# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import platform import re import socket from codecs import encode from collections import OrderedDict from functools import partial, reduce from types import MethodType import numpy as np import torch from packaging.version import Version from safetensors.torch import save_file as safe_save_file from ..commands.config.default import write_basic_config # noqa: F401 from ..logging import get_logger from ..state import PartialState from .constants import FSDP_PYTORCH_VERSION from .dataclasses import DistributedType from .imports import ( is_deepspeed_available, is_numpy_available, is_torch_distributed_available, is_torch_xla_available, is_weights_only_available, ) from .modeling import id_tensor_storage from .transformer_engine import convert_model from .versions import is_torch_version logger = get_logger(__name__) if is_torch_xla_available(): import torch_xla.core.xla_model as xm def is_compiled_module(module: torch.nn.Module) -> bool: """ Check whether the module was compiled with torch.compile() """ if not hasattr(torch, "_dynamo"): return False return isinstance(module, torch._dynamo.eval_frame.OptimizedModule) def has_compiled_regions(module: torch.nn.Module) -> bool: """ Check whether the module has submodules that were compiled with `torch.compile()`. """ if not hasattr(torch, "_dynamo"): return False if module._modules: for submodule in module.modules(): if isinstance(submodule, torch._dynamo.eval_frame.OptimizedModule): return True return False def is_repeated_blocks(module: torch.nn.Module) -> bool: """ Check whether the module is a repeated block, i.e. `torch.nn.ModuleList` with all children of the same class. This is useful to determine whether we should apply regional compilation to the module. """ return isinstance(module, torch.nn.ModuleList) and all(isinstance(m, module[0].__class__) for m in module) def has_repeated_blocks(module: torch.nn.Module) -> bool: """ Check whether the module has repeated blocks, i.e. `torch.nn.ModuleList` with all children of the same class, at any level of the module hierarchy. This is useful to determine whether we should apply regional compilation to the module. """ if module._modules: for submodule in module.modules(): if is_repeated_blocks(submodule): return True return False def compile_regions(module: torch.nn.Module, **compile_kwargs) -> torch.nn.Module: """ Performs regional compilation where we target repeated blocks of the same class and compile them sequentially to hit the compiler's cache. For example, in `GPT2LMHeadModel`, the repeated block/class is `GPT2Block`, and can be accessed as `model.transformer.h[0]`. The rest of the model (e.g. model.lm_head) is compiled separately. This allows us to speed up the compilation overhead / cold start of models like LLMs and Transformers in general. See https://pytorch.org/tutorials/recipes/regional_compilation.html for more details. Args: module (`torch.nn.Module`): The model to compile. **compile_kwargs: Additional keyword arguments to pass to `torch.compile()`. Returns: `torch.nn.Module`: A new instance of the model with some compiled regions. Example: ```python >>> from accelerate.utils import compile_regions >>> from transformers import AutoModelForCausalLM >>> model = AutoModelForCausalLM.from_pretrained("gpt2") >>> compiled_model = compile_regions(model, mode="reduce-overhead") >>> compiled_model.transformer.h[0] OptimizedModule( (_orig_mod): GPT2Block( (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True) (attn): GPT2Attention( (c_attn): Conv1D(nf=2304, nx=768) (c_proj): Conv1D(nf=768, nx=768) (attn_dropout): Dropout(p=0.1, inplace=False) (resid_dropout): Dropout(p=0.1, inplace=False) ) (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True) (mlp): GPT2MLP( (c_fc): Conv1D(nf=3072, nx=768) (c_proj): Conv1D(nf=768, nx=3072) (act): NewGELUActivation() (dropout): Dropout(p=0.1, inplace=False) ) ) ) ``` """ def _compile_regions(module: torch.nn.Module, **compile_kwargs) -> torch.nn.Module: if is_repeated_blocks(module): new_module = torch.nn.ModuleList() for submodule in module: new_module.append(torch.compile(submodule, **compile_kwargs)) elif has_repeated_blocks(module): new_module = module.__class__.__new__(module.__class__) new_module.__dict__.update(module.__dict__) new_module._modules = {} for name, submodule in module.named_children(): new_module.add_module(name, _compile_regions(submodule, **compile_kwargs)) else: new_module = torch.compile(module, **compile_kwargs) return new_module new_module = _compile_regions(module, **compile_kwargs) if "_orig_mod" not in new_module.__dict__: # Keeps a reference to the original module to decompile/unwrap it later new_module.__dict__["_orig_mod"] = module return new_module def compile_regions_deepspeed(module: torch.nn.Module, **compile_kwargs): """ Performs regional compilation the same way as `compile_regions`, but specifically for `DeepSpeedEngine.module`. Since the model is wrapped in a `DeepSpeedEngine` and has many added hooks, offloaded parameters, etc that `torch.compile(...)` interferes with, version of trgional compilation uses the inplace `module.compile()` method instead. Args: module (`torch.nn.Module`): The model to compile. **compile_kwargs: Additional keyword arguments to pass to `module.compile()`. """ if is_repeated_blocks(module): for submodule in module: submodule.compile(**compile_kwargs) elif has_repeated_blocks(module): for child in module.children(): compile_regions_deepspeed(child, **compile_kwargs) else: # leaf node module.compile(**compile_kwargs) def extract_model_from_parallel( model, keep_fp32_wrapper: bool = True, keep_torch_compile: bool = True, recursive: bool = False ): """ Extract a model from its distributed containers. Args: model (`torch.nn.Module`): The model to extract. keep_fp32_wrapper (`bool`, *optional*): Whether to remove mixed precision hooks from the model. keep_torch_compile (`bool`, *optional*): Whether to unwrap compiled model. recursive (`bool`, *optional*, defaults to `False`): Whether to recursively extract all cases of `module.module` from `model` as well as unwrap child sublayers recursively, not just the top-level distributed containers. Returns: `torch.nn.Module`: The extracted model. """ options = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) is_compiled = is_compiled_module(model) has_compiled = has_compiled_regions(model) if is_compiled: compiled_model = model model = model._orig_mod elif has_compiled: compiled_model = model model = model.__dict__["_orig_mod"] if is_deepspeed_available(): from deepspeed import DeepSpeedEngine options += (DeepSpeedEngine,) if is_torch_version(">=", FSDP_PYTORCH_VERSION) and is_torch_distributed_available(): from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP options += (FSDP,) while isinstance(model, options): model = model.module if recursive: # This is needed in cases such as using FSDPv2 on XLA def _recursive_unwrap(module): # Wrapped modules are standardly wrapped as `module`, similar to the cases earlier # with DDP, DataParallel, DeepSpeed, and FSDP if hasattr(module, "module"): unwrapped_module = _recursive_unwrap(module.module) else: unwrapped_module = module # Next unwrap child sublayers recursively for name, child in unwrapped_module.named_children(): setattr(unwrapped_module, name, _recursive_unwrap(child)) return unwrapped_module # Start with top-level model = _recursive_unwrap(model) if not keep_fp32_wrapper: forward = model.forward original_forward = model.__dict__.pop("_original_forward", None) if original_forward is not None: while hasattr(forward, "__wrapped__"): forward = forward.__wrapped__ if forward == original_forward: break model.forward = MethodType(forward, model) if getattr(model, "_converted_to_transformer_engine", False): convert_model(model, to_transformer_engine=False) if keep_torch_compile: if is_compiled: compiled_model._orig_mod = model model = compiled_model elif has_compiled: compiled_model.__dict__["_orig_mod"] = model model = compiled_model return model def wait_for_everyone(): """ Introduces a blocking point in the script, making sure all processes have reached this point before continuing. Make sure all processes will reach this instruction otherwise one of your processes will hang forever. """ PartialState().wait_for_everyone() def clean_state_dict_for_safetensors(state_dict: dict): """ Cleans the state dictionary from a model and removes tensor aliasing if present. Args: state_dict (`dict`): The state dictionary from a model """ ptrs = collections.defaultdict(list) # When bnb serialization is used, weights in state dict can be strings for name, tensor in state_dict.items(): if not isinstance(tensor, str): ptrs[id_tensor_storage(tensor)].append(name) # These are all pointers of tensors with shared memory shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1} warn_names = set() for names in shared_ptrs.values(): # When not all duplicates have been cleaned, we still remove those keys but put a clear warning. # If the link between tensors was done at runtime then `from_pretrained` will not get # the key back leading to random tensor. A proper warning will be shown # during reload (if applicable), but since the file is not necessarily compatible with # the config, better show a proper warning. found_names = [name for name in names if name in state_dict] warn_names.update(found_names[1:]) for name in found_names[1:]: del state_dict[name] if len(warn_names) > 0: logger.warning( f"Removed shared tensor {warn_names} while saving. This should be OK, but check by verifying that you don't receive any warning while reloading", ) state_dict = {k: v.contiguous() if isinstance(v, torch.Tensor) else v for k, v in state_dict.items()} return state_dict def save(obj, f, save_on_each_node: bool = False, safe_serialization: bool = False): """ Save the data to disk. Use in place of `torch.save()`. Args: obj: The data to save f: The file (or file-like object) to use to save the data save_on_each_node (`bool`, *optional*, defaults to `False`): Whether to only save on the global main process safe_serialization (`bool`, *optional*, defaults to `False`): Whether to save `obj` using `safetensors` or the traditional PyTorch way (that uses `pickle`). """ # When TorchXLA is enabled, it's necessary to transfer all data to the CPU before saving. # Another issue arises with `id_tensor_storage`, which treats all XLA tensors as identical. # If tensors remain on XLA, calling `clean_state_dict_for_safetensors` will result in only # one XLA tensor remaining. if PartialState().distributed_type == DistributedType.XLA: obj = xm._maybe_convert_to_cpu(obj) # Check if it's a model and remove duplicates if safe_serialization: save_func = partial(safe_save_file, metadata={"format": "pt"}) if isinstance(obj, OrderedDict): obj = clean_state_dict_for_safetensors(obj) else: save_func = torch.save if PartialState().is_main_process and not save_on_each_node: save_func(obj, f) elif PartialState().is_local_main_process and save_on_each_node: save_func(obj, f) # The following are considered "safe" globals to reconstruct various types of objects when using `weights_only=True` # These should be added and then removed after loading in the file np_core = np._core if is_numpy_available("2.0.0") else np.core TORCH_SAFE_GLOBALS = [ # numpy arrays are just numbers, not objects, so we can reconstruct them safely np_core.multiarray._reconstruct, np.ndarray, # The following are needed for the RNG states encode, np.dtype, ] if is_numpy_available("1.25.0"): TORCH_SAFE_GLOBALS.append(np.dtypes.UInt32DType) def load(f, map_location=None, **kwargs): """ Compatible drop-in replacement of `torch.load()` which allows for `weights_only` to be used if `torch` version is 2.4.0 or higher. Otherwise will ignore the kwarg. Will also add (and then remove) an exception for numpy arrays Args: f: The file (or file-like object) to use to load the data map_location: a function, `torch.device`, string or a dict specifying how to remap storage locations **kwargs: Additional keyword arguments to pass to `torch.load()`. """ try: if is_weights_only_available(): old_safe_globals = torch.serialization.get_safe_globals() if "weights_only" not in kwargs: kwargs["weights_only"] = True torch.serialization.add_safe_globals(TORCH_SAFE_GLOBALS) else: kwargs.pop("weights_only", None) loaded_obj = torch.load(f, map_location=map_location, **kwargs) finally: if is_weights_only_available(): torch.serialization.clear_safe_globals() if old_safe_globals: torch.serialization.add_safe_globals(old_safe_globals) return loaded_obj def get_pretty_name(obj): """ Gets a pretty name from `obj`. """ if not hasattr(obj, "__qualname__") and not hasattr(obj, "__name__"): obj = getattr(obj, "__class__", obj) if hasattr(obj, "__qualname__"): return obj.__qualname__ if hasattr(obj, "__name__"): return obj.__name__ return str(obj) def merge_dicts(source, destination): """ Recursively merges two dictionaries. Args: source (`dict`): The dictionary to merge into `destination`. destination (`dict`): The dictionary to merge `source` into. """ for key, value in source.items(): if isinstance(value, dict): node = destination.setdefault(key, {}) merge_dicts(value, node) else: destination[key] = value return destination def is_port_in_use(port: int = None) -> bool: """ Checks if a port is in use on `localhost`. Useful for checking if multiple `accelerate launch` commands have been run and need to see if the port is already in use. """ if port is None: port = 29500 with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: return s.connect_ex(("localhost", port)) == 0 def get_free_port() -> int: """ Gets a free port on `localhost`. Useful for automatic port selection when port 0 is specified in distributed training scenarios. Returns: int: An available port number """ with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind(("", 0)) # bind to port 0 for OS to assign a free port return s.getsockname()[1] def convert_bytes(size): "Converts `size` from bytes to the largest possible unit" for x in ["bytes", "KB", "MB", "GB", "TB"]: if size < 1024.0: return f"{round(size, 2)} {x}" size /= 1024.0 return f"{round(size, 2)} PB" def check_os_kernel(): """Warns if the kernel version is below the recommended minimum on Linux.""" # see issue #1929 info = platform.uname() system = info.system if system != "Linux": return _, version, *_ = re.split(r"(\d+\.\d+\.\d+)", info.release) min_version = "5.5.0" if Version(version) < Version(min_version): msg = ( f"Detected kernel version {version}, which is below the recommended minimum of {min_version}; this can " "cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher." ) logger.warning(msg, main_process_only=True) def recursive_getattr(obj, attr: str): """ Recursive `getattr`. Args: obj: A class instance holding the attribute. attr (`str`): The attribute that is to be retrieved, e.g. 'attribute1.attribute2'. """ def _getattr(obj, attr): return getattr(obj, attr) return reduce(_getattr, [obj] + attr.split(".")) def get_module_children_bottom_up(model: torch.nn.Module, return_fqns: bool = False) -> list[torch.nn.Module]: """Traverse the model in bottom-up order and return the children modules in that order. Args: model (`torch.nn.Module`): the model to get the children of Returns: `list[torch.nn.Module]`: a list of children modules of `model` in bottom-up order. The last element is the `model` itself. """ top = model if not return_fqns else ("", model) stack = [top] ordered_modules = [] while stack: current_module = stack.pop() if return_fqns: current_module_name, current_module = current_module for name, attr in current_module.named_children(): if isinstance(attr, torch.nn.Module): if return_fqns: child_name = current_module_name + "." + name if current_module_name else name stack.append((child_name, attr)) else: stack.append(attr) if return_fqns: ordered_modules.append((current_module_name, current_module)) else: ordered_modules.append(current_module) return ordered_modules[::-1]