|
import itertools |
|
import warnings |
|
from dataclasses import dataclass |
|
from typing import Optional |
|
|
|
import pandas as pd |
|
import pyarrow as pa |
|
|
|
import datasets |
|
from datasets.table import table_cast |
|
|
|
|
|
@dataclass |
|
class PandasConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Pandas.""" |
|
|
|
features: Optional[datasets.Features] = None |
|
|
|
def __post_init__(self): |
|
super().__post_init__() |
|
|
|
|
|
class Pandas(datasets.ArrowBasedBuilder): |
|
BUILDER_CONFIG_CLASS = PandasConfig |
|
|
|
def _info(self): |
|
warnings.warn( |
|
"The Pandas builder is deprecated and will be removed in the next major version of datasets.", |
|
FutureWarning, |
|
) |
|
return datasets.DatasetInfo(features=self.config.features) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""We handle string, list and dicts in datafiles""" |
|
if not self.config.data_files: |
|
raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") |
|
data_files = dl_manager.download_and_extract(self.config.data_files) |
|
if isinstance(data_files, (str, list, tuple)): |
|
files = data_files |
|
if isinstance(files, str): |
|
files = [files] |
|
|
|
files = [dl_manager.iter_files(file) for file in files] |
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] |
|
splits = [] |
|
for split_name, files in data_files.items(): |
|
if isinstance(files, str): |
|
files = [files] |
|
|
|
files = [dl_manager.iter_files(file) for file in files] |
|
splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files})) |
|
return splits |
|
|
|
def _cast_table(self, pa_table: pa.Table) -> pa.Table: |
|
if self.config.features is not None: |
|
|
|
|
|
pa_table = table_cast(pa_table, self.config.features.arrow_schema) |
|
return pa_table |
|
|
|
def _generate_tables(self, files): |
|
for i, file in enumerate(itertools.chain.from_iterable(files)): |
|
with open(file, "rb") as f: |
|
pa_table = pa.Table.from_pandas(pd.read_pickle(f)) |
|
yield i, self._cast_table(pa_table) |
|
|