jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
import numpy
import pytest
from einops import rearrange, parse_shape, reduce
from einops.tests import is_backend_tested
from einops.tests.test_ops import imp_op_backends
def test_rearrange_examples():
def test1(x):
# transpose
y = rearrange(x, "b c h w -> b h w c")
assert tuple(y.shape) == (10, 30, 40, 20)
return y
def test2(x):
# view / reshape
y = rearrange(x, "b c h w -> b (c h w)")
assert tuple(y.shape) == (10, 20 * 30 * 40)
return y
def test3(x):
# depth-to-space
y = rearrange(x, "b (c h1 w1) h w -> b c (h h1) (w w1)", h1=2, w1=2)
assert tuple(y.shape) == (10, 5, 30 * 2, 40 * 2)
return y
def test4(x):
# space-to-depth
y = rearrange(x, "b c (h h1) (w w1) -> b (h1 w1 c) h w", h1=2, w1=2)
assert tuple(y.shape) == (10, 20 * 4, 30 // 2, 40 // 2)
return y
def test5(x):
# simple transposition
y = rearrange(x, "b1 sound b2 letter -> b1 b2 sound letter")
assert tuple(y.shape) == (10, 30, 20, 40)
return y
def test6(x):
# parsing parameters
t = rearrange(x, "b c h w -> (b h w) c")
t = t[:, ::2] # replacement for dot-product, just changes size of second axis
assert tuple(t.shape) == (10 * 30 * 40, 10)
y = rearrange(t, "(b h w) c2 -> b c2 h w", **parse_shape(x, "b _ h w"))
assert tuple(y.shape) == (10, 10, 30, 40)
return y
def test7(x):
# split of embedding into groups
y1, y2 = rearrange(x, "b (c g) h w -> g b c h w", g=2)
assert tuple(y1.shape) == (10, 10, 30, 40)
assert tuple(y2.shape) == (10, 10, 30, 40)
return y1 + y2 # only one tensor is expected in output
def test8(x):
# max-pooling
y = reduce(x, "b c (h h1) (w w1) -> b c h w", reduction="max", h1=2, w1=2)
assert tuple(y.shape) == (10, 20, 30 // 2, 40 // 2)
return y
def test9(x):
# squeeze - unsqueeze
y = reduce(x, "b c h w -> b c () ()", reduction="max")
assert tuple(y.shape) == (10, 20, 1, 1)
y = rearrange(y, "b c () () -> c b")
assert tuple(y.shape) == (20, 10)
return y
def test10(x):
# stack
tensors = list(x + 0) # 0 is needed https://github.com/tensorflow/tensorflow/issues/23185
tensors = rearrange(tensors, "b c h w -> b h w c")
assert tuple(tensors.shape) == (10, 30, 40, 20)
return tensors
def test11(x):
# concatenate
tensors = list(x + 0) # 0 is needed https://github.com/tensorflow/tensorflow/issues/23185
tensors = rearrange(tensors, "b c h w -> h (b w) c")
assert tuple(tensors.shape) == (30, 10 * 40, 20)
return tensors
def shufflenet(x, convolve, c1, c2):
# shufflenet reordering example
x = convolve(x)
x = rearrange(x, "b (c1 c2) h w-> b (c2 c1) h w", c1=c1, c2=c2)
x = convolve(x)
return x
def convolve_strided_1d(x, stride, usual_convolution):
x = rearrange(x, "b c t1 t2 -> b c (t1 t2)") # reduce dimensionality
x = rearrange(x, "b c (t stride) -> (stride b) c t", stride=stride)
x = usual_convolution(x)
x = rearrange(x, "(stride b) c t -> b c (t stride)", stride=stride)
return x
def convolve_strided_2d(x, h_stride, w_stride, usual_convolution):
x = rearrange(x, "b c (h hs) (w ws) -> (hs ws b) c h w", hs=h_stride, ws=w_stride)
x = usual_convolution(x)
x = rearrange(x, "(hs ws b) c h w -> b c (h hs) (w ws)", hs=h_stride, ws=w_stride)
return x
def unet_like_1d(x, usual_convolution):
# u-net like steps for increasing / reducing dimensionality
x = rearrange(x, "b c t1 t2 -> b c (t1 t2)") # reduce dimensionality
y = rearrange(x, "b c (t dt) -> b (dt c) t", dt=2)
y = usual_convolution(y)
x = x + rearrange(y, "b (dt c) t -> b c (t dt)", dt=2)
return x
# mock for convolution (works for all backends)
def convolve_mock(x):
return x
tests = [
test1,
test2,
test3,
test4,
test5,
test6,
test7,
test8,
test9,
test10,
test11,
lambda x: shufflenet(x, convolve=convolve_mock, c1=4, c2=5),
lambda x: convolve_strided_1d(x, stride=2, usual_convolution=convolve_mock),
lambda x: convolve_strided_2d(x, h_stride=2, w_stride=2, usual_convolution=convolve_mock),
lambda x: unet_like_1d(x, usual_convolution=convolve_mock),
]
for backend in imp_op_backends:
print("testing source_examples for ", backend.framework_name)
for test in tests:
x = numpy.arange(10 * 20 * 30 * 40).reshape([10, 20, 30, 40])
result1 = test(x)
result2 = backend.to_numpy(test(backend.from_numpy(x)))
assert numpy.array_equal(result1, result2)
# now with strides
x = numpy.arange(10 * 2 * 20 * 3 * 30 * 1 * 40).reshape([10 * 2, 20 * 3, 30 * 1, 40 * 1])
# known torch bug - torch doesn't support negative steps
last_step = -1 if (backend.framework_name != "torch" and backend.framework_name != "oneflow") else 1
indexing_expression = numpy.index_exp[::2, ::3, ::1, ::last_step]
result1 = test(x[indexing_expression])
result2 = backend.to_numpy(test(backend.from_numpy(x)[indexing_expression]))
assert numpy.array_equal(result1, result2)
def tensor_train_example_numpy():
# kept here just for a collection, only tested for numpy
# https://arxiv.org/pdf/1509.06569.pdf, (5)
x = numpy.ones([3, 4, 5, 6])
rank = 4
if numpy.__version__ < "1.15.0":
# numpy.einsum fails here, skip test
return
# creating appropriate Gs
Gs = [numpy.ones([d, d, rank, rank]) for d in x.shape]
Gs[0] = Gs[0][:, :, :1, :]
Gs[-1] = Gs[-1][:, :, :, :1]
# einsum way
y = x.reshape((1,) + x.shape)
for G in Gs:
# taking partial results left-to-right
# y = numpy.einsum('i j alpha beta, alpha i ... -> beta ... j', G, y)
y = numpy.einsum("i j a b, a i ... -> b ... j", G, y)
y1 = y.reshape(-1)
# alternative way
y = x.reshape(-1)
for G in Gs:
i, j, alpha, beta = G.shape
y = rearrange(y, "(i rest alpha) -> rest (alpha i)", alpha=alpha, i=i)
y = y @ rearrange(G, "i j alpha beta -> (alpha i) (j beta)")
y = rearrange(y, "rest (beta j) -> (beta rest j)", beta=beta, j=j)
y2 = y
assert numpy.allclose(y1, y2)
# yet another way
y = x
for G in Gs:
i, j, alpha, beta = G.shape
y = rearrange(y, "i ... (j alpha) -> ... j (alpha i)", alpha=alpha, i=i)
y = y @ rearrange(G, "i j alpha beta -> (alpha i) (j beta)")
y3 = y.reshape(-1)
assert numpy.allclose(y1, y3)
def test_pytorch_yolo_fragment():
if not is_backend_tested("torch"):
pytest.skip()
import torch
def old_way(input, num_classes, num_anchors, anchors, stride_h, stride_w):
# https://github.com/BobLiu20/YOLOv3_PyTorch/blob/c6b483743598b5f64d520d81e7e5f47ba936d4c9/nets/yolo_loss.py#L28-L44
bs = input.size(0)
in_h = input.size(2)
in_w = input.size(3)
scaled_anchors = [(a_w / stride_w, a_h / stride_h) for a_w, a_h in anchors]
prediction = input.view(bs, num_anchors, 5 + num_classes, in_h, in_w).permute(0, 1, 3, 4, 2).contiguous()
# Get outputs
x = torch.sigmoid(prediction[..., 0]) # Center x
y = torch.sigmoid(prediction[..., 1]) # Center y
w = prediction[..., 2] # Width
h = prediction[..., 3] # Height
conf = torch.sigmoid(prediction[..., 4]) # Conf
pred_cls = torch.sigmoid(prediction[..., 5:]) # Cls pred.
# https://github.com/BobLiu20/YOLOv3_PyTorch/blob/c6b483743598b5f64d520d81e7e5f47ba936d4c9/nets/yolo_loss.py#L70-L92
FloatTensor = torch.cuda.FloatTensor if x.is_cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if x.is_cuda else torch.LongTensor
# Calculate offsets for each grid
grid_x = (
torch.linspace(0, in_w - 1, in_w)
.repeat(in_w, 1)
.repeat(bs * num_anchors, 1, 1)
.view(x.shape)
.type(FloatTensor)
)
grid_y = (
torch.linspace(0, in_h - 1, in_h)
.repeat(in_h, 1)
.t()
.repeat(bs * num_anchors, 1, 1)
.view(y.shape)
.type(FloatTensor)
)
# Calculate anchor w, h
anchor_w = FloatTensor(scaled_anchors).index_select(1, LongTensor([0]))
anchor_h = FloatTensor(scaled_anchors).index_select(1, LongTensor([1]))
anchor_w = anchor_w.repeat(bs, 1).repeat(1, 1, in_h * in_w).view(w.shape)
anchor_h = anchor_h.repeat(bs, 1).repeat(1, 1, in_h * in_w).view(h.shape)
# Add offset and scale with anchors
pred_boxes = FloatTensor(prediction[..., :4].shape)
pred_boxes[..., 0] = x.data + grid_x
pred_boxes[..., 1] = y.data + grid_y
pred_boxes[..., 2] = torch.exp(w.data) * anchor_w
pred_boxes[..., 3] = torch.exp(h.data) * anchor_h
# Results
_scale = torch.Tensor([stride_w, stride_h] * 2).type(FloatTensor)
output = torch.cat(
(pred_boxes.view(bs, -1, 4) * _scale, conf.view(bs, -1, 1), pred_cls.view(bs, -1, num_classes)), -1
)
return output
def new_way(input, num_classes, num_anchors, anchors, stride_h, stride_w):
raw_predictions = rearrange(input, " b (anchor prediction) h w -> prediction b anchor h w", anchor=num_anchors)
anchors = torch.FloatTensor(anchors).to(input.device)
anchor_sizes = rearrange(anchors, "anchor dim -> dim () anchor () ()")
_, _, _, in_h, in_w = raw_predictions.shape
grid_h = rearrange(torch.arange(in_h).float(), "h -> () () h ()").to(input.device)
grid_w = rearrange(torch.arange(in_w).float(), "w -> () () () w").to(input.device)
predicted_bboxes = torch.zeros_like(raw_predictions)
predicted_bboxes[0] = (raw_predictions[0].sigmoid() + grid_h) * stride_h # center y
predicted_bboxes[1] = (raw_predictions[1].sigmoid() + grid_w) * stride_w # center x
predicted_bboxes[2:4] = (raw_predictions[2:4].exp()) * anchor_sizes # bbox width and height
predicted_bboxes[4] = raw_predictions[4].sigmoid() # confidence
predicted_bboxes[5:] = raw_predictions[5:].sigmoid() # class predictions
# only to match results of original code, not needed
return rearrange(predicted_bboxes, "prediction b anchor h w -> b anchor h w prediction")
stride_h = 4
stride_w = 4
batch_size = 5
num_classes = 12
anchors = [[50, 100], [100, 50], [75, 75]]
num_anchors = len(anchors)
input = torch.randn([batch_size, num_anchors * (5 + num_classes), 1, 1])
result1 = old_way(
input=input,
num_anchors=num_anchors,
num_classes=num_classes,
stride_h=stride_h,
stride_w=stride_w,
anchors=anchors,
)
result2 = new_way(
input=input,
num_anchors=num_anchors,
num_classes=num_classes,
stride_h=stride_h,
stride_w=stride_w,
anchors=anchors,
)
result1 = result1.reshape(result2.shape)
assert torch.allclose(result1, result2)