File size: 21,174 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
# coding=utf-8
# Copyright 2025 MMaDA Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import itertools
import json
import math
import os
import random
import re
import pandas as pd
from functools import partial
from typing import List, Optional, Union

from PIL import Image

Image.warnings.simplefilter('error', Image.DecompressionBombWarning)

import webdataset as wds
import yaml
from braceexpand import braceexpand
from torch.utils.data import default_collate
from torchvision import transforms
from transformers import PreTrainedTokenizer
from webdataset.tariterators import (
    base_plus_ext,
    tar_file_expander,
    url_opener,
    valid_sample,
)

person_token = ["a person", "someone", "somebody"]

def replace_person_token(t):
    "Used for CC12M - handles all case variations of <person> tag"
    t = re.sub(r"<person>([,\s]*(and)*[,\s]*<person>)+", " people ", t, flags=re.IGNORECASE)
    
    person_pattern = re.compile(r"<person>", re.IGNORECASE)
    while person_pattern.search(t):
        match = person_pattern.search(t)
        t = t[:match.start()] + f" {random.choice(person_token)} " + t[match.end():]
    
    return t


def filter_keys(key_set):
    def _f(dictionary):
        return {k: v for k, v in dictionary.items() if k in key_set}

    return _f


def group_by_keys_nothrow(data, keys=base_plus_ext, lcase=True, suffixes=None, handler=None, src=None):
    """Return function over iterator that groups key, value pairs into samples.

    :param keys: function that splits the key into key and extension (base_plus_ext)
    :param lcase: convert suffixes to lower case (Default value = True)
    """
    current_sample = None
    for filesample in data:
        assert isinstance(filesample, dict)
        if "fname" not in filesample.keys():
            print(f"fname not in filesample.keys(): {filesample}")
            print(f"src: {src}")
            continue
        fname, value = filesample["fname"], filesample["data"]
        prefix, suffix = keys(fname)
        if prefix is None:
            continue
        if lcase:
            suffix = suffix.lower()

        if current_sample is None or prefix != current_sample["__key__"] or suffix in current_sample:
            if valid_sample(current_sample):
                yield current_sample
            current_sample = dict(__key__=prefix, __url__=filesample["__url__"])
        if suffixes is None or suffix in suffixes:
            current_sample[suffix] = value
    if valid_sample(current_sample):
        yield current_sample


def tarfile_to_samples_nothrow(src, handler=wds.warn_and_continue):
    # NOTE this is a re-impl of the webdataset impl with group_by_keys that doesn't throw
    
    streams = url_opener(src, handler=handler)
    files = tar_file_expander(streams, handler=handler) # [{fname,data,__url__}, ...]  __url__ ๅญ—ๆฎตๆ ‡่ฏ†ๅฝ“ๅ‰่ฏปๅ–็š„ๆ–‡ไปถๆฅ่‡ชๅ“ชไธช tar ๅŒ…
    samples = group_by_keys_nothrow(files, handler=handler, src=src)
    return samples


def image_transform(sample, resolution=256):
    image = sample["images"]
    image = transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC)(image)
    image = transforms.CenterCrop((resolution, resolution))(image)
    image = transforms.ToTensor()(image)
    image = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)(image)
    sample["images"] = image
    return sample

def image_transform_squash(sample, resolution=256):
    image = sample["images"]
    image = transforms.Resize((resolution, resolution), interpolation=transforms.InterpolationMode.BICUBIC)(image)
    image = transforms.ToTensor()(image)
    image = transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5, 0.5, 0.5])(image)
    sample["images"] = image
    return sample

def conditional_image_transform(sample, resolution=256):
    url = sample.get("__url__", "") 
    special_datasets = ['ai2d', 'clevr', 'docvqa', 'geo']
    use_squash = False
    for keyword in special_datasets:
        if keyword in url:
            use_squash = True
            break
    if use_squash:
        return image_transform_squash(sample, resolution)
    else:
        return image_transform(sample, resolution)


def remove_prefix(caption):
    caption = caption.replace('The image features ', '').replace('The image presents ', '').replace(
        "The image you've sent is, ", '').replace("In the center of the image, ", '').replace(
        "The image showcases ", '').replace("The image is ", '').replace(
        "The image captures ", '').replace("In the given image ", '').replace(
        "The image portrays ", '').replace("In the image, ", '').replace("In this image, we see ", '').replace(
        "The image depicts ", '').replace("This is ", '').replace("In this image, ", '').replace(
        "This image captures ", '')

    return caption

def filter_long_samples(sample):
    return sample.get('input_ids') is not None


class Text2ImageDataset:
    def __init__(
            self,
            train_shards_path_or_url: Union[str, List[str]],
            tokenizer: PreTrainedTokenizer,
            max_seq_length: int,
            num_train_examples: int,
            per_gpu_batch_size: int,
            global_batch_size: int,
            num_workers: int,
            resolution: int = 256,
            shuffle_buffer_size: int = 1000,
            pin_memory: bool = False,
            persistent_workers: bool = False,
            external_caption_path: Optional[str] = '',
            external_journeydb_caption_path: Optional[str] = '',
            external_laion12m_caption_path: Optional[str] = '',
            external_cc12m_caption_path: Optional[str] = '',
            external_text_to_image_2M_512_caption_path: Optional[str] = '',
            external_ai2d_caption_path: Optional[str] = '',
            external_clevr_caption_path: Optional[str] = '',
            external_docvqa_caption_path: Optional[str] = '',
            external_geo_caption_path: Optional[str] = '',
            is_captioning: bool = False,
            add_caption_prompt: bool = False,
            long_caption: bool = True,
            shuffle: bool = True,
    ):
        if f"{train_shards_path_or_url}.yaml" in os.listdir('./configs'):
            with open(f"./configs/{train_shards_path_or_url}.yaml") as f:
                train_shards_path_or_url = yaml.safe_load(f)
        self.long_caption = long_caption
        self.external_caption_path = external_caption_path
        self.external_journeydb_caption_path = external_journeydb_caption_path
        self.external_laion12m_caption_path = external_laion12m_caption_path
        self.external_cc12m_caption_path = external_cc12m_caption_path
        self.external_text_to_image_2M_512_caption_path = external_text_to_image_2M_512_caption_path
        self.is_captioning = is_captioning
        self.add_caption_prompt = add_caption_prompt
        if self.add_caption_prompt:
            with open("./training/questions.json") as f:
                self.caption_prompt = json.load(f)
                # self.caption_prompt = ['USER: \n' + prompt + ' ASSISTANT:' for prompt in self.caption_prompt]
                self.caption_prompt = ['<|start_header_id|>user<|end_header_id|>\n' + prompt + '<eot_id><|start_header_id|>assistant<|end_header_id|>\n' for prompt in self.caption_prompt]
        else:
            self.caption_prompt = None

        if external_journeydb_caption_path != '':
            with open(external_journeydb_caption_path) as file:
                self.journeydb_caption = json.load(file)
        else:
            self.journeydb_caption = None

        if external_ai2d_caption_path!= '':
            self.ai2d_caption = pd.read_csv(external_ai2d_caption_path)
        if external_clevr_caption_path!= '':
            self.clevr_caption = pd.read_csv(external_clevr_caption_path)
        if external_docvqa_caption_path!= '':
            self.docvqa_caption = pd.read_csv(external_docvqa_caption_path)
        if external_geo_caption_path!= '':
            self.geo_caption = pd.read_csv(external_geo_caption_path)

        def tokenize(text):
            if tokenizer is not None:
                text = replace_person_token(text)
                
                encoding = tokenizer(
                    text,
                    truncation=True,
                    max_length=2 * max_seq_length,
                    padding=False,
                    return_tensors="pt"
                )
                full_input_ids = encoding.input_ids[0]
                
                if len(full_input_ids) > max_seq_length:
                    return None
                else:
                    return text
            else:
                return text



        if not isinstance(train_shards_path_or_url, str):
            train_shards_path_or_url = [list(braceexpand(urls)) for urls in train_shards_path_or_url]
            # flatten list using itertools
            train_shards_path_or_url = list(itertools.chain.from_iterable(train_shards_path_or_url))

        if external_caption_path != '':
            processing_pipeline = [
                wds.decode("pil", handler=wds.ignore_and_continue),
                wds.map(self.load_external_caption, handler=wds.ignore_and_continue),
                wds.rename(
                    images="jpg;png;jpeg;webp",
                    input_ids="text;txt;caption",
                    handler=wds.warn_and_continue,
                ),
                wds.map(partial(conditional_image_transform, resolution=resolution), handler=wds.warn_and_continue),
                wds.map(filter_keys(set(["images", "input_ids"]))),
                wds.map_dict(
                    input_ids=tokenize,
                    handler=wds.warn_and_continue,
                ),
                wds.select(filter_long_samples), 
            ]
        else:
            processing_pipeline = [
                wds.decode("pil", handler=wds.ignore_and_continue),
                wds.rename(
                    images="jpg;png;jpeg;webp",
                    input_ids="text;txt;caption",
                    handler=wds.warn_and_continue,
                ),
                wds.map(partial(conditional_image_transform, resolution=resolution), handler=wds.warn_and_continue),
                wds.map(filter_keys(set(["images", "input_ids"]))),
                wds.map_dict(
                    input_ids=tokenize,
                    handler=wds.warn_and_continue,
                ),
                wds.select(filter_long_samples),  
            ]

        pipeline = [
            wds.ResampledShards(train_shards_path_or_url),
            tarfile_to_samples_nothrow,
            wds.shuffle(shuffle_buffer_size),
            *processing_pipeline,
            wds.batched(per_gpu_batch_size, partial=False, collation_fn=default_collate),
        ]

        num_batches = math.ceil(num_train_examples / global_batch_size)
        num_worker_batches = math.ceil(num_train_examples / (global_batch_size * num_workers))  # per dataloader worker
        num_batches = num_worker_batches * num_workers
        num_samples = num_batches * global_batch_size

        self._train_dataset = wds.DataPipeline(*pipeline).with_epoch(num_worker_batches)
        self._train_dataloader = wds.WebLoader(
            self._train_dataset,
            batch_size=None,
            shuffle=False,
            num_workers=num_workers,
            pin_memory=pin_memory,
            persistent_workers=persistent_workers,
        )
        # add meta-data to dataloader instance for convenience
        self._train_dataloader.num_batches = num_batches
        self._train_dataloader.num_samples = num_samples

    def load_external_caption(self, sample):

        if 'SA1B' in sample['__key__'] or 'sa' in sample['__key__']:
            captionf = f"{self.external_caption_path}/{sample['__key__'].split('/')[-1]}.txt"
            if os.path.exists(captionf):
                with open(captionf, "r") as reader:
                    captions = reader.readlines()[0].replace('\n', '')
            else:
                captions = ""

            # for captioning
            if self.is_captioning:
                if self.add_caption_prompt is not None:
                    prompt = random.sample(self.caption_prompt, 1)[0]
                    sample['txt'] = prompt + captions
                else:
                    sample['txt'] = captions
            # for generation
            else:
                # randomly choose short and long captions
                if random.random() < 0.5:
                    sample['txt'] = captions.split('.')[0]
                else:
                    sample['txt'] = captions

                sample['txt'] = remove_prefix(sample['txt'])

            return sample

        elif 'laion' in sample['__url__']:
            url_part = sample['__url__'].split('/')[-1].split('.')[0] 
            key = sample['__key__'].split('/')[-1]  
            captionf = os.path.join(self.external_laion12m_caption_path, url_part, f"{key}.caption")

            if os.path.exists(captionf):
                with open(captionf, "r") as reader:
                    captions = reader.read().strip()
            else:
                captions = ""

            # for captioning
            if self.is_captioning:
                if self.add_caption_prompt is not None:
                    prompt = random.sample(self.caption_prompt, 1)[0]
                    sample['txt'] = prompt  + captions
                else:
                    sample['txt'] = captions
            # for generation
            else:
                # randomly choose short and long captions
                if random.random() < 0.5:
                    sample['txt'] = captions.split('.')[0]
                else:
                    sample['txt'] = captions

                sample['txt'] = remove_prefix(sample['txt'])

            return sample

        elif 'cc12m' in sample['__url__']:
            url_part = sample['__url__'].split('/')[-1].split('.')[0]  
            key = sample['__key__'].split('/')[-1]  
            captionf = os.path.join(self.external_cc12m_caption_path, url_part, f"{key}.caption")

            if os.path.exists(captionf):
                with open(captionf, "r") as reader:
                    captions = reader.read().strip()
            else:
                captions = ""

            # for captioning
            if self.is_captioning:
                if self.add_caption_prompt is not None:
                    prompt = random.sample(self.caption_prompt, 1)[0]
                    sample['txt'] = prompt + captions
                else:
                    sample['txt'] = captions
            # for generation
            else:
                # randomly choose short and long captions
                if random.random() < 0.5:
                    sample['txt'] = captions.split('.')[0]
                else:
                    sample['txt'] = captions
                sample['txt'] = remove_prefix(sample['txt'])

            return sample

        elif "text-to-image-2M" in sample['__url__']:
            if "json" in sample and "prompt" in sample["json"]:
                captions = sample["json"]["prompt"]
            else:
                print(f"sample has no json or prompt: {sample}")
                captions = ""
    

            sample['txt'] = captions

            return sample

        elif 'ai2d' in sample['__url__']:
            key = sample['__key__'].split('/')[-1] 
            df_row = self.ai2d_caption[self.ai2d_caption['image'].astype(str) == key + '.png']
            if len(df_row) == 0:
                print(f"No captions available for key {sample['__key__']}")
                return sample
            elif len(df_row) > 1:
                # print(f"Multiple captions available for key {sample['__key__']}")
                df_row = df_row.sample(1)
            question = df_row['question'].values[0]
            solution = df_row['solution'].values[0]
            caption = (
                '<|start_header_id|>user<|end_header_id|>\n'
                "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n"
                f"{question}\n"
                '<eot_id><|start_header_id|>assistant<|end_header_id|>\n'
                f"{solution}"
            )
            sample['txt'] = caption
            return sample

        elif 'clevr' in sample['__url__']:
            key = sample['__key__'].split('/')[-1]
            df_row = self.clevr_caption[self.clevr_caption['image'].astype(str) == key + ".jpg"]
            if len(df_row) == 0:
                print(f"No captions available for key {sample['__key__']}")
                return sample
            elif len(df_row) > 1:
                # print(f"Multiple captions available for key {sample['__key__']}")
                df_row = df_row.sample(1)
            question = df_row['question'].values[0]
            solution = df_row['solution'].values[0]
            caption = (
                '<|start_header_id|>user<|end_header_id|>\n'
                "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n"
                f"{question}\n"
                '<eot_id><|start_header_id|>assistant<|end_header_id|>\n'
                f"{solution}"
            )
            sample['txt'] = caption
            return sample

        elif 'docvqa' in sample['__url__']:
            key = sample['__key__'].split('/')[-1]
            df_row = self.docvqa_caption[self.docvqa_caption['image'].astype(str) == key + ".png"]
            if len(df_row) == 0:
                print(f"No captions available for key {sample['__key__']}")
                return sample
            elif len(df_row) > 1:
                # print(f"Multiple captions available for key {sample['__key__']}")
                df_row = df_row.sample(1)
            question = df_row['question'].values[0]
            solution = df_row['solution'].values[0]
            caption = (
                '<|start_header_id|>user<|end_header_id|>\n'
                "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n"
                f"{question}\n"
                '<eot_id><|start_header_id|>assistant<|end_header_id|>\n'
                f"{solution}"
            )
            sample['txt'] = caption
            return sample

        elif 'geo' in sample['__url__']:
            key = sample['__key__'].split('/')[-1]
            df_row = self.geo_caption[self.geo_caption['image'].astype(str) == key + ".jpg"]
            if len(df_row) == 0:
                print(f"No captions available for key {sample['__key__']}")
                return sample
            elif len(df_row) > 1:
                # print(f"Multiple captions available for key {sample['__key__']}")
                df_row = df_row.sample(1)
            question = df_row['question'].values[0]
            solution = df_row['solution'].values[0]
            caption = (
                '<|start_header_id|>user<|end_header_id|>\n'
                "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n"
                f"{question}\n"
                '<eot_id><|start_header_id|>assistant<|end_header_id|>\n'
                f"{solution}"
            )
            sample['txt'] = caption
            return sample


        elif self.journeydb_caption is not None and sample['__key__'] in self.journeydb_caption:
            captions_list = self.journeydb_caption[sample['__key__']]
            if len(captions_list) == 0:
                print(f"No captions available for key {sample['__key__']}")
                return sample 
            sample['txt'] = random.sample(captions_list, 1)[0] 
            return sample

        else:
            print(f"none exist sample: {sample}")
            return sample 

    @property
    def train_dataset(self):
        return self._train_dataset

    @property
    def train_dataloader(self):
        return self._train_dataloader


if __name__ == '__main__':
    pass