# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # Implementation of Top2Gating described in https://arxiv.org/pdf/2006.16668.pdf # Code is inspired by Top2GatingOnLogits from lingvo: # https://github.com/tensorflow/lingvo/blob/21b8106c5f1d30a196c98eedc441d4fd70833b11/lingvo/core/moe_layers.py#L477 from typing import Callable, Dict, Tuple import torch from torch import Tensor import torch.nn.functional as F gumbel_map: Dict[torch.device, Callable] = {} def gumbel_rsample(shape: Tuple, device: torch.device) -> Tensor: gumbel = gumbel_map.get(device) if gumbel is None: one = torch.tensor(1.0, device=device) zero = torch.tensor(0.0, device=device) gumbel = torch.distributions.gumbel.Gumbel(zero, one).rsample # type: ignore gumbel_map[device] = gumbel return gumbel(shape) def one_hot(tensor: torch.Tensor, num_classes: int) -> Tensor: """Workaround for https://github.com/pytorch/pytorch/issues/55579""" assert num_classes > 0, "num_classes must be a positive integer" ret = torch.zeros(tensor.shape + (num_classes,), device=tensor.device, dtype=tensor.dtype) ret.scatter_(-1, tensor.unsqueeze(-1), 1) return ret def top2gating(logits: torch.Tensor) -> Tuple[Tensor, Tensor, Tensor]: """Implements Top2Gating on logits.""" # NOTE(msb) softmax requires FP32: https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/ gates = F.softmax(logits, dim=1, dtype=torch.float) # gates has shape of SE num_tokens = gates.shape[0] num_experts = gates.shape[1] # capacity = 2S/E capacity = 2 * num_tokens // num_experts assert num_tokens % num_experts == 0 # Create a mask for 1st's expert per token indices1_s = torch.argmax(gates, dim=1) mask1 = one_hot(indices1_s, num_classes=num_experts) # Create a mask for 2nd's expert per token using Gumbel-max trick # https://timvieira.github.io/blog/post/2014/07/31/gumbel-max-trick/ logits_w_noise = logits + gumbel_rsample(logits.shape, device=logits.device) # Replace top-expert with min value logits_except1 = logits_w_noise.masked_fill(mask1.bool(), float("-inf")) indices2_s = torch.argmax(logits_except1, dim=1) mask2 = one_hot(indices2_s, num_classes=num_experts) # Compute locations in capacity buffer locations1 = torch.cumsum(mask1, dim=0) - 1 locations2 = torch.cumsum(mask2, dim=0) - 1 # Update 2nd's location by accounting for locations of 1st locations2 += torch.sum(mask1, dim=0, keepdim=True) # Compute l_aux me = torch.mean(gates, dim=0) ce = torch.mean(mask1.float(), dim=0) l_aux = torch.mean(me * ce) # Remove locations outside capacity from mask mask1 *= torch.lt(locations1, capacity) mask2 *= torch.lt(locations2, capacity) # Store the capacity location for each token locations1_s = torch.sum(locations1 * mask1, dim=1) locations2_s = torch.sum(locations2 * mask2, dim=1) # Normalize gate probabilities gates1_s = (gates * mask1).sum(dim=1) # einsum("se,se->s") gates2_s = (gates * mask2).sum(dim=1) # einsum("se,se->s") denom_s = gates1_s + gates2_s # Avoid divide-by-zero denom_s = torch.clamp(denom_s, min=torch.finfo(denom_s.dtype).eps) gates1_s /= denom_s gates2_s /= denom_s # Calculate combine_weights and dispatch_mask gates1 = gates1_s.unsqueeze(-1) * mask1 # einsum("s,se->se") gates2 = gates2_s.unsqueeze(-1) * mask2 # einsum("s,se->se") locations1_sc = one_hot(locations1_s, num_classes=capacity) locations2_sc = one_hot(locations2_s, num_classes=capacity) combine1_sec = gates1.unsqueeze(2) * locations1_sc.unsqueeze(1) # einsum("se,sc->sec") combine2_sec = gates2.unsqueeze(2) * locations2_sc.unsqueeze(1) # einsum("se,sc->sec") combine_weights = combine1_sec + combine2_sec dispatch_mask = combine_weights.bool() return l_aux.to(logits.dtype), combine_weights.to(logits.dtype), dispatch_mask class Top2Gate(torch.nn.Module): """Gate module which implements Top2Gating as described in Gshard_. :: gate = Top2Gate(model_dim, num_experts) l_aux, combine_weights, dispatch_mask = gate(input) .. Gshard_: https://arxiv.org/pdf/2006.16668.pdf Args: model_dim (int): size of model embedding dimension num_experts (ints): number of experts in model """ wg: torch.nn.Linear def __init__( self, model_dim: int, num_experts: int, ) -> None: super().__init__() self.wg = torch.nn.Linear(model_dim, num_experts, bias=False) def forward(self, input: torch.Tensor) -> Tuple[Tensor, Tensor, Tensor]: # type: ignore logits = self.wg(input) return top2gating(logits)