jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
import itertools
import numpy
import numpy as np
import pytest
from einops import EinopsError
from einops.einops import rearrange, reduce, repeat, _enumerate_directions
from einops.tests import collect_test_backends, is_backend_tested, FLOAT_REDUCTIONS as REDUCTIONS
imp_op_backends = collect_test_backends(symbolic=False, layers=False)
sym_op_backends = collect_test_backends(symbolic=True, layers=False)
identity_patterns = [
"...->...",
"a b c d e-> a b c d e",
"a b c d e ...-> ... a b c d e",
"a b c d e ...-> a ... b c d e",
"... a b c d e -> ... a b c d e",
"a ... e-> a ... e",
"a ... -> a ... ",
"a ... c d e -> a (...) c d e",
]
equivalent_rearrange_patterns = [
("a b c d e -> (a b) c d e", "a b ... -> (a b) ... "),
("a b c d e -> a b (c d) e", "... c d e -> ... (c d) e"),
("a b c d e -> a b c d e", "... -> ... "),
("a b c d e -> (a b c d e)", "... -> (...)"),
("a b c d e -> b (c d e) a", "a b ... -> b (...) a"),
("a b c d e -> b (a c d) e", "a b ... e -> b (a ...) e"),
]
equivalent_reduction_patterns = [
("a b c d e -> ", " ... -> "),
("a b c d e -> (e a)", "a ... e -> (e a)"),
("a b c d e -> d (a e)", " a b c d e ... -> d (a e) "),
("a b c d e -> (a b)", " ... c d e -> (...) "),
]
def test_collapsed_ellipsis_errors_out():
x = numpy.zeros([1, 1, 1, 1, 1])
rearrange(x, "a b c d ... -> a b c ... d")
with pytest.raises(EinopsError):
rearrange(x, "a b c d (...) -> a b c ... d")
rearrange(x, "... -> (...)")
with pytest.raises(EinopsError):
rearrange(x, "(...) -> (...)")
def test_ellipsis_ops_numpy():
x = numpy.arange(2 * 3 * 4 * 5 * 6).reshape([2, 3, 4, 5, 6])
for pattern in identity_patterns:
assert numpy.array_equal(x, rearrange(x, pattern)), pattern
for pattern1, pattern2 in equivalent_rearrange_patterns:
assert numpy.array_equal(rearrange(x, pattern1), rearrange(x, pattern2))
for reduction in ["min", "max", "sum"]:
for pattern1, pattern2 in equivalent_reduction_patterns:
assert numpy.array_equal(reduce(x, pattern1, reduction=reduction), reduce(x, pattern2, reduction=reduction))
# now just check coincidence with numpy
all_rearrange_patterns = [*identity_patterns]
for pattern_pairs in equivalent_rearrange_patterns:
all_rearrange_patterns.extend(pattern_pairs)
def check_op_against_numpy(backend, numpy_input, pattern, axes_lengths, reduction="rearrange", is_symbolic=False):
"""
Helper to test result of operation (rearrange or transpose) against numpy
if reduction == 'rearrange', rearrange op is tested, otherwise reduce
"""
def operation(x):
if reduction == "rearrange":
return rearrange(x, pattern, **axes_lengths)
else:
return reduce(x, pattern, reduction, **axes_lengths)
numpy_result = operation(numpy_input)
check_equal = numpy.array_equal
p_none_dimension = 0.5
if is_symbolic:
symbol_shape = [d if numpy.random.random() >= p_none_dimension else None for d in numpy_input.shape]
symbol = backend.create_symbol(shape=symbol_shape)
result_symbol = operation(symbol)
backend_result = backend.eval_symbol(result_symbol, [(symbol, numpy_input)])
else:
backend_result = operation(backend.from_numpy(numpy_input))
backend_result = backend.to_numpy(backend_result)
check_equal(numpy_result, backend_result)
def test_ellipsis_ops_imperative():
"""Checking various patterns against numpy"""
x = numpy.arange(2 * 3 * 4 * 5 * 6).reshape([2, 3, 4, 5, 6])
for is_symbolic in [True, False]:
for backend in collect_test_backends(symbolic=is_symbolic, layers=False):
for pattern in identity_patterns + list(itertools.chain(*equivalent_rearrange_patterns)):
check_op_against_numpy(
backend, x, pattern, axes_lengths={}, reduction="rearrange", is_symbolic=is_symbolic
)
for reduction in ["min", "max", "sum"]:
for pattern in itertools.chain(*equivalent_reduction_patterns):
check_op_against_numpy(
backend, x, pattern, axes_lengths={}, reduction=reduction, is_symbolic=is_symbolic
)
def test_rearrange_array_api():
import numpy as xp
from einops import array_api as AA
if xp.__version__ < "2.0.0":
pytest.skip()
x = numpy.arange(2 * 3 * 4 * 5 * 6).reshape([2, 3, 4, 5, 6])
for pattern in identity_patterns + list(itertools.chain(*equivalent_rearrange_patterns)):
expected = rearrange(x, pattern)
result = AA.rearrange(xp.from_dlpack(x), pattern)
assert numpy.array_equal(AA.asnumpy(result + 0), expected)
def test_reduce_array_api():
import numpy as xp
from einops import array_api as AA
if xp.__version__ < "2.0.0":
pytest.skip()
x = numpy.arange(2 * 3 * 4 * 5 * 6).reshape([2, 3, 4, 5, 6])
for pattern in itertools.chain(*equivalent_reduction_patterns):
for reduction in ["min", "max", "sum"]:
expected = reduce(x, pattern, reduction=reduction)
result = AA.reduce(xp.from_dlpack(x), pattern, reduction=reduction)
assert numpy.array_equal(AA.asnumpy(np.asarray(result + 0)), expected)
def test_rearrange_consistency_numpy():
shape = [1, 2, 3, 5, 7, 11]
x = numpy.arange(numpy.prod(shape)).reshape(shape)
for pattern in [
"a b c d e f -> a b c d e f",
"b a c d e f -> a b d e f c",
"a b c d e f -> f e d c b a",
"a b c d e f -> (f e) d (c b a)",
"a b c d e f -> (f e d c b a)",
]:
result = rearrange(x, pattern)
assert len(numpy.setdiff1d(x, result)) == 0
assert result.dtype == x.dtype
result = rearrange(x, "a b c d e f -> a (b) (c d e) f")
assert numpy.array_equal(x.flatten(), result.flatten())
result = rearrange(x, "a aa aa1 a1a1 aaaa a11 -> a aa aa1 a1a1 aaaa a11")
assert numpy.array_equal(x, result)
result1 = rearrange(x, "a b c d e f -> f e d c b a")
result2 = rearrange(x, "f e d c b a -> a b c d e f")
assert numpy.array_equal(result1, result2)
result = rearrange(rearrange(x, "a b c d e f -> (f d) c (e b) a"), "(f d) c (e b) a -> a b c d e f", b=2, d=5)
assert numpy.array_equal(x, result)
sizes = dict(zip("abcdef", shape))
temp = rearrange(x, "a b c d e f -> (f d) c (e b) a", **sizes)
result = rearrange(temp, "(f d) c (e b) a -> a b c d e f", **sizes)
assert numpy.array_equal(x, result)
x2 = numpy.arange(2 * 3 * 4).reshape([2, 3, 4])
result = rearrange(x2, "a b c -> b c a")
assert x2[1, 2, 3] == result[2, 3, 1]
assert x2[0, 1, 2] == result[1, 2, 0]
def test_rearrange_permutations_numpy():
# tests random permutation of axes against two independent numpy ways
for n_axes in range(1, 10):
input = numpy.arange(2**n_axes).reshape([2] * n_axes)
permutation = numpy.random.permutation(n_axes)
left_expression = " ".join("i" + str(axis) for axis in range(n_axes))
right_expression = " ".join("i" + str(axis) for axis in permutation)
expression = left_expression + " -> " + right_expression
result = rearrange(input, expression)
for pick in numpy.random.randint(0, 2, [10, n_axes]):
assert input[tuple(pick)] == result[tuple(pick[permutation])]
for n_axes in range(1, 10):
input = numpy.arange(2**n_axes).reshape([2] * n_axes)
permutation = numpy.random.permutation(n_axes)
left_expression = " ".join("i" + str(axis) for axis in range(n_axes)[::-1])
right_expression = " ".join("i" + str(axis) for axis in permutation[::-1])
expression = left_expression + " -> " + right_expression
result = rearrange(input, expression)
assert result.shape == input.shape
expected_result = numpy.zeros_like(input)
for original_axis, result_axis in enumerate(permutation):
expected_result |= ((input >> original_axis) & 1) << result_axis
assert numpy.array_equal(result, expected_result)
def test_reduction_imperatives():
for backend in imp_op_backends:
print("Reduction tests for ", backend.framework_name)
for reduction in REDUCTIONS:
# slight redundancy for simpler order - numpy version is evaluated multiple times
input = numpy.arange(2 * 3 * 4 * 5 * 6, dtype="int64").reshape([2, 3, 4, 5, 6])
if reduction in ["mean", "prod"]:
input = input / input.astype("float64").mean()
test_cases = [
["a b c d e -> ", {}, getattr(input, reduction)()],
["a ... -> ", {}, getattr(input, reduction)()],
["(a1 a2) ... (e1 e2) -> ", dict(a1=1, e2=2), getattr(input, reduction)()],
[
"a b c d e -> (e c) a",
{},
getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1, 2]),
],
[
"a ... c d e -> (e c) a",
{},
getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1, 2]),
],
[
"a b c d e ... -> (e c) a",
{},
getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1, 2]),
],
["a b c d e -> (e c a)", {}, getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1])],
["(a a2) ... -> (a2 a) ...", dict(a2=1), input],
]
for pattern, axes_lengths, expected_result in test_cases:
result = reduce(backend.from_numpy(input.copy()), pattern, reduction=reduction, **axes_lengths)
result = backend.to_numpy(result)
assert numpy.allclose(result, expected_result), f"Failed at {pattern}"
def test_reduction_symbolic():
for backend in sym_op_backends:
print("Reduction tests for ", backend.framework_name)
for reduction in REDUCTIONS:
input = numpy.arange(2 * 3 * 4 * 5 * 6, dtype="int64").reshape([2, 3, 4, 5, 6])
input = input / input.astype("float64").mean()
# slight redundancy for simpler order - numpy version is evaluated multiple times
test_cases = [
["a b c d e -> ", {}, getattr(input, reduction)()],
["a ... -> ", {}, getattr(input, reduction)()],
["(a a2) ... (e e2) -> ", dict(a2=1, e2=1), getattr(input, reduction)()],
[
"a b c d e -> (e c) a",
{},
getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1, 2]),
],
[
"a ... c d e -> (e c) a",
{},
getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1, 2]),
],
[
"a b c d e ... -> (e c) a",
{},
getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1, 2]),
],
["a b c d e -> (e c a)", {}, getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1])],
["(a a2) ... -> (a2 a) ...", dict(a2=1), input],
]
for pattern, axes_lengths, expected_numpy_result in test_cases:
shapes = [input.shape, [None for _ in input.shape]]
for shape in shapes:
sym = backend.create_symbol(shape)
result_sym = reduce(sym, pattern, reduction=reduction, **axes_lengths)
result = backend.eval_symbol(result_sym, [(sym, input)])
assert numpy.allclose(result, expected_numpy_result)
if True:
shape = []
_axes_lengths = {**axes_lengths}
for axis, length in zip("abcde", input.shape):
# filling as much as possible with Nones
if axis in pattern:
shape.append(None)
_axes_lengths[axis] = length
else:
shape.append(length)
sym = backend.create_symbol(shape)
result_sym = reduce(sym, pattern, reduction=reduction, **_axes_lengths)
result = backend.eval_symbol(result_sym, [(sym, input)])
assert numpy.allclose(result, expected_numpy_result)
def test_reduction_stress_imperatives():
for backend in imp_op_backends:
print("Stress-testing reduction for ", backend.framework_name)
for reduction in REDUCTIONS + ("rearrange",):
dtype = "int64"
coincide = numpy.array_equal
if reduction in ["mean", "prod"]:
dtype = "float64"
coincide = numpy.allclose
max_dim = 11
if "oneflow" in backend.framework_name:
max_dim = 7
if "paddle" in backend.framework_name:
max_dim = 9
for n_axes in range(max_dim):
shape = numpy.random.randint(2, 4, size=n_axes)
permutation = numpy.random.permutation(n_axes)
skipped = 0 if reduction == "rearrange" else numpy.random.randint(n_axes + 1)
left = " ".join("x" + str(i) for i in range(n_axes))
right = " ".join("x" + str(i) for i in permutation[skipped:])
pattern = left + "->" + right
x = numpy.arange(1, 1 + numpy.prod(shape), dtype=dtype).reshape(shape)
if reduction == "prod":
x /= x.mean() # to avoid overflows
result1 = reduce(x, pattern, reduction=reduction)
result2 = x.transpose(permutation)
if skipped > 0:
result2 = getattr(result2, reduction)(axis=tuple(range(skipped)))
assert coincide(result1, result2)
check_op_against_numpy(backend, x, pattern, reduction=reduction, axes_lengths={}, is_symbolic=False)
def test_reduction_with_callable_imperatives():
x_numpy = numpy.arange(2 * 3 * 4 * 5 * 6).reshape([2, 3, 4, 5, 6]).astype("float32")
x_numpy /= x_numpy.max()
def logsumexp_torch(x, tuple_of_axes):
return x.logsumexp(tuple_of_axes)
def logsumexp_tf(x, tuple_of_axes):
import tensorflow as tf
return tf.reduce_logsumexp(x, tuple_of_axes)
def logsumexp_keras(x, tuple_of_axes):
import tensorflow.keras.backend as k
return k.logsumexp(x, tuple_of_axes)
def logsumexp_numpy(x, tuple_of_axes):
# very naive logsumexp to compare to
minused = x.max(tuple_of_axes)
y = x - x.max(tuple_of_axes, keepdims=True)
y = numpy.exp(y)
y = numpy.sum(y, axis=tuple_of_axes)
return numpy.log(y) + minused
from einops._backends import TorchBackend, TensorflowBackend, TFKerasBackend, NumpyBackend
backend2callback = {
TorchBackend.framework_name: logsumexp_torch,
TensorflowBackend.framework_name: logsumexp_tf,
TFKerasBackend.framework_name: logsumexp_keras,
NumpyBackend.framework_name: logsumexp_numpy,
}
for backend in imp_op_backends:
if backend.framework_name not in backend2callback:
continue
backend_callback = backend2callback[backend.framework_name]
x_backend = backend.from_numpy(x_numpy)
for pattern1, pattern2 in equivalent_reduction_patterns:
print("Test reduction with callable for ", backend.framework_name, pattern1, pattern2)
output_numpy = reduce(x_numpy, pattern1, reduction=logsumexp_numpy)
output_backend = reduce(x_backend, pattern1, reduction=backend_callback)
assert numpy.allclose(
output_numpy,
backend.to_numpy(output_backend),
)
def test_enumerating_directions():
for backend in imp_op_backends:
print("testing directions for", backend.framework_name)
for shape in [[], [1], [1, 1, 1], [2, 3, 5, 7]]:
x = numpy.arange(numpy.prod(shape)).reshape(shape)
axes1 = _enumerate_directions(x)
axes2 = _enumerate_directions(backend.from_numpy(x))
assert len(axes1) == len(axes2) == len(shape)
for ax1, ax2 in zip(axes1, axes2):
ax2 = backend.to_numpy(ax2)
assert ax1.shape == ax2.shape
assert numpy.allclose(ax1, ax2)
def test_concatenations_and_stacking():
for backend in imp_op_backends:
print("testing shapes for ", backend.framework_name)
for n_arrays in [1, 2, 5]:
shapes = [[], [1], [1, 1], [2, 3, 5, 7], [1] * 6]
for shape in shapes:
arrays1 = [numpy.arange(i, i + numpy.prod(shape)).reshape(shape) for i in range(n_arrays)]
arrays2 = [backend.from_numpy(array) for array in arrays1]
result0 = numpy.asarray(arrays1)
result1 = rearrange(arrays1, "...->...")
result2 = rearrange(arrays2, "...->...")
assert numpy.array_equal(result0, result1)
assert numpy.array_equal(result1, backend.to_numpy(result2))
result1 = rearrange(arrays1, "b ... -> ... b")
result2 = rearrange(arrays2, "b ... -> ... b")
assert numpy.array_equal(result1, backend.to_numpy(result2))
def test_gradients_imperatives():
# lazy - just checking reductions
for reduction in REDUCTIONS:
if reduction in ("any", "all"):
continue # non-differentiable ops
x = numpy.arange(1, 1 + 2 * 3 * 4).reshape([2, 3, 4]).astype("float32")
results = {}
for backend in imp_op_backends:
y0 = backend.from_numpy(x)
if not hasattr(y0, "grad"):
continue
y1 = reduce(y0, "a b c -> c a", reduction=reduction)
y2 = reduce(y1, "c a -> a c", reduction=reduction)
y3 = reduce(y2, "a (c1 c2) -> a", reduction=reduction, c1=2)
y4 = reduce(y3, "... -> ", reduction=reduction)
y4.backward()
grad = backend.to_numpy(y0.grad)
results[backend.framework_name] = grad
print("comparing gradients for", results.keys())
for name1, grad1 in results.items():
for name2, grad2 in results.items():
assert numpy.allclose(grad1, grad2), [name1, name2, "provided different gradients"]
def test_tiling_imperatives():
for backend in imp_op_backends:
print("Tiling tests for ", backend.framework_name)
input = numpy.arange(2 * 3 * 5, dtype="int64").reshape([2, 1, 3, 1, 5])
test_cases = [
(1, 1, 1, 1, 1),
(1, 2, 1, 3, 1),
(3, 1, 1, 4, 1),
]
for repeats in test_cases:
expected = numpy.tile(input, repeats)
converted = backend.from_numpy(input)
repeated = backend.tile(converted, repeats)
result = backend.to_numpy(repeated)
assert numpy.array_equal(result, expected)
def test_tiling_symbolic():
for backend in sym_op_backends:
print("Tiling tests for ", backend.framework_name)
input = numpy.arange(2 * 3 * 5, dtype="int64").reshape([2, 1, 3, 1, 5])
test_cases = [
(1, 1, 1, 1, 1),
(1, 2, 1, 3, 1),
(3, 1, 1, 4, 1),
]
for repeats in test_cases:
expected = numpy.tile(input, repeats)
sym = backend.create_symbol(input.shape)
result = backend.eval_symbol(backend.tile(sym, repeats), [[sym, input]])
assert numpy.array_equal(result, expected)
sym = backend.create_symbol([None] * len(input.shape))
result = backend.eval_symbol(backend.tile(sym, repeats), [[sym, input]])
assert numpy.array_equal(result, expected)
repeat_test_cases = [
# all assume that input has shape [2, 3, 5]
("a b c -> c a b", dict()),
("a b c -> (c copy a b)", dict(copy=2, a=2, b=3, c=5)),
("a b c -> (a copy) b c ", dict(copy=1)),
("a b c -> (c a) (copy1 b copy2)", dict(a=2, copy1=1, copy2=2)),
("a ... -> a ... copy", dict(copy=4)),
("... c -> ... (copy1 c copy2)", dict(copy1=1, copy2=2)),
("... -> ... ", dict()),
(" ... -> copy1 ... copy2 ", dict(copy1=2, copy2=3)),
("a b c -> copy1 a copy2 b c () ", dict(copy1=2, copy2=1)),
]
def check_reversion(x, repeat_pattern, **sizes):
"""Checks repeat pattern by running reduction"""
left, right = repeat_pattern.split("->")
reduce_pattern = right + "->" + left
repeated = repeat(x, repeat_pattern, **sizes)
reduced_min = reduce(repeated, reduce_pattern, reduction="min", **sizes)
reduced_max = reduce(repeated, reduce_pattern, reduction="max", **sizes)
assert numpy.array_equal(x, reduced_min)
assert numpy.array_equal(x, reduced_max)
def test_repeat_numpy():
# check repeat vs reduce. Repeat works ok if reverse reduction with min and max work well
x = numpy.arange(2 * 3 * 5).reshape([2, 3, 5])
x1 = repeat(x, "a b c -> copy a b c ", copy=1)
assert numpy.array_equal(x[None], x1)
for pattern, axis_dimensions in repeat_test_cases:
check_reversion(x, pattern, **axis_dimensions)
def test_repeat_imperatives():
x = numpy.arange(2 * 3 * 5).reshape([2, 3, 5])
for backend in imp_op_backends:
print("Repeat tests for ", backend.framework_name)
for pattern, axis_dimensions in repeat_test_cases:
expected = repeat(x, pattern, **axis_dimensions)
converted = backend.from_numpy(x)
repeated = repeat(converted, pattern, **axis_dimensions)
result = backend.to_numpy(repeated)
assert numpy.array_equal(result, expected)
def test_repeat_symbolic():
x = numpy.arange(2 * 3 * 5).reshape([2, 3, 5])
for backend in sym_op_backends:
print("Repeat tests for ", backend.framework_name)
for pattern, axis_dimensions in repeat_test_cases:
expected = repeat(x, pattern, **axis_dimensions)
sym = backend.create_symbol(x.shape)
result = backend.eval_symbol(repeat(sym, pattern, **axis_dimensions), [[sym, x]])
assert numpy.array_equal(result, expected)
def test_repeat_array_api():
import numpy as xp
from einops import array_api as AA
if xp.__version__ < "2.0.0":
pytest.skip()
x = numpy.arange(2 * 3 * 5).reshape([2, 3, 5])
for pattern, axis_dimensions in repeat_test_cases:
expected = repeat(x, pattern, **axis_dimensions)
result = AA.repeat(xp.from_dlpack(x), pattern, **axis_dimensions)
assert numpy.array_equal(AA.asnumpy(result + 0), expected)
test_cases_repeat_anonymous = [
# all assume that input has shape [1, 2, 4, 6]
("a b c d -> c a d b", dict()),
("a b c d -> (c 2 d a b)", dict(a=1, c=4, d=6)),
("1 b c d -> (d copy 1) 3 b c ", dict(copy=3)),
("1 ... -> 3 ... ", dict()),
("() ... d -> 1 (copy1 d copy2) ... ", dict(copy1=2, copy2=3)),
("1 b c d -> (1 1) (1 b) 2 c 3 d (1 1)", dict()),
]
def test_anonymous_axes():
x = numpy.arange(1 * 2 * 4 * 6).reshape([1, 2, 4, 6])
for pattern, axis_dimensions in test_cases_repeat_anonymous:
check_reversion(x, pattern, **axis_dimensions)
def test_list_inputs():
x = numpy.arange(2 * 3 * 4 * 5 * 6).reshape([2, 3, 4, 5, 6])
assert numpy.array_equal(
rearrange(list(x), "... -> (...)"),
rearrange(x, "... -> (...)"),
)
assert numpy.array_equal(
reduce(list(x), "a ... e -> (...)", "min"),
reduce(x, "a ... e -> (...)", "min"),
)
assert numpy.array_equal(
repeat(list(x), "... -> b (...)", b=3),
repeat(x, "... -> b (...)", b=3),
)
def test_torch_compile_with_dynamic_shape():
if not is_backend_tested("torch"):
pytest.skip()
import torch
# somewhat reasonable debug messages
torch._dynamo.config.verbose = True
def func1(x):
# test contains ellipsis
a, b, c, *other = x.shape
x = rearrange(x, "(a a2) b c ... -> b (c a2) (a ...)", a2=2)
# test contains passing expression as axis length
x = reduce(x, "b ca2 A -> b A", "sum", ca2=c * 2)
return x
# seems can't test static and dynamic in the same test run.
# func1_compiled_static = torch.compile(func1, dynamic=False, fullgraph=True, backend='aot_eager')
func1_compiled_dynamic = torch.compile(func1, dynamic=True, fullgraph=True, backend="aot_eager")
x = torch.randn(size=[4, 5, 6, 3])
assert torch.equal(func1_compiled_dynamic(x), func1(x))
# check with input of different dimensionality, and with all shape elements changed
x = torch.randn(size=[6, 3, 4, 2, 3])
assert torch.equal(func1_compiled_dynamic(x), func1(x))
def bit_count(x):
return sum((x >> i) & 1 for i in range(20))
def test_reduction_imperatives_booleans():
"""Checks that any/all reduction works in all frameworks"""
x_np = numpy.asarray([(bit_count(x) % 2) == 0 for x in range(2**6)]).reshape([2] * 6)
for backend in imp_op_backends:
print("Reduction any/all tests for ", backend.framework_name)
for axis in range(6):
expected_result_any = numpy.any(x_np, axis=axis, keepdims=True)
expected_result_all = numpy.all(x_np, axis=axis, keepdims=True)
assert not numpy.array_equal(expected_result_any, expected_result_all)
axes = list("abcdef")
axes_in = list(axes)
axes_out = list(axes)
axes_out[axis] = "1"
pattern = (" ".join(axes_in)) + " -> " + (" ".join(axes_out))
res_any = reduce(backend.from_numpy(x_np), pattern, reduction="any")
res_all = reduce(backend.from_numpy(x_np), pattern, reduction="all")
assert numpy.array_equal(expected_result_any, backend.to_numpy(res_any))
assert numpy.array_equal(expected_result_all, backend.to_numpy(res_all))
# expected result: any/all
expected_result_any = numpy.any(x_np, axis=(0, 1), keepdims=True)
expected_result_all = numpy.all(x_np, axis=(0, 1), keepdims=True)
pattern = "a b ... -> 1 1 ..."
res_any = reduce(backend.from_numpy(x_np), pattern, reduction="any")
res_all = reduce(backend.from_numpy(x_np), pattern, reduction="all")
assert numpy.array_equal(expected_result_any, backend.to_numpy(res_any))
assert numpy.array_equal(expected_result_all, backend.to_numpy(res_all))