jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import tqdm as hf_tqdm
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class JsonDatasetReader(AbstractDatasetReader):
def __init__(
self,
path_or_paths: NestedDataStructureLike[PathLike],
split: Optional[NamedSplit] = None,
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
streaming: bool = False,
field: Optional[str] = None,
num_proc: Optional[int] = None,
**kwargs,
):
super().__init__(
path_or_paths,
split=split,
features=features,
cache_dir=cache_dir,
keep_in_memory=keep_in_memory,
streaming=streaming,
num_proc=num_proc,
**kwargs,
)
self.field = field
path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths}
self.builder = Json(
cache_dir=cache_dir,
data_files=path_or_paths,
features=features,
field=field,
**kwargs,
)
def read(self):
# Build iterable dataset
if self.streaming:
dataset = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
download_config = None
download_mode = None
verification_mode = None
base_path = None
self.builder.download_and_prepare(
download_config=download_config,
download_mode=download_mode,
verification_mode=verification_mode,
base_path=base_path,
num_proc=self.num_proc,
)
dataset = self.builder.as_dataset(
split=self.split, verification_mode=verification_mode, in_memory=self.keep_in_memory
)
return dataset
class JsonDatasetWriter:
def __init__(
self,
dataset: Dataset,
path_or_buf: Union[PathLike, BinaryIO],
batch_size: Optional[int] = None,
num_proc: Optional[int] = None,
storage_options: Optional[dict] = None,
**to_json_kwargs,
):
if num_proc is not None and num_proc <= 0:
raise ValueError(f"num_proc {num_proc} must be an integer > 0.")
self.dataset = dataset
self.path_or_buf = path_or_buf
self.batch_size = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
self.num_proc = num_proc
self.encoding = "utf-8"
self.storage_options = storage_options or {}
self.to_json_kwargs = to_json_kwargs
def write(self) -> int:
_ = self.to_json_kwargs.pop("path_or_buf", None)
orient = self.to_json_kwargs.pop("orient", "records")
lines = self.to_json_kwargs.pop("lines", True if orient == "records" else False)
if "index" not in self.to_json_kwargs and orient in ["split", "table"]:
self.to_json_kwargs["index"] = False
# Determine the default compression value based on self.path_or_buf type
default_compression = "infer" if isinstance(self.path_or_buf, (str, bytes, os.PathLike)) else None
compression = self.to_json_kwargs.pop("compression", default_compression)
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(f"`datasets` currently does not support {compression} compression")
if not lines and self.batch_size < self.dataset.num_rows:
raise NotImplementedError(
"Output JSON will not be formatted correctly when lines = False and batch_size < number of rows in the dataset. Use pandas.DataFrame.to_json() instead."
)
if isinstance(self.path_or_buf, (str, bytes, os.PathLike)):
with fsspec.open(
self.path_or_buf, "wb", compression=compression, **(self.storage_options or {})
) as buffer:
written = self._write(file_obj=buffer, orient=orient, lines=lines, **self.to_json_kwargs)
else:
if compression:
raise NotImplementedError(
f"The compression parameter is not supported when writing to a buffer, but compression={compression}"
" was passed. Please provide a local path instead."
)
written = self._write(file_obj=self.path_or_buf, orient=orient, lines=lines, **self.to_json_kwargs)
return written
def _batch_json(self, args):
offset, orient, lines, to_json_kwargs = args
batch = query_table(
table=self.dataset.data,
key=slice(offset, offset + self.batch_size),
indices=self.dataset._indices,
)
json_str = batch.to_pandas().to_json(path_or_buf=None, orient=orient, lines=lines, **to_json_kwargs)
if not json_str.endswith("\n"):
json_str += "\n"
return json_str.encode(self.encoding)
def _write(
self,
file_obj: BinaryIO,
orient,
lines,
**to_json_kwargs,
) -> int:
"""Writes the pyarrow table as JSON lines to a binary file handle.
Caller is responsible for opening and closing the handle.
"""
written = 0
if self.num_proc is None or self.num_proc == 1:
for offset in hf_tqdm(
range(0, len(self.dataset), self.batch_size),
unit="ba",
desc="Creating json from Arrow format",
):
json_str = self._batch_json((offset, orient, lines, to_json_kwargs))
written += file_obj.write(json_str)
else:
num_rows, batch_size = len(self.dataset), self.batch_size
with multiprocessing.Pool(self.num_proc) as pool:
for json_str in hf_tqdm(
pool.imap(
self._batch_json,
[(offset, orient, lines, to_json_kwargs) for offset in range(0, num_rows, batch_size)],
),
total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size,
unit="ba",
desc="Creating json from Arrow format",
):
written += file_obj.write(json_str)
return written