import numpy import pytest from einops import rearrange, parse_shape, reduce from einops.tests import is_backend_tested from einops.tests.test_ops import imp_op_backends def test_rearrange_examples(): def test1(x): # transpose y = rearrange(x, "b c h w -> b h w c") assert tuple(y.shape) == (10, 30, 40, 20) return y def test2(x): # view / reshape y = rearrange(x, "b c h w -> b (c h w)") assert tuple(y.shape) == (10, 20 * 30 * 40) return y def test3(x): # depth-to-space y = rearrange(x, "b (c h1 w1) h w -> b c (h h1) (w w1)", h1=2, w1=2) assert tuple(y.shape) == (10, 5, 30 * 2, 40 * 2) return y def test4(x): # space-to-depth y = rearrange(x, "b c (h h1) (w w1) -> b (h1 w1 c) h w", h1=2, w1=2) assert tuple(y.shape) == (10, 20 * 4, 30 // 2, 40 // 2) return y def test5(x): # simple transposition y = rearrange(x, "b1 sound b2 letter -> b1 b2 sound letter") assert tuple(y.shape) == (10, 30, 20, 40) return y def test6(x): # parsing parameters t = rearrange(x, "b c h w -> (b h w) c") t = t[:, ::2] # replacement for dot-product, just changes size of second axis assert tuple(t.shape) == (10 * 30 * 40, 10) y = rearrange(t, "(b h w) c2 -> b c2 h w", **parse_shape(x, "b _ h w")) assert tuple(y.shape) == (10, 10, 30, 40) return y def test7(x): # split of embedding into groups y1, y2 = rearrange(x, "b (c g) h w -> g b c h w", g=2) assert tuple(y1.shape) == (10, 10, 30, 40) assert tuple(y2.shape) == (10, 10, 30, 40) return y1 + y2 # only one tensor is expected in output def test8(x): # max-pooling y = reduce(x, "b c (h h1) (w w1) -> b c h w", reduction="max", h1=2, w1=2) assert tuple(y.shape) == (10, 20, 30 // 2, 40 // 2) return y def test9(x): # squeeze - unsqueeze y = reduce(x, "b c h w -> b c () ()", reduction="max") assert tuple(y.shape) == (10, 20, 1, 1) y = rearrange(y, "b c () () -> c b") assert tuple(y.shape) == (20, 10) return y def test10(x): # stack tensors = list(x + 0) # 0 is needed https://github.com/tensorflow/tensorflow/issues/23185 tensors = rearrange(tensors, "b c h w -> b h w c") assert tuple(tensors.shape) == (10, 30, 40, 20) return tensors def test11(x): # concatenate tensors = list(x + 0) # 0 is needed https://github.com/tensorflow/tensorflow/issues/23185 tensors = rearrange(tensors, "b c h w -> h (b w) c") assert tuple(tensors.shape) == (30, 10 * 40, 20) return tensors def shufflenet(x, convolve, c1, c2): # shufflenet reordering example x = convolve(x) x = rearrange(x, "b (c1 c2) h w-> b (c2 c1) h w", c1=c1, c2=c2) x = convolve(x) return x def convolve_strided_1d(x, stride, usual_convolution): x = rearrange(x, "b c t1 t2 -> b c (t1 t2)") # reduce dimensionality x = rearrange(x, "b c (t stride) -> (stride b) c t", stride=stride) x = usual_convolution(x) x = rearrange(x, "(stride b) c t -> b c (t stride)", stride=stride) return x def convolve_strided_2d(x, h_stride, w_stride, usual_convolution): x = rearrange(x, "b c (h hs) (w ws) -> (hs ws b) c h w", hs=h_stride, ws=w_stride) x = usual_convolution(x) x = rearrange(x, "(hs ws b) c h w -> b c (h hs) (w ws)", hs=h_stride, ws=w_stride) return x def unet_like_1d(x, usual_convolution): # u-net like steps for increasing / reducing dimensionality x = rearrange(x, "b c t1 t2 -> b c (t1 t2)") # reduce dimensionality y = rearrange(x, "b c (t dt) -> b (dt c) t", dt=2) y = usual_convolution(y) x = x + rearrange(y, "b (dt c) t -> b c (t dt)", dt=2) return x # mock for convolution (works for all backends) def convolve_mock(x): return x tests = [ test1, test2, test3, test4, test5, test6, test7, test8, test9, test10, test11, lambda x: shufflenet(x, convolve=convolve_mock, c1=4, c2=5), lambda x: convolve_strided_1d(x, stride=2, usual_convolution=convolve_mock), lambda x: convolve_strided_2d(x, h_stride=2, w_stride=2, usual_convolution=convolve_mock), lambda x: unet_like_1d(x, usual_convolution=convolve_mock), ] for backend in imp_op_backends: print("testing source_examples for ", backend.framework_name) for test in tests: x = numpy.arange(10 * 20 * 30 * 40).reshape([10, 20, 30, 40]) result1 = test(x) result2 = backend.to_numpy(test(backend.from_numpy(x))) assert numpy.array_equal(result1, result2) # now with strides x = numpy.arange(10 * 2 * 20 * 3 * 30 * 1 * 40).reshape([10 * 2, 20 * 3, 30 * 1, 40 * 1]) # known torch bug - torch doesn't support negative steps last_step = -1 if (backend.framework_name != "torch" and backend.framework_name != "oneflow") else 1 indexing_expression = numpy.index_exp[::2, ::3, ::1, ::last_step] result1 = test(x[indexing_expression]) result2 = backend.to_numpy(test(backend.from_numpy(x)[indexing_expression])) assert numpy.array_equal(result1, result2) def tensor_train_example_numpy(): # kept here just for a collection, only tested for numpy # https://arxiv.org/pdf/1509.06569.pdf, (5) x = numpy.ones([3, 4, 5, 6]) rank = 4 if numpy.__version__ < "1.15.0": # numpy.einsum fails here, skip test return # creating appropriate Gs Gs = [numpy.ones([d, d, rank, rank]) for d in x.shape] Gs[0] = Gs[0][:, :, :1, :] Gs[-1] = Gs[-1][:, :, :, :1] # einsum way y = x.reshape((1,) + x.shape) for G in Gs: # taking partial results left-to-right # y = numpy.einsum('i j alpha beta, alpha i ... -> beta ... j', G, y) y = numpy.einsum("i j a b, a i ... -> b ... j", G, y) y1 = y.reshape(-1) # alternative way y = x.reshape(-1) for G in Gs: i, j, alpha, beta = G.shape y = rearrange(y, "(i rest alpha) -> rest (alpha i)", alpha=alpha, i=i) y = y @ rearrange(G, "i j alpha beta -> (alpha i) (j beta)") y = rearrange(y, "rest (beta j) -> (beta rest j)", beta=beta, j=j) y2 = y assert numpy.allclose(y1, y2) # yet another way y = x for G in Gs: i, j, alpha, beta = G.shape y = rearrange(y, "i ... (j alpha) -> ... j (alpha i)", alpha=alpha, i=i) y = y @ rearrange(G, "i j alpha beta -> (alpha i) (j beta)") y3 = y.reshape(-1) assert numpy.allclose(y1, y3) def test_pytorch_yolo_fragment(): if not is_backend_tested("torch"): pytest.skip() import torch def old_way(input, num_classes, num_anchors, anchors, stride_h, stride_w): # https://github.com/BobLiu20/YOLOv3_PyTorch/blob/c6b483743598b5f64d520d81e7e5f47ba936d4c9/nets/yolo_loss.py#L28-L44 bs = input.size(0) in_h = input.size(2) in_w = input.size(3) scaled_anchors = [(a_w / stride_w, a_h / stride_h) for a_w, a_h in anchors] prediction = input.view(bs, num_anchors, 5 + num_classes, in_h, in_w).permute(0, 1, 3, 4, 2).contiguous() # Get outputs x = torch.sigmoid(prediction[..., 0]) # Center x y = torch.sigmoid(prediction[..., 1]) # Center y w = prediction[..., 2] # Width h = prediction[..., 3] # Height conf = torch.sigmoid(prediction[..., 4]) # Conf pred_cls = torch.sigmoid(prediction[..., 5:]) # Cls pred. # https://github.com/BobLiu20/YOLOv3_PyTorch/blob/c6b483743598b5f64d520d81e7e5f47ba936d4c9/nets/yolo_loss.py#L70-L92 FloatTensor = torch.cuda.FloatTensor if x.is_cuda else torch.FloatTensor LongTensor = torch.cuda.LongTensor if x.is_cuda else torch.LongTensor # Calculate offsets for each grid grid_x = ( torch.linspace(0, in_w - 1, in_w) .repeat(in_w, 1) .repeat(bs * num_anchors, 1, 1) .view(x.shape) .type(FloatTensor) ) grid_y = ( torch.linspace(0, in_h - 1, in_h) .repeat(in_h, 1) .t() .repeat(bs * num_anchors, 1, 1) .view(y.shape) .type(FloatTensor) ) # Calculate anchor w, h anchor_w = FloatTensor(scaled_anchors).index_select(1, LongTensor([0])) anchor_h = FloatTensor(scaled_anchors).index_select(1, LongTensor([1])) anchor_w = anchor_w.repeat(bs, 1).repeat(1, 1, in_h * in_w).view(w.shape) anchor_h = anchor_h.repeat(bs, 1).repeat(1, 1, in_h * in_w).view(h.shape) # Add offset and scale with anchors pred_boxes = FloatTensor(prediction[..., :4].shape) pred_boxes[..., 0] = x.data + grid_x pred_boxes[..., 1] = y.data + grid_y pred_boxes[..., 2] = torch.exp(w.data) * anchor_w pred_boxes[..., 3] = torch.exp(h.data) * anchor_h # Results _scale = torch.Tensor([stride_w, stride_h] * 2).type(FloatTensor) output = torch.cat( (pred_boxes.view(bs, -1, 4) * _scale, conf.view(bs, -1, 1), pred_cls.view(bs, -1, num_classes)), -1 ) return output def new_way(input, num_classes, num_anchors, anchors, stride_h, stride_w): raw_predictions = rearrange(input, " b (anchor prediction) h w -> prediction b anchor h w", anchor=num_anchors) anchors = torch.FloatTensor(anchors).to(input.device) anchor_sizes = rearrange(anchors, "anchor dim -> dim () anchor () ()") _, _, _, in_h, in_w = raw_predictions.shape grid_h = rearrange(torch.arange(in_h).float(), "h -> () () h ()").to(input.device) grid_w = rearrange(torch.arange(in_w).float(), "w -> () () () w").to(input.device) predicted_bboxes = torch.zeros_like(raw_predictions) predicted_bboxes[0] = (raw_predictions[0].sigmoid() + grid_h) * stride_h # center y predicted_bboxes[1] = (raw_predictions[1].sigmoid() + grid_w) * stride_w # center x predicted_bboxes[2:4] = (raw_predictions[2:4].exp()) * anchor_sizes # bbox width and height predicted_bboxes[4] = raw_predictions[4].sigmoid() # confidence predicted_bboxes[5:] = raw_predictions[5:].sigmoid() # class predictions # only to match results of original code, not needed return rearrange(predicted_bboxes, "prediction b anchor h w -> b anchor h w prediction") stride_h = 4 stride_w = 4 batch_size = 5 num_classes = 12 anchors = [[50, 100], [100, 50], [75, 75]] num_anchors = len(anchors) input = torch.randn([batch_size, num_anchors * (5 + num_classes), 1, 1]) result1 = old_way( input=input, num_anchors=num_anchors, num_classes=num_classes, stride_h=stride_h, stride_w=stride_w, anchors=anchors, ) result2 = new_way( input=input, num_anchors=num_anchors, num_classes=num_classes, stride_h=stride_h, stride_w=stride_w, anchors=anchors, ) result1 = result1.reshape(result2.shape) assert torch.allclose(result1, result2)