File size: 26,998 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
import itertools
import numpy
import numpy as np
import pytest
from einops import EinopsError
from einops.einops import rearrange, reduce, repeat, _enumerate_directions
from einops.tests import collect_test_backends, is_backend_tested, FLOAT_REDUCTIONS as REDUCTIONS
imp_op_backends = collect_test_backends(symbolic=False, layers=False)
sym_op_backends = collect_test_backends(symbolic=True, layers=False)
identity_patterns = [
"...->...",
"a b c d e-> a b c d e",
"a b c d e ...-> ... a b c d e",
"a b c d e ...-> a ... b c d e",
"... a b c d e -> ... a b c d e",
"a ... e-> a ... e",
"a ... -> a ... ",
"a ... c d e -> a (...) c d e",
]
equivalent_rearrange_patterns = [
("a b c d e -> (a b) c d e", "a b ... -> (a b) ... "),
("a b c d e -> a b (c d) e", "... c d e -> ... (c d) e"),
("a b c d e -> a b c d e", "... -> ... "),
("a b c d e -> (a b c d e)", "... -> (...)"),
("a b c d e -> b (c d e) a", "a b ... -> b (...) a"),
("a b c d e -> b (a c d) e", "a b ... e -> b (a ...) e"),
]
equivalent_reduction_patterns = [
("a b c d e -> ", " ... -> "),
("a b c d e -> (e a)", "a ... e -> (e a)"),
("a b c d e -> d (a e)", " a b c d e ... -> d (a e) "),
("a b c d e -> (a b)", " ... c d e -> (...) "),
]
def test_collapsed_ellipsis_errors_out():
x = numpy.zeros([1, 1, 1, 1, 1])
rearrange(x, "a b c d ... -> a b c ... d")
with pytest.raises(EinopsError):
rearrange(x, "a b c d (...) -> a b c ... d")
rearrange(x, "... -> (...)")
with pytest.raises(EinopsError):
rearrange(x, "(...) -> (...)")
def test_ellipsis_ops_numpy():
x = numpy.arange(2 * 3 * 4 * 5 * 6).reshape([2, 3, 4, 5, 6])
for pattern in identity_patterns:
assert numpy.array_equal(x, rearrange(x, pattern)), pattern
for pattern1, pattern2 in equivalent_rearrange_patterns:
assert numpy.array_equal(rearrange(x, pattern1), rearrange(x, pattern2))
for reduction in ["min", "max", "sum"]:
for pattern1, pattern2 in equivalent_reduction_patterns:
assert numpy.array_equal(reduce(x, pattern1, reduction=reduction), reduce(x, pattern2, reduction=reduction))
# now just check coincidence with numpy
all_rearrange_patterns = [*identity_patterns]
for pattern_pairs in equivalent_rearrange_patterns:
all_rearrange_patterns.extend(pattern_pairs)
def check_op_against_numpy(backend, numpy_input, pattern, axes_lengths, reduction="rearrange", is_symbolic=False):
"""
Helper to test result of operation (rearrange or transpose) against numpy
if reduction == 'rearrange', rearrange op is tested, otherwise reduce
"""
def operation(x):
if reduction == "rearrange":
return rearrange(x, pattern, **axes_lengths)
else:
return reduce(x, pattern, reduction, **axes_lengths)
numpy_result = operation(numpy_input)
check_equal = numpy.array_equal
p_none_dimension = 0.5
if is_symbolic:
symbol_shape = [d if numpy.random.random() >= p_none_dimension else None for d in numpy_input.shape]
symbol = backend.create_symbol(shape=symbol_shape)
result_symbol = operation(symbol)
backend_result = backend.eval_symbol(result_symbol, [(symbol, numpy_input)])
else:
backend_result = operation(backend.from_numpy(numpy_input))
backend_result = backend.to_numpy(backend_result)
check_equal(numpy_result, backend_result)
def test_ellipsis_ops_imperative():
"""Checking various patterns against numpy"""
x = numpy.arange(2 * 3 * 4 * 5 * 6).reshape([2, 3, 4, 5, 6])
for is_symbolic in [True, False]:
for backend in collect_test_backends(symbolic=is_symbolic, layers=False):
for pattern in identity_patterns + list(itertools.chain(*equivalent_rearrange_patterns)):
check_op_against_numpy(
backend, x, pattern, axes_lengths={}, reduction="rearrange", is_symbolic=is_symbolic
)
for reduction in ["min", "max", "sum"]:
for pattern in itertools.chain(*equivalent_reduction_patterns):
check_op_against_numpy(
backend, x, pattern, axes_lengths={}, reduction=reduction, is_symbolic=is_symbolic
)
def test_rearrange_array_api():
import numpy as xp
from einops import array_api as AA
if xp.__version__ < "2.0.0":
pytest.skip()
x = numpy.arange(2 * 3 * 4 * 5 * 6).reshape([2, 3, 4, 5, 6])
for pattern in identity_patterns + list(itertools.chain(*equivalent_rearrange_patterns)):
expected = rearrange(x, pattern)
result = AA.rearrange(xp.from_dlpack(x), pattern)
assert numpy.array_equal(AA.asnumpy(result + 0), expected)
def test_reduce_array_api():
import numpy as xp
from einops import array_api as AA
if xp.__version__ < "2.0.0":
pytest.skip()
x = numpy.arange(2 * 3 * 4 * 5 * 6).reshape([2, 3, 4, 5, 6])
for pattern in itertools.chain(*equivalent_reduction_patterns):
for reduction in ["min", "max", "sum"]:
expected = reduce(x, pattern, reduction=reduction)
result = AA.reduce(xp.from_dlpack(x), pattern, reduction=reduction)
assert numpy.array_equal(AA.asnumpy(np.asarray(result + 0)), expected)
def test_rearrange_consistency_numpy():
shape = [1, 2, 3, 5, 7, 11]
x = numpy.arange(numpy.prod(shape)).reshape(shape)
for pattern in [
"a b c d e f -> a b c d e f",
"b a c d e f -> a b d e f c",
"a b c d e f -> f e d c b a",
"a b c d e f -> (f e) d (c b a)",
"a b c d e f -> (f e d c b a)",
]:
result = rearrange(x, pattern)
assert len(numpy.setdiff1d(x, result)) == 0
assert result.dtype == x.dtype
result = rearrange(x, "a b c d e f -> a (b) (c d e) f")
assert numpy.array_equal(x.flatten(), result.flatten())
result = rearrange(x, "a aa aa1 a1a1 aaaa a11 -> a aa aa1 a1a1 aaaa a11")
assert numpy.array_equal(x, result)
result1 = rearrange(x, "a b c d e f -> f e d c b a")
result2 = rearrange(x, "f e d c b a -> a b c d e f")
assert numpy.array_equal(result1, result2)
result = rearrange(rearrange(x, "a b c d e f -> (f d) c (e b) a"), "(f d) c (e b) a -> a b c d e f", b=2, d=5)
assert numpy.array_equal(x, result)
sizes = dict(zip("abcdef", shape))
temp = rearrange(x, "a b c d e f -> (f d) c (e b) a", **sizes)
result = rearrange(temp, "(f d) c (e b) a -> a b c d e f", **sizes)
assert numpy.array_equal(x, result)
x2 = numpy.arange(2 * 3 * 4).reshape([2, 3, 4])
result = rearrange(x2, "a b c -> b c a")
assert x2[1, 2, 3] == result[2, 3, 1]
assert x2[0, 1, 2] == result[1, 2, 0]
def test_rearrange_permutations_numpy():
# tests random permutation of axes against two independent numpy ways
for n_axes in range(1, 10):
input = numpy.arange(2**n_axes).reshape([2] * n_axes)
permutation = numpy.random.permutation(n_axes)
left_expression = " ".join("i" + str(axis) for axis in range(n_axes))
right_expression = " ".join("i" + str(axis) for axis in permutation)
expression = left_expression + " -> " + right_expression
result = rearrange(input, expression)
for pick in numpy.random.randint(0, 2, [10, n_axes]):
assert input[tuple(pick)] == result[tuple(pick[permutation])]
for n_axes in range(1, 10):
input = numpy.arange(2**n_axes).reshape([2] * n_axes)
permutation = numpy.random.permutation(n_axes)
left_expression = " ".join("i" + str(axis) for axis in range(n_axes)[::-1])
right_expression = " ".join("i" + str(axis) for axis in permutation[::-1])
expression = left_expression + " -> " + right_expression
result = rearrange(input, expression)
assert result.shape == input.shape
expected_result = numpy.zeros_like(input)
for original_axis, result_axis in enumerate(permutation):
expected_result |= ((input >> original_axis) & 1) << result_axis
assert numpy.array_equal(result, expected_result)
def test_reduction_imperatives():
for backend in imp_op_backends:
print("Reduction tests for ", backend.framework_name)
for reduction in REDUCTIONS:
# slight redundancy for simpler order - numpy version is evaluated multiple times
input = numpy.arange(2 * 3 * 4 * 5 * 6, dtype="int64").reshape([2, 3, 4, 5, 6])
if reduction in ["mean", "prod"]:
input = input / input.astype("float64").mean()
test_cases = [
["a b c d e -> ", {}, getattr(input, reduction)()],
["a ... -> ", {}, getattr(input, reduction)()],
["(a1 a2) ... (e1 e2) -> ", dict(a1=1, e2=2), getattr(input, reduction)()],
[
"a b c d e -> (e c) a",
{},
getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1, 2]),
],
[
"a ... c d e -> (e c) a",
{},
getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1, 2]),
],
[
"a b c d e ... -> (e c) a",
{},
getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1, 2]),
],
["a b c d e -> (e c a)", {}, getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1])],
["(a a2) ... -> (a2 a) ...", dict(a2=1), input],
]
for pattern, axes_lengths, expected_result in test_cases:
result = reduce(backend.from_numpy(input.copy()), pattern, reduction=reduction, **axes_lengths)
result = backend.to_numpy(result)
assert numpy.allclose(result, expected_result), f"Failed at {pattern}"
def test_reduction_symbolic():
for backend in sym_op_backends:
print("Reduction tests for ", backend.framework_name)
for reduction in REDUCTIONS:
input = numpy.arange(2 * 3 * 4 * 5 * 6, dtype="int64").reshape([2, 3, 4, 5, 6])
input = input / input.astype("float64").mean()
# slight redundancy for simpler order - numpy version is evaluated multiple times
test_cases = [
["a b c d e -> ", {}, getattr(input, reduction)()],
["a ... -> ", {}, getattr(input, reduction)()],
["(a a2) ... (e e2) -> ", dict(a2=1, e2=1), getattr(input, reduction)()],
[
"a b c d e -> (e c) a",
{},
getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1, 2]),
],
[
"a ... c d e -> (e c) a",
{},
getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1, 2]),
],
[
"a b c d e ... -> (e c) a",
{},
getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1, 2]),
],
["a b c d e -> (e c a)", {}, getattr(input, reduction)(axis=(1, 3)).transpose(2, 1, 0).reshape([-1])],
["(a a2) ... -> (a2 a) ...", dict(a2=1), input],
]
for pattern, axes_lengths, expected_numpy_result in test_cases:
shapes = [input.shape, [None for _ in input.shape]]
for shape in shapes:
sym = backend.create_symbol(shape)
result_sym = reduce(sym, pattern, reduction=reduction, **axes_lengths)
result = backend.eval_symbol(result_sym, [(sym, input)])
assert numpy.allclose(result, expected_numpy_result)
if True:
shape = []
_axes_lengths = {**axes_lengths}
for axis, length in zip("abcde", input.shape):
# filling as much as possible with Nones
if axis in pattern:
shape.append(None)
_axes_lengths[axis] = length
else:
shape.append(length)
sym = backend.create_symbol(shape)
result_sym = reduce(sym, pattern, reduction=reduction, **_axes_lengths)
result = backend.eval_symbol(result_sym, [(sym, input)])
assert numpy.allclose(result, expected_numpy_result)
def test_reduction_stress_imperatives():
for backend in imp_op_backends:
print("Stress-testing reduction for ", backend.framework_name)
for reduction in REDUCTIONS + ("rearrange",):
dtype = "int64"
coincide = numpy.array_equal
if reduction in ["mean", "prod"]:
dtype = "float64"
coincide = numpy.allclose
max_dim = 11
if "oneflow" in backend.framework_name:
max_dim = 7
if "paddle" in backend.framework_name:
max_dim = 9
for n_axes in range(max_dim):
shape = numpy.random.randint(2, 4, size=n_axes)
permutation = numpy.random.permutation(n_axes)
skipped = 0 if reduction == "rearrange" else numpy.random.randint(n_axes + 1)
left = " ".join("x" + str(i) for i in range(n_axes))
right = " ".join("x" + str(i) for i in permutation[skipped:])
pattern = left + "->" + right
x = numpy.arange(1, 1 + numpy.prod(shape), dtype=dtype).reshape(shape)
if reduction == "prod":
x /= x.mean() # to avoid overflows
result1 = reduce(x, pattern, reduction=reduction)
result2 = x.transpose(permutation)
if skipped > 0:
result2 = getattr(result2, reduction)(axis=tuple(range(skipped)))
assert coincide(result1, result2)
check_op_against_numpy(backend, x, pattern, reduction=reduction, axes_lengths={}, is_symbolic=False)
def test_reduction_with_callable_imperatives():
x_numpy = numpy.arange(2 * 3 * 4 * 5 * 6).reshape([2, 3, 4, 5, 6]).astype("float32")
x_numpy /= x_numpy.max()
def logsumexp_torch(x, tuple_of_axes):
return x.logsumexp(tuple_of_axes)
def logsumexp_tf(x, tuple_of_axes):
import tensorflow as tf
return tf.reduce_logsumexp(x, tuple_of_axes)
def logsumexp_keras(x, tuple_of_axes):
import tensorflow.keras.backend as k
return k.logsumexp(x, tuple_of_axes)
def logsumexp_numpy(x, tuple_of_axes):
# very naive logsumexp to compare to
minused = x.max(tuple_of_axes)
y = x - x.max(tuple_of_axes, keepdims=True)
y = numpy.exp(y)
y = numpy.sum(y, axis=tuple_of_axes)
return numpy.log(y) + minused
from einops._backends import TorchBackend, TensorflowBackend, TFKerasBackend, NumpyBackend
backend2callback = {
TorchBackend.framework_name: logsumexp_torch,
TensorflowBackend.framework_name: logsumexp_tf,
TFKerasBackend.framework_name: logsumexp_keras,
NumpyBackend.framework_name: logsumexp_numpy,
}
for backend in imp_op_backends:
if backend.framework_name not in backend2callback:
continue
backend_callback = backend2callback[backend.framework_name]
x_backend = backend.from_numpy(x_numpy)
for pattern1, pattern2 in equivalent_reduction_patterns:
print("Test reduction with callable for ", backend.framework_name, pattern1, pattern2)
output_numpy = reduce(x_numpy, pattern1, reduction=logsumexp_numpy)
output_backend = reduce(x_backend, pattern1, reduction=backend_callback)
assert numpy.allclose(
output_numpy,
backend.to_numpy(output_backend),
)
def test_enumerating_directions():
for backend in imp_op_backends:
print("testing directions for", backend.framework_name)
for shape in [[], [1], [1, 1, 1], [2, 3, 5, 7]]:
x = numpy.arange(numpy.prod(shape)).reshape(shape)
axes1 = _enumerate_directions(x)
axes2 = _enumerate_directions(backend.from_numpy(x))
assert len(axes1) == len(axes2) == len(shape)
for ax1, ax2 in zip(axes1, axes2):
ax2 = backend.to_numpy(ax2)
assert ax1.shape == ax2.shape
assert numpy.allclose(ax1, ax2)
def test_concatenations_and_stacking():
for backend in imp_op_backends:
print("testing shapes for ", backend.framework_name)
for n_arrays in [1, 2, 5]:
shapes = [[], [1], [1, 1], [2, 3, 5, 7], [1] * 6]
for shape in shapes:
arrays1 = [numpy.arange(i, i + numpy.prod(shape)).reshape(shape) for i in range(n_arrays)]
arrays2 = [backend.from_numpy(array) for array in arrays1]
result0 = numpy.asarray(arrays1)
result1 = rearrange(arrays1, "...->...")
result2 = rearrange(arrays2, "...->...")
assert numpy.array_equal(result0, result1)
assert numpy.array_equal(result1, backend.to_numpy(result2))
result1 = rearrange(arrays1, "b ... -> ... b")
result2 = rearrange(arrays2, "b ... -> ... b")
assert numpy.array_equal(result1, backend.to_numpy(result2))
def test_gradients_imperatives():
# lazy - just checking reductions
for reduction in REDUCTIONS:
if reduction in ("any", "all"):
continue # non-differentiable ops
x = numpy.arange(1, 1 + 2 * 3 * 4).reshape([2, 3, 4]).astype("float32")
results = {}
for backend in imp_op_backends:
y0 = backend.from_numpy(x)
if not hasattr(y0, "grad"):
continue
y1 = reduce(y0, "a b c -> c a", reduction=reduction)
y2 = reduce(y1, "c a -> a c", reduction=reduction)
y3 = reduce(y2, "a (c1 c2) -> a", reduction=reduction, c1=2)
y4 = reduce(y3, "... -> ", reduction=reduction)
y4.backward()
grad = backend.to_numpy(y0.grad)
results[backend.framework_name] = grad
print("comparing gradients for", results.keys())
for name1, grad1 in results.items():
for name2, grad2 in results.items():
assert numpy.allclose(grad1, grad2), [name1, name2, "provided different gradients"]
def test_tiling_imperatives():
for backend in imp_op_backends:
print("Tiling tests for ", backend.framework_name)
input = numpy.arange(2 * 3 * 5, dtype="int64").reshape([2, 1, 3, 1, 5])
test_cases = [
(1, 1, 1, 1, 1),
(1, 2, 1, 3, 1),
(3, 1, 1, 4, 1),
]
for repeats in test_cases:
expected = numpy.tile(input, repeats)
converted = backend.from_numpy(input)
repeated = backend.tile(converted, repeats)
result = backend.to_numpy(repeated)
assert numpy.array_equal(result, expected)
def test_tiling_symbolic():
for backend in sym_op_backends:
print("Tiling tests for ", backend.framework_name)
input = numpy.arange(2 * 3 * 5, dtype="int64").reshape([2, 1, 3, 1, 5])
test_cases = [
(1, 1, 1, 1, 1),
(1, 2, 1, 3, 1),
(3, 1, 1, 4, 1),
]
for repeats in test_cases:
expected = numpy.tile(input, repeats)
sym = backend.create_symbol(input.shape)
result = backend.eval_symbol(backend.tile(sym, repeats), [[sym, input]])
assert numpy.array_equal(result, expected)
sym = backend.create_symbol([None] * len(input.shape))
result = backend.eval_symbol(backend.tile(sym, repeats), [[sym, input]])
assert numpy.array_equal(result, expected)
repeat_test_cases = [
# all assume that input has shape [2, 3, 5]
("a b c -> c a b", dict()),
("a b c -> (c copy a b)", dict(copy=2, a=2, b=3, c=5)),
("a b c -> (a copy) b c ", dict(copy=1)),
("a b c -> (c a) (copy1 b copy2)", dict(a=2, copy1=1, copy2=2)),
("a ... -> a ... copy", dict(copy=4)),
("... c -> ... (copy1 c copy2)", dict(copy1=1, copy2=2)),
("... -> ... ", dict()),
(" ... -> copy1 ... copy2 ", dict(copy1=2, copy2=3)),
("a b c -> copy1 a copy2 b c () ", dict(copy1=2, copy2=1)),
]
def check_reversion(x, repeat_pattern, **sizes):
"""Checks repeat pattern by running reduction"""
left, right = repeat_pattern.split("->")
reduce_pattern = right + "->" + left
repeated = repeat(x, repeat_pattern, **sizes)
reduced_min = reduce(repeated, reduce_pattern, reduction="min", **sizes)
reduced_max = reduce(repeated, reduce_pattern, reduction="max", **sizes)
assert numpy.array_equal(x, reduced_min)
assert numpy.array_equal(x, reduced_max)
def test_repeat_numpy():
# check repeat vs reduce. Repeat works ok if reverse reduction with min and max work well
x = numpy.arange(2 * 3 * 5).reshape([2, 3, 5])
x1 = repeat(x, "a b c -> copy a b c ", copy=1)
assert numpy.array_equal(x[None], x1)
for pattern, axis_dimensions in repeat_test_cases:
check_reversion(x, pattern, **axis_dimensions)
def test_repeat_imperatives():
x = numpy.arange(2 * 3 * 5).reshape([2, 3, 5])
for backend in imp_op_backends:
print("Repeat tests for ", backend.framework_name)
for pattern, axis_dimensions in repeat_test_cases:
expected = repeat(x, pattern, **axis_dimensions)
converted = backend.from_numpy(x)
repeated = repeat(converted, pattern, **axis_dimensions)
result = backend.to_numpy(repeated)
assert numpy.array_equal(result, expected)
def test_repeat_symbolic():
x = numpy.arange(2 * 3 * 5).reshape([2, 3, 5])
for backend in sym_op_backends:
print("Repeat tests for ", backend.framework_name)
for pattern, axis_dimensions in repeat_test_cases:
expected = repeat(x, pattern, **axis_dimensions)
sym = backend.create_symbol(x.shape)
result = backend.eval_symbol(repeat(sym, pattern, **axis_dimensions), [[sym, x]])
assert numpy.array_equal(result, expected)
def test_repeat_array_api():
import numpy as xp
from einops import array_api as AA
if xp.__version__ < "2.0.0":
pytest.skip()
x = numpy.arange(2 * 3 * 5).reshape([2, 3, 5])
for pattern, axis_dimensions in repeat_test_cases:
expected = repeat(x, pattern, **axis_dimensions)
result = AA.repeat(xp.from_dlpack(x), pattern, **axis_dimensions)
assert numpy.array_equal(AA.asnumpy(result + 0), expected)
test_cases_repeat_anonymous = [
# all assume that input has shape [1, 2, 4, 6]
("a b c d -> c a d b", dict()),
("a b c d -> (c 2 d a b)", dict(a=1, c=4, d=6)),
("1 b c d -> (d copy 1) 3 b c ", dict(copy=3)),
("1 ... -> 3 ... ", dict()),
("() ... d -> 1 (copy1 d copy2) ... ", dict(copy1=2, copy2=3)),
("1 b c d -> (1 1) (1 b) 2 c 3 d (1 1)", dict()),
]
def test_anonymous_axes():
x = numpy.arange(1 * 2 * 4 * 6).reshape([1, 2, 4, 6])
for pattern, axis_dimensions in test_cases_repeat_anonymous:
check_reversion(x, pattern, **axis_dimensions)
def test_list_inputs():
x = numpy.arange(2 * 3 * 4 * 5 * 6).reshape([2, 3, 4, 5, 6])
assert numpy.array_equal(
rearrange(list(x), "... -> (...)"),
rearrange(x, "... -> (...)"),
)
assert numpy.array_equal(
reduce(list(x), "a ... e -> (...)", "min"),
reduce(x, "a ... e -> (...)", "min"),
)
assert numpy.array_equal(
repeat(list(x), "... -> b (...)", b=3),
repeat(x, "... -> b (...)", b=3),
)
def test_torch_compile_with_dynamic_shape():
if not is_backend_tested("torch"):
pytest.skip()
import torch
# somewhat reasonable debug messages
torch._dynamo.config.verbose = True
def func1(x):
# test contains ellipsis
a, b, c, *other = x.shape
x = rearrange(x, "(a a2) b c ... -> b (c a2) (a ...)", a2=2)
# test contains passing expression as axis length
x = reduce(x, "b ca2 A -> b A", "sum", ca2=c * 2)
return x
# seems can't test static and dynamic in the same test run.
# func1_compiled_static = torch.compile(func1, dynamic=False, fullgraph=True, backend='aot_eager')
func1_compiled_dynamic = torch.compile(func1, dynamic=True, fullgraph=True, backend="aot_eager")
x = torch.randn(size=[4, 5, 6, 3])
assert torch.equal(func1_compiled_dynamic(x), func1(x))
# check with input of different dimensionality, and with all shape elements changed
x = torch.randn(size=[6, 3, 4, 2, 3])
assert torch.equal(func1_compiled_dynamic(x), func1(x))
def bit_count(x):
return sum((x >> i) & 1 for i in range(20))
def test_reduction_imperatives_booleans():
"""Checks that any/all reduction works in all frameworks"""
x_np = numpy.asarray([(bit_count(x) % 2) == 0 for x in range(2**6)]).reshape([2] * 6)
for backend in imp_op_backends:
print("Reduction any/all tests for ", backend.framework_name)
for axis in range(6):
expected_result_any = numpy.any(x_np, axis=axis, keepdims=True)
expected_result_all = numpy.all(x_np, axis=axis, keepdims=True)
assert not numpy.array_equal(expected_result_any, expected_result_all)
axes = list("abcdef")
axes_in = list(axes)
axes_out = list(axes)
axes_out[axis] = "1"
pattern = (" ".join(axes_in)) + " -> " + (" ".join(axes_out))
res_any = reduce(backend.from_numpy(x_np), pattern, reduction="any")
res_all = reduce(backend.from_numpy(x_np), pattern, reduction="all")
assert numpy.array_equal(expected_result_any, backend.to_numpy(res_any))
assert numpy.array_equal(expected_result_all, backend.to_numpy(res_all))
# expected result: any/all
expected_result_any = numpy.any(x_np, axis=(0, 1), keepdims=True)
expected_result_all = numpy.all(x_np, axis=(0, 1), keepdims=True)
pattern = "a b ... -> 1 1 ..."
res_any = reduce(backend.from_numpy(x_np), pattern, reduction="any")
res_all = reduce(backend.from_numpy(x_np), pattern, reduction="all")
assert numpy.array_equal(expected_result_any, backend.to_numpy(res_any))
assert numpy.array_equal(expected_result_all, backend.to_numpy(res_all))
|