MMaDA / training /data.py
jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# coding=utf-8
# Copyright 2025 MMaDA Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import json
import math
import os
import random
import re
import pandas as pd
from functools import partial
from typing import List, Optional, Union
from PIL import Image
Image.warnings.simplefilter('error', Image.DecompressionBombWarning)
import webdataset as wds
import yaml
from braceexpand import braceexpand
from torch.utils.data import default_collate
from torchvision import transforms
from transformers import PreTrainedTokenizer
from webdataset.tariterators import (
base_plus_ext,
tar_file_expander,
url_opener,
valid_sample,
)
person_token = ["a person", "someone", "somebody"]
def replace_person_token(t):
"Used for CC12M - handles all case variations of <person> tag"
t = re.sub(r"<person>([,\s]*(and)*[,\s]*<person>)+", " people ", t, flags=re.IGNORECASE)
person_pattern = re.compile(r"<person>", re.IGNORECASE)
while person_pattern.search(t):
match = person_pattern.search(t)
t = t[:match.start()] + f" {random.choice(person_token)} " + t[match.end():]
return t
def filter_keys(key_set):
def _f(dictionary):
return {k: v for k, v in dictionary.items() if k in key_set}
return _f
def group_by_keys_nothrow(data, keys=base_plus_ext, lcase=True, suffixes=None, handler=None, src=None):
"""Return function over iterator that groups key, value pairs into samples.
:param keys: function that splits the key into key and extension (base_plus_ext)
:param lcase: convert suffixes to lower case (Default value = True)
"""
current_sample = None
for filesample in data:
assert isinstance(filesample, dict)
if "fname" not in filesample.keys():
print(f"fname not in filesample.keys(): {filesample}")
print(f"src: {src}")
continue
fname, value = filesample["fname"], filesample["data"]
prefix, suffix = keys(fname)
if prefix is None:
continue
if lcase:
suffix = suffix.lower()
if current_sample is None or prefix != current_sample["__key__"] or suffix in current_sample:
if valid_sample(current_sample):
yield current_sample
current_sample = dict(__key__=prefix, __url__=filesample["__url__"])
if suffixes is None or suffix in suffixes:
current_sample[suffix] = value
if valid_sample(current_sample):
yield current_sample
def tarfile_to_samples_nothrow(src, handler=wds.warn_and_continue):
# NOTE this is a re-impl of the webdataset impl with group_by_keys that doesn't throw
streams = url_opener(src, handler=handler)
files = tar_file_expander(streams, handler=handler) # [{fname,data,__url__}, ...] __url__ 字段标识当前读取的文件来自哪个 tar 包
samples = group_by_keys_nothrow(files, handler=handler, src=src)
return samples
def image_transform(sample, resolution=256):
image = sample["images"]
image = transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC)(image)
image = transforms.CenterCrop((resolution, resolution))(image)
image = transforms.ToTensor()(image)
image = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)(image)
sample["images"] = image
return sample
def image_transform_squash(sample, resolution=256):
image = sample["images"]
image = transforms.Resize((resolution, resolution), interpolation=transforms.InterpolationMode.BICUBIC)(image)
image = transforms.ToTensor()(image)
image = transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5, 0.5, 0.5])(image)
sample["images"] = image
return sample
def conditional_image_transform(sample, resolution=256):
url = sample.get("__url__", "")
special_datasets = ['ai2d', 'clevr', 'docvqa', 'geo']
use_squash = False
for keyword in special_datasets:
if keyword in url:
use_squash = True
break
if use_squash:
return image_transform_squash(sample, resolution)
else:
return image_transform(sample, resolution)
def remove_prefix(caption):
caption = caption.replace('The image features ', '').replace('The image presents ', '').replace(
"The image you've sent is, ", '').replace("In the center of the image, ", '').replace(
"The image showcases ", '').replace("The image is ", '').replace(
"The image captures ", '').replace("In the given image ", '').replace(
"The image portrays ", '').replace("In the image, ", '').replace("In this image, we see ", '').replace(
"The image depicts ", '').replace("This is ", '').replace("In this image, ", '').replace(
"This image captures ", '')
return caption
def filter_long_samples(sample):
return sample.get('input_ids') is not None
class Text2ImageDataset:
def __init__(
self,
train_shards_path_or_url: Union[str, List[str]],
tokenizer: PreTrainedTokenizer,
max_seq_length: int,
num_train_examples: int,
per_gpu_batch_size: int,
global_batch_size: int,
num_workers: int,
resolution: int = 256,
shuffle_buffer_size: int = 1000,
pin_memory: bool = False,
persistent_workers: bool = False,
external_caption_path: Optional[str] = '',
external_journeydb_caption_path: Optional[str] = '',
external_laion12m_caption_path: Optional[str] = '',
external_cc12m_caption_path: Optional[str] = '',
external_text_to_image_2M_512_caption_path: Optional[str] = '',
external_ai2d_caption_path: Optional[str] = '',
external_clevr_caption_path: Optional[str] = '',
external_docvqa_caption_path: Optional[str] = '',
external_geo_caption_path: Optional[str] = '',
is_captioning: bool = False,
add_caption_prompt: bool = False,
long_caption: bool = True,
shuffle: bool = True,
):
if f"{train_shards_path_or_url}.yaml" in os.listdir('./configs'):
with open(f"./configs/{train_shards_path_or_url}.yaml") as f:
train_shards_path_or_url = yaml.safe_load(f)
self.long_caption = long_caption
self.external_caption_path = external_caption_path
self.external_journeydb_caption_path = external_journeydb_caption_path
self.external_laion12m_caption_path = external_laion12m_caption_path
self.external_cc12m_caption_path = external_cc12m_caption_path
self.external_text_to_image_2M_512_caption_path = external_text_to_image_2M_512_caption_path
self.is_captioning = is_captioning
self.add_caption_prompt = add_caption_prompt
if self.add_caption_prompt:
with open("./training/questions.json") as f:
self.caption_prompt = json.load(f)
# self.caption_prompt = ['USER: \n' + prompt + ' ASSISTANT:' for prompt in self.caption_prompt]
self.caption_prompt = ['<|start_header_id|>user<|end_header_id|>\n' + prompt + '<eot_id><|start_header_id|>assistant<|end_header_id|>\n' for prompt in self.caption_prompt]
else:
self.caption_prompt = None
if external_journeydb_caption_path != '':
with open(external_journeydb_caption_path) as file:
self.journeydb_caption = json.load(file)
else:
self.journeydb_caption = None
if external_ai2d_caption_path!= '':
self.ai2d_caption = pd.read_csv(external_ai2d_caption_path)
if external_clevr_caption_path!= '':
self.clevr_caption = pd.read_csv(external_clevr_caption_path)
if external_docvqa_caption_path!= '':
self.docvqa_caption = pd.read_csv(external_docvqa_caption_path)
if external_geo_caption_path!= '':
self.geo_caption = pd.read_csv(external_geo_caption_path)
def tokenize(text):
if tokenizer is not None:
text = replace_person_token(text)
encoding = tokenizer(
text,
truncation=True,
max_length=2 * max_seq_length,
padding=False,
return_tensors="pt"
)
full_input_ids = encoding.input_ids[0]
if len(full_input_ids) > max_seq_length:
return None
else:
return text
else:
return text
if not isinstance(train_shards_path_or_url, str):
train_shards_path_or_url = [list(braceexpand(urls)) for urls in train_shards_path_or_url]
# flatten list using itertools
train_shards_path_or_url = list(itertools.chain.from_iterable(train_shards_path_or_url))
if external_caption_path != '':
processing_pipeline = [
wds.decode("pil", handler=wds.ignore_and_continue),
wds.map(self.load_external_caption, handler=wds.ignore_and_continue),
wds.rename(
images="jpg;png;jpeg;webp",
input_ids="text;txt;caption",
handler=wds.warn_and_continue,
),
wds.map(partial(conditional_image_transform, resolution=resolution), handler=wds.warn_and_continue),
wds.map(filter_keys(set(["images", "input_ids"]))),
wds.map_dict(
input_ids=tokenize,
handler=wds.warn_and_continue,
),
wds.select(filter_long_samples),
]
else:
processing_pipeline = [
wds.decode("pil", handler=wds.ignore_and_continue),
wds.rename(
images="jpg;png;jpeg;webp",
input_ids="text;txt;caption",
handler=wds.warn_and_continue,
),
wds.map(partial(conditional_image_transform, resolution=resolution), handler=wds.warn_and_continue),
wds.map(filter_keys(set(["images", "input_ids"]))),
wds.map_dict(
input_ids=tokenize,
handler=wds.warn_and_continue,
),
wds.select(filter_long_samples),
]
pipeline = [
wds.ResampledShards(train_shards_path_or_url),
tarfile_to_samples_nothrow,
wds.shuffle(shuffle_buffer_size),
*processing_pipeline,
wds.batched(per_gpu_batch_size, partial=False, collation_fn=default_collate),
]
num_batches = math.ceil(num_train_examples / global_batch_size)
num_worker_batches = math.ceil(num_train_examples / (global_batch_size * num_workers)) # per dataloader worker
num_batches = num_worker_batches * num_workers
num_samples = num_batches * global_batch_size
self._train_dataset = wds.DataPipeline(*pipeline).with_epoch(num_worker_batches)
self._train_dataloader = wds.WebLoader(
self._train_dataset,
batch_size=None,
shuffle=False,
num_workers=num_workers,
pin_memory=pin_memory,
persistent_workers=persistent_workers,
)
# add meta-data to dataloader instance for convenience
self._train_dataloader.num_batches = num_batches
self._train_dataloader.num_samples = num_samples
def load_external_caption(self, sample):
if 'SA1B' in sample['__key__'] or 'sa' in sample['__key__']:
captionf = f"{self.external_caption_path}/{sample['__key__'].split('/')[-1]}.txt"
if os.path.exists(captionf):
with open(captionf, "r") as reader:
captions = reader.readlines()[0].replace('\n', '')
else:
captions = ""
# for captioning
if self.is_captioning:
if self.add_caption_prompt is not None:
prompt = random.sample(self.caption_prompt, 1)[0]
sample['txt'] = prompt + captions
else:
sample['txt'] = captions
# for generation
else:
# randomly choose short and long captions
if random.random() < 0.5:
sample['txt'] = captions.split('.')[0]
else:
sample['txt'] = captions
sample['txt'] = remove_prefix(sample['txt'])
return sample
elif 'laion' in sample['__url__']:
url_part = sample['__url__'].split('/')[-1].split('.')[0]
key = sample['__key__'].split('/')[-1]
captionf = os.path.join(self.external_laion12m_caption_path, url_part, f"{key}.caption")
if os.path.exists(captionf):
with open(captionf, "r") as reader:
captions = reader.read().strip()
else:
captions = ""
# for captioning
if self.is_captioning:
if self.add_caption_prompt is not None:
prompt = random.sample(self.caption_prompt, 1)[0]
sample['txt'] = prompt + captions
else:
sample['txt'] = captions
# for generation
else:
# randomly choose short and long captions
if random.random() < 0.5:
sample['txt'] = captions.split('.')[0]
else:
sample['txt'] = captions
sample['txt'] = remove_prefix(sample['txt'])
return sample
elif 'cc12m' in sample['__url__']:
url_part = sample['__url__'].split('/')[-1].split('.')[0]
key = sample['__key__'].split('/')[-1]
captionf = os.path.join(self.external_cc12m_caption_path, url_part, f"{key}.caption")
if os.path.exists(captionf):
with open(captionf, "r") as reader:
captions = reader.read().strip()
else:
captions = ""
# for captioning
if self.is_captioning:
if self.add_caption_prompt is not None:
prompt = random.sample(self.caption_prompt, 1)[0]
sample['txt'] = prompt + captions
else:
sample['txt'] = captions
# for generation
else:
# randomly choose short and long captions
if random.random() < 0.5:
sample['txt'] = captions.split('.')[0]
else:
sample['txt'] = captions
sample['txt'] = remove_prefix(sample['txt'])
return sample
elif "text-to-image-2M" in sample['__url__']:
if "json" in sample and "prompt" in sample["json"]:
captions = sample["json"]["prompt"]
else:
print(f"sample has no json or prompt: {sample}")
captions = ""
sample['txt'] = captions
return sample
elif 'ai2d' in sample['__url__']:
key = sample['__key__'].split('/')[-1]
df_row = self.ai2d_caption[self.ai2d_caption['image'].astype(str) == key + '.png']
if len(df_row) == 0:
print(f"No captions available for key {sample['__key__']}")
return sample
elif len(df_row) > 1:
# print(f"Multiple captions available for key {sample['__key__']}")
df_row = df_row.sample(1)
question = df_row['question'].values[0]
solution = df_row['solution'].values[0]
caption = (
'<|start_header_id|>user<|end_header_id|>\n'
"You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n"
f"{question}\n"
'<eot_id><|start_header_id|>assistant<|end_header_id|>\n'
f"{solution}"
)
sample['txt'] = caption
return sample
elif 'clevr' in sample['__url__']:
key = sample['__key__'].split('/')[-1]
df_row = self.clevr_caption[self.clevr_caption['image'].astype(str) == key + ".jpg"]
if len(df_row) == 0:
print(f"No captions available for key {sample['__key__']}")
return sample
elif len(df_row) > 1:
# print(f"Multiple captions available for key {sample['__key__']}")
df_row = df_row.sample(1)
question = df_row['question'].values[0]
solution = df_row['solution'].values[0]
caption = (
'<|start_header_id|>user<|end_header_id|>\n'
"You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n"
f"{question}\n"
'<eot_id><|start_header_id|>assistant<|end_header_id|>\n'
f"{solution}"
)
sample['txt'] = caption
return sample
elif 'docvqa' in sample['__url__']:
key = sample['__key__'].split('/')[-1]
df_row = self.docvqa_caption[self.docvqa_caption['image'].astype(str) == key + ".png"]
if len(df_row) == 0:
print(f"No captions available for key {sample['__key__']}")
return sample
elif len(df_row) > 1:
# print(f"Multiple captions available for key {sample['__key__']}")
df_row = df_row.sample(1)
question = df_row['question'].values[0]
solution = df_row['solution'].values[0]
caption = (
'<|start_header_id|>user<|end_header_id|>\n'
"You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n"
f"{question}\n"
'<eot_id><|start_header_id|>assistant<|end_header_id|>\n'
f"{solution}"
)
sample['txt'] = caption
return sample
elif 'geo' in sample['__url__']:
key = sample['__key__'].split('/')[-1]
df_row = self.geo_caption[self.geo_caption['image'].astype(str) == key + ".jpg"]
if len(df_row) == 0:
print(f"No captions available for key {sample['__key__']}")
return sample
elif len(df_row) > 1:
# print(f"Multiple captions available for key {sample['__key__']}")
df_row = df_row.sample(1)
question = df_row['question'].values[0]
solution = df_row['solution'].values[0]
caption = (
'<|start_header_id|>user<|end_header_id|>\n'
"You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n"
f"{question}\n"
'<eot_id><|start_header_id|>assistant<|end_header_id|>\n'
f"{solution}"
)
sample['txt'] = caption
return sample
elif self.journeydb_caption is not None and sample['__key__'] in self.journeydb_caption:
captions_list = self.journeydb_caption[sample['__key__']]
if len(captions_list) == 0:
print(f"No captions available for key {sample['__key__']}")
return sample
sample['txt'] = random.sample(captions_list, 1)[0]
return sample
else:
print(f"none exist sample: {sample}")
return sample
@property
def train_dataset(self):
return self._train_dataset
@property
def train_dataloader(self):
return self._train_dataloader
if __name__ == '__main__':
pass