax(logits, dim=1, dtype=torch.float)
# gates has shape of SE
num_tokens = gates.shape[0]
num_experts = gates.shape[1]
# capacity = 2S/E
capacity = 2 * num_tokens // num_experts
assert num_tokens % num_experts == 0
# Create a mask for 1st's expert per token
indices1_s = torch.argmax(gates, dim=1)
mask1 = one_hot(indices1_s, num_classes=num_experts)
# Create a mask for 2nd's expert per token using Gumbel-max trick
# https://timvieira.github.io/blog/post/2014/07/31/gumbel-max-trick/
logits_w_noise = logits + gumbel_rsample(logits.shape, device=logits.device)
# Replace top-expert with min value
logits_except1 = logits_w_noise.masked_fill(mask1.bool(), float("-inf"))
indices2_s = torch.argmax(logits_except1, dim=1)
mask2 = one_hot(indices2_s, num_classes=num_experts)
# Compute locations in capacity buffer
locations1 = torch.cumsum(mask1, dim=0) - 1
locations2 = torch.cumsum(mask2, dim=0) - 1
# Update 2nd's location by accounting for locations of 1st
locations2 += torch.sum(mask1, dim=0, keepdim=True)
# Compute l_aux
me = torch.mean(gates, dim=0)
ce = torch.mean(mask1.float(), dim=0)
l_aux = torch.mean(me * ce)
# Remove locations outside capacity from mask
mask1 *= torch.lt(locations1, capacity)
mask2 *= torch.lt(locations2, capacity)
# Store the capacity location for each token
locations1_s = torch.sum(locations1 * mask1, dim=1)
locations2_s = torch.sum(locations2 * mask2, dim=1)
# Normalize gate probabilities
gates1_s = (gates * mask1).sum(dim=1) # einsum("se,se->s")
gates2_s = (gates * mask2).sum(dim=1) # einsum("se,se->s")
denom_s = gates1_s + gates2_s
# Avoid divide-by-zero
denom_s = torch.clamp(denom_s, min=torch.finfo(denom_s.dtype).eps)
gates1_s /= denom_s
gates2_s /= denom_s
# Calculate combine_weights and dispatch_mask
gates1 = gates1_s.unsqueeze(-1) * mask1 # einsum("s,se->se")
gates2 = gates2_s.unsqueeze(-1) * mask2 # einsum("s,se->se")
locations1_sc = one_hot(locations1_s, num_classes=capacity)
locations2_sc = one_hot(locations2_s, num_classes=capacity)
combine1_sec = gates1.unsqueeze(2) * locations1_sc.unsqueeze(1) # einsum("se,sc->sec")
combine2_sec = gates2.unsqueeze(2) * locations2_sc.unsqueeze(1) # einsum("se,sc->sec")
combine_weights = combine1_sec + combine2_sec
dispatch_mask = combine_weights.bool()
return l_aux.to(logits.dtype), combine_weights.to(logits.dtype), dispatch_mask
class Top2Gate(torch.nn.Module):
"""Gate module which implements Top2Gating as described in Gshard_.
::
gate = Top2Gate(model_dim, num_experts)
l_aux, combine_weights, dispatch_mask = gate(input)
.. Gshard_: https://arxiv.org/pdf/2006.16668.pdf
Args:
model_dim (int):
size of model embedding dimension
num_experts (ints):
number of experts in model
"""
wg: torch.nn.Linear
def __init__(
self,
model_dim: int,
num_experts: int,
) -> None:
super().__init__()
self.wg = torch.nn.Linear(model_dim, num_experts, bias=False)
def forward(self, input: torch.Tensor) -> Tuple[Tensor, Tensor, Tensor]: # type: ignore
logits = self.wg(input)
return top2gating(logits)