|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import collections |
|
import platform |
|
import re |
|
import socket |
|
from codecs import encode |
|
from collections import OrderedDict |
|
from functools import partial, reduce |
|
from types import MethodType |
|
|
|
import numpy as np |
|
import torch |
|
from packaging.version import Version |
|
from safetensors.torch import save_file as safe_save_file |
|
|
|
from ..commands.config.default import write_basic_config |
|
from ..logging import get_logger |
|
from ..state import PartialState |
|
from .constants import FSDP_PYTORCH_VERSION |
|
from .dataclasses import DistributedType |
|
from .imports import ( |
|
is_deepspeed_available, |
|
is_numpy_available, |
|
is_torch_distributed_available, |
|
is_torch_xla_available, |
|
is_weights_only_available, |
|
) |
|
from .modeling import id_tensor_storage |
|
from .transformer_engine import convert_model |
|
from .versions import is_torch_version |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
if is_torch_xla_available(): |
|
import torch_xla.core.xla_model as xm |
|
|
|
|
|
def is_compiled_module(module: torch.nn.Module) -> bool: |
|
""" |
|
Check whether the module was compiled with torch.compile() |
|
""" |
|
if not hasattr(torch, "_dynamo"): |
|
return False |
|
|
|
return isinstance(module, torch._dynamo.eval_frame.OptimizedModule) |
|
|
|
|
|
def has_compiled_regions(module: torch.nn.Module) -> bool: |
|
""" |
|
Check whether the module has submodules that were compiled with `torch.compile()`. |
|
""" |
|
if not hasattr(torch, "_dynamo"): |
|
return False |
|
|
|
if module._modules: |
|
for submodule in module.modules(): |
|
if isinstance(submodule, torch._dynamo.eval_frame.OptimizedModule): |
|
return True |
|
|
|
return False |
|
|
|
|
|
def is_repeated_blocks(module: torch.nn.Module) -> bool: |
|
""" |
|
Check whether the module is a repeated block, i.e. `torch.nn.ModuleList` with all children of the same class. This |
|
is useful to determine whether we should apply regional compilation to the module. |
|
""" |
|
|
|
return isinstance(module, torch.nn.ModuleList) and all(isinstance(m, module[0].__class__) for m in module) |
|
|
|
|
|
def has_repeated_blocks(module: torch.nn.Module) -> bool: |
|
""" |
|
Check whether the module has repeated blocks, i.e. `torch.nn.ModuleList` with all children of the same class, at |
|
any level of the module hierarchy. This is useful to determine whether we should apply regional compilation to the |
|
module. |
|
""" |
|
if module._modules: |
|
for submodule in module.modules(): |
|
if is_repeated_blocks(submodule): |
|
return True |
|
|
|
return False |
|
|
|
|
|
def compile_regions(module: torch.nn.Module, **compile_kwargs) -> torch.nn.Module: |
|
""" |
|
Performs regional compilation where we target repeated blocks of the same class and compile them sequentially to |
|
hit the compiler's cache. For example, in `GPT2LMHeadModel`, the repeated block/class is `GPT2Block`, and can be |
|
accessed as `model.transformer.h[0]`. The rest of the model (e.g. model.lm_head) is compiled separately. |
|
|
|
This allows us to speed up the compilation overhead / cold start of models like LLMs and Transformers in general. |
|
See https://pytorch.org/tutorials/recipes/regional_compilation.html for more details. |
|
|
|
Args: |
|
module (`torch.nn.Module`): |
|
The model to compile. |
|
**compile_kwargs: |
|
Additional keyword arguments to pass to `torch.compile()`. |
|
|
|
Returns: |
|
`torch.nn.Module`: A new instance of the model with some compiled regions. |
|
|
|
Example: |
|
```python |
|
>>> from accelerate.utils import compile_regions |
|
>>> from transformers import AutoModelForCausalLM |
|
|
|
>>> model = AutoModelForCausalLM.from_pretrained("gpt2") |
|
>>> compiled_model = compile_regions(model, mode="reduce-overhead") |
|
>>> compiled_model.transformer.h[0] |
|
OptimizedModule( |
|
(_orig_mod): GPT2Block( |
|
(ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True) |
|
(attn): GPT2Attention( |
|
(c_attn): Conv1D(nf=2304, nx=768) |
|
(c_proj): Conv1D(nf=768, nx=768) |
|
(attn_dropout): Dropout(p=0.1, inplace=False) |
|
(resid_dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True) |
|
(mlp): GPT2MLP( |
|
(c_fc): Conv1D(nf=3072, nx=768) |
|
(c_proj): Conv1D(nf=768, nx=3072) |
|
(act): NewGELUActivation() |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
``` |
|
""" |
|
|
|
def _compile_regions(module: torch.nn.Module, **compile_kwargs) -> torch.nn.Module: |
|
if is_repeated_blocks(module): |
|
new_module = torch.nn.ModuleList() |
|
for submodule in module: |
|
new_module.append(torch.compile(submodule, **compile_kwargs)) |
|
elif has_repeated_blocks(module): |
|
new_module = module.__class__.__new__(module.__class__) |
|
new_module.__dict__.update(module.__dict__) |
|
new_module._modules = {} |
|
for name, submodule in module.named_children(): |
|
new_module.add_module(name, _compile_regions(submodule, **compile_kwargs)) |
|
else: |
|
new_module = torch.compile(module, **compile_kwargs) |
|
|
|
return new_module |
|
|
|
new_module = _compile_regions(module, **compile_kwargs) |
|
|
|
if "_orig_mod" not in new_module.__dict__: |
|
|
|
new_module.__dict__["_orig_mod"] = module |
|
|
|
return new_module |
|
|
|
|
|
def compile_regions_deepspeed(module: torch.nn.Module, **compile_kwargs): |
|
""" |
|
Performs regional compilation the same way as `compile_regions`, but specifically for `DeepSpeedEngine.module`. |
|
Since the model is wrapped in a `DeepSpeedEngine` and has many added hooks, offloaded parameters, etc that |
|
`torch.compile(...)` interferes with, version of trgional compilation uses the inplace `module.compile()` method |
|
instead. |
|
|
|
Args: |
|
module (`torch.nn.Module`): |
|
The model to compile. |
|
**compile_kwargs: |
|
Additional keyword arguments to pass to `module.compile()`. |
|
""" |
|
|
|
if is_repeated_blocks(module): |
|
for submodule in module: |
|
submodule.compile(**compile_kwargs) |
|
elif has_repeated_blocks(module): |
|
for child in module.children(): |
|
compile_regions_deepspeed(child, **compile_kwargs) |
|
else: |
|
module.compile(**compile_kwargs) |
|
|
|
|
|
def extract_model_from_parallel( |
|
model, keep_fp32_wrapper: bool = True, keep_torch_compile: bool = True, recursive: bool = False |
|
): |
|
""" |
|
Extract a model from its distributed containers. |
|
|
|
Args: |
|
model (`torch.nn.Module`): |
|
The model to extract. |
|
keep_fp32_wrapper (`bool`, *optional*): |
|
Whether to remove mixed precision hooks from the model. |
|
keep_torch_compile (`bool`, *optional*): |
|
Whether to unwrap compiled model. |
|
recursive (`bool`, *optional*, defaults to `False`): |
|
Whether to recursively extract all cases of `module.module` from `model` as well as unwrap child sublayers |
|
recursively, not just the top-level distributed containers. |
|
|
|
Returns: |
|
`torch.nn.Module`: The extracted model. |
|
""" |
|
options = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) |
|
|
|
is_compiled = is_compiled_module(model) |
|
has_compiled = has_compiled_regions(model) |
|
|
|
if is_compiled: |
|
compiled_model = model |
|
model = model._orig_mod |
|
elif has_compiled: |
|
compiled_model = model |
|
model = model.__dict__["_orig_mod"] |
|
|
|
if is_deepspeed_available(): |
|
from deepspeed import DeepSpeedEngine |
|
|
|
options += (DeepSpeedEngine,) |
|
|
|
if is_torch_version(">=", FSDP_PYTORCH_VERSION) and is_torch_distributed_available(): |
|
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP |
|
|
|
options += (FSDP,) |
|
|
|
while isinstance(model, options): |
|
model = model.module |
|
|
|
if recursive: |
|
|
|
def _recursive_unwrap(module): |
|
|
|
|
|
if hasattr(module, "module"): |
|
unwrapped_module = _recursive_unwrap(module.module) |
|
else: |
|
unwrapped_module = module |
|
|
|
for name, child in unwrapped_module.named_children(): |
|
setattr(unwrapped_module, name, _recursive_unwrap(child)) |
|
return unwrapped_module |
|
|
|
|
|
model = _recursive_unwrap(model) |
|
|
|
if not keep_fp32_wrapper: |
|
forward = model.forward |
|
original_forward = model.__dict__.pop("_original_forward", None) |
|
if original_forward is not None: |
|
while hasattr(forward, "__wrapped__"): |
|
forward = forward.__wrapped__ |
|
if forward == original_forward: |
|
break |
|
model.forward = MethodType(forward, model) |
|
if getattr(model, "_converted_to_transformer_engine", False): |
|
convert_model(model, to_transformer_engine=False) |
|
|
|
if keep_torch_compile: |
|
if is_compiled: |
|
compiled_model._orig_mod = model |
|
model = compiled_model |
|
elif has_compiled: |
|
compiled_model.__dict__["_orig_mod"] = model |
|
model = compiled_model |
|
|
|
return model |
|
|
|
|
|
def wait_for_everyone(): |
|
""" |
|
Introduces a blocking point in the script, making sure all processes have reached this point before continuing. |
|
|
|
<Tip warning={true}> |
|
|
|
Make sure all processes will reach this instruction otherwise one of your processes will hang forever. |
|
|
|
</Tip> |
|
""" |
|
PartialState().wait_for_everyone() |
|
|
|
|
|
def clean_state_dict_for_safetensors(state_dict: dict): |
|
""" |
|
Cleans the state dictionary from a model and removes tensor aliasing if present. |
|
|
|
Args: |
|
state_dict (`dict`): |
|
The state dictionary from a model |
|
""" |
|
ptrs = collections.defaultdict(list) |
|
|
|
for name, tensor in state_dict.items(): |
|
if not isinstance(tensor, str): |
|
ptrs[id_tensor_storage(tensor)].append(name) |
|
|
|
|
|
shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1} |
|
warn_names = set() |
|
for names in shared_ptrs.values(): |
|
|
|
|
|
|
|
|
|
|
|
found_names = [name for name in names if name in state_dict] |
|
warn_names.update(found_names[1:]) |
|
for name in found_names[1:]: |
|
del state_dict[name] |
|
if len(warn_names) > 0: |
|
logger.warning( |
|
f"Removed shared tensor {warn_names} while saving. This should be OK, but check by verifying that you don't receive any warning while reloading", |
|
) |
|
state_dict = {k: v.contiguous() if isinstance(v, torch.Tensor) else v for k, v in state_dict.items()} |
|
return state_dict |
|
|
|
|
|
def save(obj, f, save_on_each_node: bool = False, safe_serialization: bool = False): |
|
""" |
|
Save the data to disk. Use in place of `torch.save()`. |
|
|
|
Args: |
|
obj: |
|
The data to save |
|
f: |
|
The file (or file-like object) to use to save the data |
|
save_on_each_node (`bool`, *optional*, defaults to `False`): |
|
Whether to only save on the global main process |
|
safe_serialization (`bool`, *optional*, defaults to `False`): |
|
Whether to save `obj` using `safetensors` or the traditional PyTorch way (that uses `pickle`). |
|
""" |
|
|
|
|
|
|
|
|
|
if PartialState().distributed_type == DistributedType.XLA: |
|
obj = xm._maybe_convert_to_cpu(obj) |
|
|
|
if safe_serialization: |
|
save_func = partial(safe_save_file, metadata={"format": "pt"}) |
|
if isinstance(obj, OrderedDict): |
|
obj = clean_state_dict_for_safetensors(obj) |
|
else: |
|
save_func = torch.save |
|
|
|
if PartialState().is_main_process and not save_on_each_node: |
|
save_func(obj, f) |
|
elif PartialState().is_local_main_process and save_on_each_node: |
|
save_func(obj, f) |
|
|
|
|
|
|
|
|
|
np_core = np._core if is_numpy_available("2.0.0") else np.core |
|
TORCH_SAFE_GLOBALS = [ |
|
|
|
np_core.multiarray._reconstruct, |
|
np.ndarray, |
|
|
|
encode, |
|
np.dtype, |
|
] |
|
|
|
if is_numpy_available("1.25.0"): |
|
TORCH_SAFE_GLOBALS.append(np.dtypes.UInt32DType) |
|
|
|
|
|
def load(f, map_location=None, **kwargs): |
|
""" |
|
Compatible drop-in replacement of `torch.load()` which allows for `weights_only` to be used if `torch` version is |
|
2.4.0 or higher. Otherwise will ignore the kwarg. |
|
|
|
Will also add (and then remove) an exception for numpy arrays |
|
|
|
Args: |
|
f: |
|
The file (or file-like object) to use to load the data |
|
map_location: |
|
a function, `torch.device`, string or a dict specifying how to remap storage locations |
|
**kwargs: |
|
Additional keyword arguments to pass to `torch.load()`. |
|
""" |
|
try: |
|
if is_weights_only_available(): |
|
old_safe_globals = torch.serialization.get_safe_globals() |
|
if "weights_only" not in kwargs: |
|
kwargs["weights_only"] = True |
|
torch.serialization.add_safe_globals(TORCH_SAFE_GLOBALS) |
|
else: |
|
kwargs.pop("weights_only", None) |
|
loaded_obj = torch.load(f, map_location=map_location, **kwargs) |
|
finally: |
|
if is_weights_only_available(): |
|
torch.serialization.clear_safe_globals() |
|
if old_safe_globals: |
|
torch.serialization.add_safe_globals(old_safe_globals) |
|
return loaded_obj |
|
|
|
|
|
def get_pretty_name(obj): |
|
""" |
|
Gets a pretty name from `obj`. |
|
""" |
|
if not hasattr(obj, "__qualname__") and not hasattr(obj, "__name__"): |
|
obj = getattr(obj, "__class__", obj) |
|
if hasattr(obj, "__qualname__"): |
|
return obj.__qualname__ |
|
if hasattr(obj, "__name__"): |
|
return obj.__name__ |
|
return str(obj) |
|
|
|
|
|
def merge_dicts(source, destination): |
|
""" |
|
Recursively merges two dictionaries. |
|
|
|
Args: |
|
source (`dict`): The dictionary to merge into `destination`. |
|
destination (`dict`): The dictionary to merge `source` into. |
|
""" |
|
for key, value in source.items(): |
|
if isinstance(value, dict): |
|
node = destination.setdefault(key, {}) |
|
merge_dicts(value, node) |
|
else: |
|
destination[key] = value |
|
|
|
return destination |
|
|
|
|
|
def is_port_in_use(port: int = None) -> bool: |
|
""" |
|
Checks if a port is in use on `localhost`. Useful for checking if multiple `accelerate launch` commands have been |
|
run and need to see if the port is already in use. |
|
""" |
|
if port is None: |
|
port = 29500 |
|
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: |
|
return s.connect_ex(("localhost", port)) == 0 |
|
|
|
|
|
def get_free_port() -> int: |
|
""" |
|
Gets a free port on `localhost`. Useful for automatic port selection when port 0 is specified in distributed |
|
training scenarios. |
|
|
|
Returns: |
|
int: An available port number |
|
""" |
|
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: |
|
s.bind(("", 0)) |
|
return s.getsockname()[1] |
|
|
|
|
|
def convert_bytes(size): |
|
"Converts `size` from bytes to the largest possible unit" |
|
for x in ["bytes", "KB", "MB", "GB", "TB"]: |
|
if size < 1024.0: |
|
return f"{round(size, 2)} {x}" |
|
size /= 1024.0 |
|
|
|
return f"{round(size, 2)} PB" |
|
|
|
|
|
def check_os_kernel(): |
|
"""Warns if the kernel version is below the recommended minimum on Linux.""" |
|
|
|
info = platform.uname() |
|
system = info.system |
|
if system != "Linux": |
|
return |
|
|
|
_, version, *_ = re.split(r"(\d+\.\d+\.\d+)", info.release) |
|
min_version = "5.5.0" |
|
if Version(version) < Version(min_version): |
|
msg = ( |
|
f"Detected kernel version {version}, which is below the recommended minimum of {min_version}; this can " |
|
"cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher." |
|
) |
|
logger.warning(msg, main_process_only=True) |
|
|
|
|
|
def recursive_getattr(obj, attr: str): |
|
""" |
|
Recursive `getattr`. |
|
|
|
Args: |
|
obj: |
|
A class instance holding the attribute. |
|
attr (`str`): |
|
The attribute that is to be retrieved, e.g. 'attribute1.attribute2'. |
|
""" |
|
|
|
def _getattr(obj, attr): |
|
return getattr(obj, attr) |
|
|
|
return reduce(_getattr, [obj] + attr.split(".")) |
|
|
|
|
|
def get_module_children_bottom_up(model: torch.nn.Module, return_fqns: bool = False) -> list[torch.nn.Module]: |
|
"""Traverse the model in bottom-up order and return the children modules in that order. |
|
|
|
Args: |
|
model (`torch.nn.Module`): the model to get the children of |
|
|
|
Returns: |
|
`list[torch.nn.Module]`: a list of children modules of `model` in bottom-up order. The last element is the |
|
`model` itself. |
|
""" |
|
top = model if not return_fqns else ("", model) |
|
stack = [top] |
|
ordered_modules = [] |
|
while stack: |
|
current_module = stack.pop() |
|
if return_fqns: |
|
current_module_name, current_module = current_module |
|
for name, attr in current_module.named_children(): |
|
if isinstance(attr, torch.nn.Module): |
|
if return_fqns: |
|
child_name = current_module_name + "." + name if current_module_name else name |
|
stack.append((child_name, attr)) |
|
else: |
|
stack.append(attr) |
|
if return_fqns: |
|
ordered_modules.append((current_module_name, current_module)) |
|
else: |
|
ordered_modules.append(current_module) |
|
return ordered_modules[::-1] |
|
|