|
import itertools |
|
|
|
import numpy |
|
import numpy as np |
|
import pytest |
|
|
|
from einops import EinopsError |
|
from einops.einops import rearrange, reduce, repeat, _enumerate_directions |
|
from einops.tests import collect_test_backends, is_backend_tested, FLOAT_REDUCTIONS as REDUCTIONS |
|
|
|
imp_op_backends = collect_test_backends(symbolic=False, layers=False) |
|
sym_op_backends = collect_test_backends(symbolic=True, layers=False) |
|
|
|
identity_patterns = [ |
|
"...->...", |
|
"a b c d e-> a b c d e", |
|
"a b c d e ...-> ... a b c d e", |
|
"a b c d e ...-> a ... b c d e", |
|
"... a b c d e -> ... a b c d e", |
|
"a ... e-> a ... e", |
|
"a ... -> a ... ", |
|
"a ... c d e -> a (...) c d e", |
|
] |
|
|
|
equivalent_rearrange_patterns = [ |
|
("a b c d e -> (a b) c d e", "a b ... -> (a b) ... "), |
|
("a b c d e -> a b (c d) e", "... c d e -> ... (c d) e"), |
|
("a b c d e -> a b c d e", "... -> ... "), |
|
("a b c d e -> (a b c d e)", "... -> (...)"), |
|
("a b c d e -> b (c d e) a", "a b ... -> b (...) a"), |
|
("a b c d e -> b (a c d) e", "a b ... e -> b (a ...) e"), |
|
] |
|
|
|
equivalent_reduction_patterns = [ |
|
("a b c d e -> ", " ... -> "), |
|
("a b c d e -> (e a)", "a ... e -> (e a)"), |
|
("a b c d e -> d (a e)", " a b c d e ... -> d (a e) "), |
|
("a b c d e -> (a b)", " ... c d e -> (...) "), |
|
] |
|
|
|
|
|
def test_collapsed_ellipsis_errors_out(): |
|
x = numpy.zeros([1, 1, 1, 1, 1]) |
|
rearrange(x, "a b c d ... -> a b c ... d") |
|
with pytest.raises(EinopsError): |
|
rearrange(x, "a b c d (...) -> a b c ... d") |
|
|
|
rearrange(x, "... -> (...)") |
|
with pytest.raises(EinopsError): |
|
rearrange(x, "(...) -> (...)") |
|
|
|
|
|
def test_ellipsis_ops_numpy(): |
|
x = numpy.arange(2 * 3 * 4 * 5 * 6).reshape([2, 3, 4, 5, 6]) |
|
for pattern in identity_patterns: |
|
assert numpy.array_equal(x, rearrange(x, pattern)), pattern |
|
|
|
for pattern1, pattern2 in equivalent_rearrange_patterns: |
|
assert numpy.array_equal(rearrange(x, pattern1), rearrange(x, pattern2)) |
|
|
|
for reduction in ["min", "max", "sum"]: |
|
for pattern1, pattern2 in equivalent_reduction_patterns: |
|
assert numpy.array_equal(reduce(x, pattern1, reduction=reduction), reduce(x, pattern2, reduction=reduction)) |
|
|
|
|
|
all_rearrange_patterns = [*identity_patterns] |
|
for pattern_pairs in equivalent_rearrange_patterns: |
|
all_rearrange_patterns.extend(pattern_pairs) |
|
|
|
|
|
def check_op_against_numpy(backend, numpy_input, pattern, axes_lengths, reduction="rearrange", is_symbolic=False): |
|
""" |
|
Helper to test result of operation (rearrange or transpose) against numpy |
|
if reduction == 'rearrange', rearrange op is tested, otherwise reduce |
|
""" |
|
|
|
def operation(x): |
|
if reduction == "rearrange": |
|
return rearrange(x, pattern, **axes_lengths) |
|
else: |
|
return reduce(x, pattern, reduction, **axes_lengths) |
|
|
|
numpy_result = operation(numpy_input) |
|
check_equal = numpy.array_equal |
|
p_none_dimension = 0.5 |
|
if is_symbolic: |
|
symbol_shape = [d if numpy.random.random() >= p_none_dimension else None for d in numpy_input.shape] |
|
symbol = backend.create_symbol(shape=symbol_shape) |
|
result_symbol = operation(symbol) |
|
backend_result = backend.eval_symbol(result_symbol, [(symbol, numpy_input)]) |
|
else: |
|
backend_result = operation(backend.from_numpy(numpy_input)) |
|
backend_result = backend.to_numpy(backend_result) |
|
|
|
check_equal(numpy_result, backend_result) |
|
|
|
|
|
def test_ellipsis_ops_imperative(): |
|
"""Checking various patterns against numpy""" |
|
x = numpy.arange(2 * 3 * 4 * 5 * 6).reshape([2, 3, 4, 5, 6]) |
|
for is_symbolic in [True, False]: |
|
for backend in collect_test_backends(symbolic=is_symbolic, layers=False): |
|
for pattern in identity_patterns + list(itertools.chain(*equivalent_rearrange_patterns)): |
|
check_op_against_numpy( |
|
backend, x, pattern, axes_lengths={}, reduction="rearrange", is_symbolic=is_symbolic |
|
) |
|
|
|
for reduction in ["min", "max", "sum"]: |
|
for pattern in itertools.chain(*equivalent_reduction_patterns): |
|
check_op_against_numpy( |
|
backend, x, pattern, axes_lengths={}, reduction=reduction, is_symbolic=is_symbolic |
|
) |
|
|
|
|
|
def test_rearrange_array_api(): |
|
import numpy as xp |
|
from einops import array_api as AA |
|
|
|
if xp.__version__ < "2.0.0": |
|
pytest.skip() |
|
|
|
x = numpy.arange(2 * 3 * 4 * 5 * 6).reshape([2, 3, 4, 5, 6]) |
|
for pattern in identity_patterns + list(itertools.chain(*equivalent_rearrange_patterns)): |
|
expected = rearrange(x, pattern) |
|
result = AA.rearrange(xp.from_dlpack(x), pattern) |
|
assert numpy.array_equal(AA.asnumpy(result + 0), expected) |
|
|
|
|
|
def test_reduce_array_api(): |
|
import numpy as xp |
|
from einops import array_api as AA |
|
|
|
if xp.__version__ < "2.0.0": |
|
pytest.skip() |
|
|
|
x = numpy.arange(2 * 3 * 4 * 5 * 6).reshape([2, 3, 4, 5, 6]) |
|
for pattern in itertools.chain(*equivalent_reduction_patterns): |
|
for reduction in ["min", "max", "sum"]: |
|
expected = reduce(x, pattern, reduction=reduction) |
|
result = AA.reduce(xp.from_dlpack(x), pattern, reduction=reduction) |
|
assert numpy.array_equal(AA.asnumpy(np.asarray(result + 0)), expected) |
|
|
|
|
|
def test_rearrange_consistency_numpy(): |
|
shape = [1, 2, 3, 5, 7, 11] |
|
x = numpy.arange(numpy.prod(shape)).reshape(shape) |
|
for pattern in [ |
|
"a b c d e f -> a b c d e f", |
|
"b a c d e f -> a b d e f c", |
|
"a b c d e f -> f e d c b a", |
|
"a b c d e f -> (f e) d (c b a)", |
|
"a b c d e f -> (f e d c b a)", |
|
]: |
|
result = rearrange(x, pattern) |
|
assert len(numpy.setdiff1d(x, result)) == 0 |
|
assert result.dtype == x.dtype |
|
|
|
result = rearrange(x, "a b c d e f -> a (b) (c d e) f") |
|
assert numpy.array_equal(x.flatten(), result.flatten()) |
|
|
|
result = rearrange(x, "a aa aa1 a1a1 aaaa a11 -> a aa aa1 a1a1 aaaa a11") |
|
assert numpy.array_equal(x, result) |
|
|
|
result1 = rearrange(x, "a b c d e f -> f e d c b a") |
|
result2 = rearrange(x, "f e d c b a -> a b c d e f") |
|
assert numpy.array_equal(result1, result2) |
|
|
|
result = rearrange(rearrange(x, "a b c d e f -> (f d) c (e b) a"), "(f d) c (e b) a -> a b c d e f", b=2, d=5) |
|
assert numpy.array_equal(x, result) |
|
|
|
sizes = dict(zip("abcdef", shape)) |
|
temp = rearrange(x, "a b c d e f -> (f d) c (e b) a", **sizes) |
|
result = rearrange(temp, "(f d) c (e b) a -> a b c d e f", **sizes) |
|
assert numpy.array_equal(x, result) |
|
|
|
x2 = numpy.arange(2 * 3 * 4).reshape([2, 3, 4]) |
|
result = rearrange(x2, "a b c -> b c a") |
|
assert x2[1, 2, 3] == result[2, 3, 1] |
|
assert x2[0, 1, 2] == result[1, 2, 0] |
|
|
|
|
|
def test_rearrange_permutations_numpy(): |
|
|
|
for n_axes in range(1, 10): |
|
input = numpy.arange(2**n_axes).reshape([2] * n_axes) |
|
permutation = numpy.random.permutation(n_axes) |
|
left_expression = " ".join("i" + str(axis) for axis in range(n_axes)) |
|
right_expression = " ".join("i" + str(axis) for axis in permutation) |
|
expression = left_expression + " -> " + right_expression |
|
result = rearrange(input, expression) |
|
|
|
for pick in numpy.random.randint(0, 2, [10, n_axes]): |
|
assert input[tuple(pick)] == result[tuple(pick[permutation])] |
|
|
|
for n_axes in range(1, 10): |
|
input = numpy.arange(2**n_axes).reshape([2] * n_axes) |
|
permutation = numpy.random.permutation(n_axes) |
|
left_expression = " ".join("i" + str(axis) for axis in range(n_axes)[::-1]) |
|
right_expression = " ".join("i" + str(axis) for axis in permutation[::-1]) |
|
expression = left_expression + " -> " + right_expression |
|
result = rearrange(input, expression) |
|
assert result.shape == input.shape |
|
expected_result = numpy.zeros_like(input) |
|
for original_axis, result_axis in enumerate(permutation): |
|
expected_result |= ((input >> original_axis) & 1) << result_axis |
|
|
|
assert numpy.array_equal(result, expected_result) |
|
|
|
|
|
def test_reduction_imperatives(): |
|
for backend in imp_op_backends: |
|
print("Reduction tests for ", backend.framework_name) |
|
for reduction in REDUCTIONS: |
|
|
|
input = numpy.arange(2 * 3 * 4 * 5 * 6, dtype="int64").reshape([2, 3, 4, 5, 6]) |
|
if reduction in ["mean", "prod"]: |
|
input = input / input.astype("float64").mean() |
|
test_cases = [ |
|
["a b c d e -> ", {}, getattr(input, reduction)()], |
|
["a ... -> ", {}, getattr(input, reduction)()], |
|
["(a1 a2) ... (e1 e2) -> ", dict(a1=1, e2=2), getattr(input, reduction)()], |
|
[ |
|
"a b c d e -> (e c) a", |
|
{}, |
|
getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1, 2]), |
|
], |
|
[ |
|
"a ... c d e -> (e c) a", |
|
{}, |
|
getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1, 2]), |
|
], |
|
[ |
|
"a b c d e ... -> (e c) a", |
|
{}, |
|
getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1, 2]), |
|
], |
|
["a b c d e -> (e c a)", {}, getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1])], |
|
["(a a2) ... -> (a2 a) ...", dict(a2=1), input], |
|
] |
|
for pattern, axes_lengths, expected_result in test_cases: |
|
result = reduce(backend.from_numpy(input.copy()), pattern, reduction=reduction, **axes_lengths) |
|
result = backend.to_numpy(result) |
|
assert numpy.allclose(result, expected_result), f"Failed at {pattern}" |
|
|
|
|
|
def test_reduction_symbolic(): |
|
for backend in sym_op_backends: |
|
print("Reduction tests for ", backend.framework_name) |
|
for reduction in REDUCTIONS: |
|
input = numpy.arange(2 * 3 * 4 * 5 * 6, dtype="int64").reshape([2, 3, 4, 5, 6]) |
|
input = input / input.astype("float64").mean() |
|
|
|
test_cases = [ |
|
["a b c d e -> ", {}, getattr(input, reduction)()], |
|
["a ... -> ", {}, getattr(input, reduction)()], |
|
["(a a2) ... (e e2) -> ", dict(a2=1, e2=1), getattr(input, reduction)()], |
|
[ |
|
"a b c d e -> (e c) a", |
|
{}, |
|
getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1, 2]), |
|
], |
|
[ |
|
"a ... c d e -> (e c) a", |
|
{}, |
|
getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1, 2]), |
|
], |
|
[ |
|
"a b c d e ... -> (e c) a", |
|
{}, |
|
getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1, 2]), |
|
], |
|
["a b c d e -> (e c a)", {}, getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1])], |
|
["(a a2) ... -> (a2 a) ...", dict(a2=1), input], |
|
] |
|
for pattern, axes_lengths, expected_numpy_result in test_cases: |
|
shapes = [input.shape, [None for _ in input.shape]] |
|
for shape in shapes: |
|
sym = backend.create_symbol(shape) |
|
result_sym = reduce(sym, pattern, reduction=reduction, **axes_lengths) |
|
result = backend.eval_symbol(result_sym, [(sym, input)]) |
|
assert numpy.allclose(result, expected_numpy_result) |
|
|
|
if True: |
|
shape = [] |
|
_axes_lengths = {**axes_lengths} |
|
for axis, length in zip("abcde", input.shape): |
|
|
|
if axis in pattern: |
|
shape.append(None) |
|
_axes_lengths[axis] = length |
|
else: |
|
shape.append(length) |
|
sym = backend.create_symbol(shape) |
|
result_sym = reduce(sym, pattern, reduction=reduction, **_axes_lengths) |
|
result = backend.eval_symbol(result_sym, [(sym, input)]) |
|
assert numpy.allclose(result, expected_numpy_result) |
|
|
|
|
|
def test_reduction_stress_imperatives(): |
|
for backend in imp_op_backends: |
|
print("Stress-testing reduction for ", backend.framework_name) |
|
for reduction in REDUCTIONS + ("rearrange",): |
|
dtype = "int64" |
|
coincide = numpy.array_equal |
|
if reduction in ["mean", "prod"]: |
|
dtype = "float64" |
|
coincide = numpy.allclose |
|
max_dim = 11 |
|
if "oneflow" in backend.framework_name: |
|
max_dim = 7 |
|
if "paddle" in backend.framework_name: |
|
max_dim = 9 |
|
for n_axes in range(max_dim): |
|
shape = numpy.random.randint(2, 4, size=n_axes) |
|
permutation = numpy.random.permutation(n_axes) |
|
skipped = 0 if reduction == "rearrange" else numpy.random.randint(n_axes + 1) |
|
left = " ".join("x" + str(i) for i in range(n_axes)) |
|
right = " ".join("x" + str(i) for i in permutation[skipped:]) |
|
pattern = left + "->" + right |
|
x = numpy.arange(1, 1 + numpy.prod(shape), dtype=dtype).reshape(shape) |
|
if reduction == "prod": |
|
x /= x.mean() |
|
result1 = reduce(x, pattern, reduction=reduction) |
|
result2 = x.transpose(permutation) |
|
if skipped > 0: |
|
result2 = getattr(result2, reduction)(axis=tuple(range(skipped))) |
|
assert coincide(result1, result2) |
|
check_op_against_numpy(backend, x, pattern, reduction=reduction, axes_lengths={}, is_symbolic=False) |
|
|
|
|
|
def test_reduction_with_callable_imperatives(): |
|
x_numpy = numpy.arange(2 * 3 * 4 * 5 * 6).reshape([2, 3, 4, 5, 6]).astype("float32") |
|
x_numpy /= x_numpy.max() |
|
|
|
def logsumexp_torch(x, tuple_of_axes): |
|
return x.logsumexp(tuple_of_axes) |
|
|
|
def logsumexp_tf(x, tuple_of_axes): |
|
import tensorflow as tf |
|
|
|
return tf.reduce_logsumexp(x, tuple_of_axes) |
|
|
|
def logsumexp_keras(x, tuple_of_axes): |
|
import tensorflow.keras.backend as k |
|
|
|
return k.logsumexp(x, tuple_of_axes) |
|
|
|
def logsumexp_numpy(x, tuple_of_axes): |
|
|
|
minused = x.max(tuple_of_axes) |
|
y = x - x.max(tuple_of_axes, keepdims=True) |
|
y = numpy.exp(y) |
|
y = numpy.sum(y, axis=tuple_of_axes) |
|
return numpy.log(y) + minused |
|
|
|
from einops._backends import TorchBackend, TensorflowBackend, TFKerasBackend, NumpyBackend |
|
|
|
backend2callback = { |
|
TorchBackend.framework_name: logsumexp_torch, |
|
TensorflowBackend.framework_name: logsumexp_tf, |
|
TFKerasBackend.framework_name: logsumexp_keras, |
|
NumpyBackend.framework_name: logsumexp_numpy, |
|
} |
|
|
|
for backend in imp_op_backends: |
|
if backend.framework_name not in backend2callback: |
|
continue |
|
|
|
backend_callback = backend2callback[backend.framework_name] |
|
|
|
x_backend = backend.from_numpy(x_numpy) |
|
for pattern1, pattern2 in equivalent_reduction_patterns: |
|
print("Test reduction with callable for ", backend.framework_name, pattern1, pattern2) |
|
output_numpy = reduce(x_numpy, pattern1, reduction=logsumexp_numpy) |
|
output_backend = reduce(x_backend, pattern1, reduction=backend_callback) |
|
assert numpy.allclose( |
|
output_numpy, |
|
backend.to_numpy(output_backend), |
|
) |
|
|
|
|
|
def test_enumerating_directions(): |
|
for backend in imp_op_backends: |
|
print("testing directions for", backend.framework_name) |
|
for shape in [[], [1], [1, 1, 1], [2, 3, 5, 7]]: |
|
x = numpy.arange(numpy.prod(shape)).reshape(shape) |
|
axes1 = _enumerate_directions(x) |
|
axes2 = _enumerate_directions(backend.from_numpy(x)) |
|
assert len(axes1) == len(axes2) == len(shape) |
|
for ax1, ax2 in zip(axes1, axes2): |
|
ax2 = backend.to_numpy(ax2) |
|
assert ax1.shape == ax2.shape |
|
assert numpy.allclose(ax1, ax2) |
|
|
|
|
|
def test_concatenations_and_stacking(): |
|
for backend in imp_op_backends: |
|
print("testing shapes for ", backend.framework_name) |
|
for n_arrays in [1, 2, 5]: |
|
shapes = [[], [1], [1, 1], [2, 3, 5, 7], [1] * 6] |
|
for shape in shapes: |
|
arrays1 = [numpy.arange(i, i + numpy.prod(shape)).reshape(shape) for i in range(n_arrays)] |
|
arrays2 = [backend.from_numpy(array) for array in arrays1] |
|
result0 = numpy.asarray(arrays1) |
|
result1 = rearrange(arrays1, "...->...") |
|
result2 = rearrange(arrays2, "...->...") |
|
assert numpy.array_equal(result0, result1) |
|
assert numpy.array_equal(result1, backend.to_numpy(result2)) |
|
|
|
result1 = rearrange(arrays1, "b ... -> ... b") |
|
result2 = rearrange(arrays2, "b ... -> ... b") |
|
assert numpy.array_equal(result1, backend.to_numpy(result2)) |
|
|
|
|
|
def test_gradients_imperatives(): |
|
|
|
for reduction in REDUCTIONS: |
|
if reduction in ("any", "all"): |
|
continue |
|
x = numpy.arange(1, 1 + 2 * 3 * 4).reshape([2, 3, 4]).astype("float32") |
|
results = {} |
|
for backend in imp_op_backends: |
|
y0 = backend.from_numpy(x) |
|
if not hasattr(y0, "grad"): |
|
continue |
|
|
|
y1 = reduce(y0, "a b c -> c a", reduction=reduction) |
|
y2 = reduce(y1, "c a -> a c", reduction=reduction) |
|
y3 = reduce(y2, "a (c1 c2) -> a", reduction=reduction, c1=2) |
|
y4 = reduce(y3, "... -> ", reduction=reduction) |
|
|
|
y4.backward() |
|
grad = backend.to_numpy(y0.grad) |
|
results[backend.framework_name] = grad |
|
|
|
print("comparing gradients for", results.keys()) |
|
for name1, grad1 in results.items(): |
|
for name2, grad2 in results.items(): |
|
assert numpy.allclose(grad1, grad2), [name1, name2, "provided different gradients"] |
|
|
|
|
|
def test_tiling_imperatives(): |
|
for backend in imp_op_backends: |
|
print("Tiling tests for ", backend.framework_name) |
|
input = numpy.arange(2 * 3 * 5, dtype="int64").reshape([2, 1, 3, 1, 5]) |
|
test_cases = [ |
|
(1, 1, 1, 1, 1), |
|
(1, 2, 1, 3, 1), |
|
(3, 1, 1, 4, 1), |
|
] |
|
for repeats in test_cases: |
|
expected = numpy.tile(input, repeats) |
|
converted = backend.from_numpy(input) |
|
repeated = backend.tile(converted, repeats) |
|
result = backend.to_numpy(repeated) |
|
assert numpy.array_equal(result, expected) |
|
|
|
|
|
def test_tiling_symbolic(): |
|
for backend in sym_op_backends: |
|
print("Tiling tests for ", backend.framework_name) |
|
input = numpy.arange(2 * 3 * 5, dtype="int64").reshape([2, 1, 3, 1, 5]) |
|
test_cases = [ |
|
(1, 1, 1, 1, 1), |
|
(1, 2, 1, 3, 1), |
|
(3, 1, 1, 4, 1), |
|
] |
|
for repeats in test_cases: |
|
expected = numpy.tile(input, repeats) |
|
sym = backend.create_symbol(input.shape) |
|
result = backend.eval_symbol(backend.tile(sym, repeats), [[sym, input]]) |
|
assert numpy.array_equal(result, expected) |
|
|
|
sym = backend.create_symbol([None] * len(input.shape)) |
|
result = backend.eval_symbol(backend.tile(sym, repeats), [[sym, input]]) |
|
assert numpy.array_equal(result, expected) |
|
|
|
|
|
repeat_test_cases = [ |
|
|
|
("a b c -> c a b", dict()), |
|
("a b c -> (c copy a b)", dict(copy=2, a=2, b=3, c=5)), |
|
("a b c -> (a copy) b c ", dict(copy=1)), |
|
("a b c -> (c a) (copy1 b copy2)", dict(a=2, copy1=1, copy2=2)), |
|
("a ... -> a ... copy", dict(copy=4)), |
|
("... c -> ... (copy1 c copy2)", dict(copy1=1, copy2=2)), |
|
("... -> ... ", dict()), |
|
(" ... -> copy1 ... copy2 ", dict(copy1=2, copy2=3)), |
|
("a b c -> copy1 a copy2 b c () ", dict(copy1=2, copy2=1)), |
|
] |
|
|
|
|
|
def check_reversion(x, repeat_pattern, **sizes): |
|
"""Checks repeat pattern by running reduction""" |
|
left, right = repeat_pattern.split("->") |
|
reduce_pattern = right + "->" + left |
|
repeated = repeat(x, repeat_pattern, **sizes) |
|
reduced_min = reduce(repeated, reduce_pattern, reduction="min", **sizes) |
|
reduced_max = reduce(repeated, reduce_pattern, reduction="max", **sizes) |
|
assert numpy.array_equal(x, reduced_min) |
|
assert numpy.array_equal(x, reduced_max) |
|
|
|
|
|
def test_repeat_numpy(): |
|
|
|
x = numpy.arange(2 * 3 * 5).reshape([2, 3, 5]) |
|
x1 = repeat(x, "a b c -> copy a b c ", copy=1) |
|
assert numpy.array_equal(x[None], x1) |
|
for pattern, axis_dimensions in repeat_test_cases: |
|
check_reversion(x, pattern, **axis_dimensions) |
|
|
|
|
|
def test_repeat_imperatives(): |
|
x = numpy.arange(2 * 3 * 5).reshape([2, 3, 5]) |
|
for backend in imp_op_backends: |
|
print("Repeat tests for ", backend.framework_name) |
|
|
|
for pattern, axis_dimensions in repeat_test_cases: |
|
expected = repeat(x, pattern, **axis_dimensions) |
|
converted = backend.from_numpy(x) |
|
repeated = repeat(converted, pattern, **axis_dimensions) |
|
result = backend.to_numpy(repeated) |
|
assert numpy.array_equal(result, expected) |
|
|
|
|
|
def test_repeat_symbolic(): |
|
x = numpy.arange(2 * 3 * 5).reshape([2, 3, 5]) |
|
|
|
for backend in sym_op_backends: |
|
print("Repeat tests for ", backend.framework_name) |
|
|
|
for pattern, axis_dimensions in repeat_test_cases: |
|
expected = repeat(x, pattern, **axis_dimensions) |
|
|
|
sym = backend.create_symbol(x.shape) |
|
result = backend.eval_symbol(repeat(sym, pattern, **axis_dimensions), [[sym, x]]) |
|
assert numpy.array_equal(result, expected) |
|
|
|
|
|
def test_repeat_array_api(): |
|
import numpy as xp |
|
from einops import array_api as AA |
|
|
|
if xp.__version__ < "2.0.0": |
|
pytest.skip() |
|
|
|
x = numpy.arange(2 * 3 * 5).reshape([2, 3, 5]) |
|
|
|
for pattern, axis_dimensions in repeat_test_cases: |
|
expected = repeat(x, pattern, **axis_dimensions) |
|
|
|
result = AA.repeat(xp.from_dlpack(x), pattern, **axis_dimensions) |
|
assert numpy.array_equal(AA.asnumpy(result + 0), expected) |
|
|
|
|
|
test_cases_repeat_anonymous = [ |
|
|
|
("a b c d -> c a d b", dict()), |
|
("a b c d -> (c 2 d a b)", dict(a=1, c=4, d=6)), |
|
("1 b c d -> (d copy 1) 3 b c ", dict(copy=3)), |
|
("1 ... -> 3 ... ", dict()), |
|
("() ... d -> 1 (copy1 d copy2) ... ", dict(copy1=2, copy2=3)), |
|
("1 b c d -> (1 1) (1 b) 2 c 3 d (1 1)", dict()), |
|
] |
|
|
|
|
|
def test_anonymous_axes(): |
|
x = numpy.arange(1 * 2 * 4 * 6).reshape([1, 2, 4, 6]) |
|
for pattern, axis_dimensions in test_cases_repeat_anonymous: |
|
check_reversion(x, pattern, **axis_dimensions) |
|
|
|
|
|
def test_list_inputs(): |
|
x = numpy.arange(2 * 3 * 4 * 5 * 6).reshape([2, 3, 4, 5, 6]) |
|
|
|
assert numpy.array_equal( |
|
rearrange(list(x), "... -> (...)"), |
|
rearrange(x, "... -> (...)"), |
|
) |
|
assert numpy.array_equal( |
|
reduce(list(x), "a ... e -> (...)", "min"), |
|
reduce(x, "a ... e -> (...)", "min"), |
|
) |
|
assert numpy.array_equal( |
|
repeat(list(x), "... -> b (...)", b=3), |
|
repeat(x, "... -> b (...)", b=3), |
|
) |
|
|
|
|
|
def test_torch_compile_with_dynamic_shape(): |
|
if not is_backend_tested("torch"): |
|
pytest.skip() |
|
import torch |
|
|
|
|
|
torch._dynamo.config.verbose = True |
|
|
|
def func1(x): |
|
|
|
a, b, c, *other = x.shape |
|
x = rearrange(x, "(a a2) b c ... -> b (c a2) (a ...)", a2=2) |
|
|
|
x = reduce(x, "b ca2 A -> b A", "sum", ca2=c * 2) |
|
return x |
|
|
|
|
|
|
|
func1_compiled_dynamic = torch.compile(func1, dynamic=True, fullgraph=True, backend="aot_eager") |
|
|
|
x = torch.randn(size=[4, 5, 6, 3]) |
|
assert torch.equal(func1_compiled_dynamic(x), func1(x)) |
|
|
|
x = torch.randn(size=[6, 3, 4, 2, 3]) |
|
assert torch.equal(func1_compiled_dynamic(x), func1(x)) |
|
|
|
|
|
def bit_count(x): |
|
return sum((x >> i) & 1 for i in range(20)) |
|
|
|
|
|
def test_reduction_imperatives_booleans(): |
|
"""Checks that any/all reduction works in all frameworks""" |
|
x_np = numpy.asarray([(bit_count(x) % 2) == 0 for x in range(2**6)]).reshape([2] * 6) |
|
for backend in imp_op_backends: |
|
print("Reduction any/all tests for ", backend.framework_name) |
|
|
|
for axis in range(6): |
|
expected_result_any = numpy.any(x_np, axis=axis, keepdims=True) |
|
expected_result_all = numpy.all(x_np, axis=axis, keepdims=True) |
|
assert not numpy.array_equal(expected_result_any, expected_result_all) |
|
|
|
axes = list("abcdef") |
|
axes_in = list(axes) |
|
axes_out = list(axes) |
|
axes_out[axis] = "1" |
|
pattern = (" ".join(axes_in)) + " -> " + (" ".join(axes_out)) |
|
|
|
res_any = reduce(backend.from_numpy(x_np), pattern, reduction="any") |
|
res_all = reduce(backend.from_numpy(x_np), pattern, reduction="all") |
|
|
|
assert numpy.array_equal(expected_result_any, backend.to_numpy(res_any)) |
|
assert numpy.array_equal(expected_result_all, backend.to_numpy(res_all)) |
|
|
|
|
|
expected_result_any = numpy.any(x_np, axis=(0, 1), keepdims=True) |
|
expected_result_all = numpy.all(x_np, axis=(0, 1), keepdims=True) |
|
pattern = "a b ... -> 1 1 ..." |
|
res_any = reduce(backend.from_numpy(x_np), pattern, reduction="any") |
|
res_all = reduce(backend.from_numpy(x_np), pattern, reduction="all") |
|
assert numpy.array_equal(expected_result_any, backend.to_numpy(res_any)) |
|
assert numpy.array_equal(expected_result_all, backend.to_numpy(res_all)) |
|
|