File size: 6,697 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import multiprocessing
import os
from typing import BinaryIO, Optional, Union

import fsspec

from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import tqdm as hf_tqdm
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader


class JsonDatasetReader(AbstractDatasetReader):
    def __init__(
        self,
        path_or_paths: NestedDataStructureLike[PathLike],
        split: Optional[NamedSplit] = None,
        features: Optional[Features] = None,
        cache_dir: str = None,
        keep_in_memory: bool = False,
        streaming: bool = False,
        field: Optional[str] = None,
        num_proc: Optional[int] = None,
        **kwargs,
    ):
        super().__init__(
            path_or_paths,
            split=split,
            features=features,
            cache_dir=cache_dir,
            keep_in_memory=keep_in_memory,
            streaming=streaming,
            num_proc=num_proc,
            **kwargs,
        )
        self.field = field
        path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths}
        self.builder = Json(
            cache_dir=cache_dir,
            data_files=path_or_paths,
            features=features,
            field=field,
            **kwargs,
        )

    def read(self):
        # Build iterable dataset
        if self.streaming:
            dataset = self.builder.as_streaming_dataset(split=self.split)
        # Build regular (map-style) dataset
        else:
            download_config = None
            download_mode = None
            verification_mode = None
            base_path = None

            self.builder.download_and_prepare(
                download_config=download_config,
                download_mode=download_mode,
                verification_mode=verification_mode,
                base_path=base_path,
                num_proc=self.num_proc,
            )
            dataset = self.builder.as_dataset(
                split=self.split, verification_mode=verification_mode, in_memory=self.keep_in_memory
            )
        return dataset


class JsonDatasetWriter:
    def __init__(
        self,
        dataset: Dataset,
        path_or_buf: Union[PathLike, BinaryIO],
        batch_size: Optional[int] = None,
        num_proc: Optional[int] = None,
        storage_options: Optional[dict] = None,
        **to_json_kwargs,
    ):
        if num_proc is not None and num_proc <= 0:
            raise ValueError(f"num_proc {num_proc} must be an integer > 0.")

        self.dataset = dataset
        self.path_or_buf = path_or_buf
        self.batch_size = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
        self.num_proc = num_proc
        self.encoding = "utf-8"
        self.storage_options = storage_options or {}
        self.to_json_kwargs = to_json_kwargs

    def write(self) -> int:
        _ = self.to_json_kwargs.pop("path_or_buf", None)
        orient = self.to_json_kwargs.pop("orient", "records")
        lines = self.to_json_kwargs.pop("lines", True if orient == "records" else False)
        if "index" not in self.to_json_kwargs and orient in ["split", "table"]:
            self.to_json_kwargs["index"] = False

        # Determine the default compression value based on self.path_or_buf type
        default_compression = "infer" if isinstance(self.path_or_buf, (str, bytes, os.PathLike)) else None
        compression = self.to_json_kwargs.pop("compression", default_compression)

        if compression not in [None, "infer", "gzip", "bz2", "xz"]:
            raise NotImplementedError(f"`datasets` currently does not support {compression} compression")

        if not lines and self.batch_size < self.dataset.num_rows:
            raise NotImplementedError(
                "Output JSON will not be formatted correctly when lines = False and batch_size < number of rows in the dataset. Use pandas.DataFrame.to_json() instead."
            )

        if isinstance(self.path_or_buf, (str, bytes, os.PathLike)):
            with fsspec.open(
                self.path_or_buf, "wb", compression=compression, **(self.storage_options or {})
            ) as buffer:
                written = self._write(file_obj=buffer, orient=orient, lines=lines, **self.to_json_kwargs)
        else:
            if compression:
                raise NotImplementedError(
                    f"The compression parameter is not supported when writing to a buffer, but compression={compression}"
                    " was passed. Please provide a local path instead."
                )
            written = self._write(file_obj=self.path_or_buf, orient=orient, lines=lines, **self.to_json_kwargs)
        return written

    def _batch_json(self, args):
        offset, orient, lines, to_json_kwargs = args

        batch = query_table(
            table=self.dataset.data,
            key=slice(offset, offset + self.batch_size),
            indices=self.dataset._indices,
        )
        json_str = batch.to_pandas().to_json(path_or_buf=None, orient=orient, lines=lines, **to_json_kwargs)
        if not json_str.endswith("\n"):
            json_str += "\n"
        return json_str.encode(self.encoding)

    def _write(
        self,
        file_obj: BinaryIO,
        orient,
        lines,
        **to_json_kwargs,
    ) -> int:
        """Writes the pyarrow table as JSON lines to a binary file handle.

        Caller is responsible for opening and closing the handle.
        """
        written = 0

        if self.num_proc is None or self.num_proc == 1:
            for offset in hf_tqdm(
                range(0, len(self.dataset), self.batch_size),
                unit="ba",
                desc="Creating json from Arrow format",
            ):
                json_str = self._batch_json((offset, orient, lines, to_json_kwargs))
                written += file_obj.write(json_str)
        else:
            num_rows, batch_size = len(self.dataset), self.batch_size
            with multiprocessing.Pool(self.num_proc) as pool:
                for json_str in hf_tqdm(
                    pool.imap(
                        self._batch_json,
                        [(offset, orient, lines, to_json_kwargs) for offset in range(0, num_rows, batch_size)],
                    ),
                    total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size,
                    unit="ba",
                    desc="Creating json from Arrow format",
                ):
                    written += file_obj.write(json_str)

        return written