import itertools import warnings from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class PandasConfig(datasets.BuilderConfig): """BuilderConfig for Pandas.""" features: Optional[datasets.Features] = None def __post_init__(self): super().__post_init__() class Pandas(datasets.ArrowBasedBuilder): BUILDER_CONFIG_CLASS = PandasConfig def _info(self): warnings.warn( "The Pandas builder is deprecated and will be removed in the next major version of datasets.", FutureWarning, ) return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): """We handle string, list and dicts in datafiles""" if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") data_files = dl_manager.download_and_extract(self.config.data_files) if isinstance(data_files, (str, list, tuple)): files = data_files if isinstance(files, str): files = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive files = [dl_manager.iter_files(file) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] splits = [] for split_name, files in data_files.items(): if isinstance(files, str): files = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive files = [dl_manager.iter_files(file) for file in files] splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files})) return splits def _cast_table(self, pa_table: pa.Table) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example pa_table = table_cast(pa_table, self.config.features.arrow_schema) return pa_table def _generate_tables(self, files): for i, file in enumerate(itertools.chain.from_iterable(files)): with open(file, "rb") as f: pa_table = pa.Table.from_pandas(pd.read_pickle(f)) yield i, self._cast_table(pa_table)