|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import inspect |
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "true" |
|
from PIL import Image |
|
from tqdm import tqdm |
|
import numpy as np |
|
import torch |
|
import wandb |
|
from models import MAGVITv2, get_mask_schedule, MMadaModelLM, MMadaConfig |
|
from training.prompting_utils import UniversalPrompting |
|
from training.utils import get_config, flatten_omega_conf, image_transform |
|
from transformers import AutoTokenizer, AutoConfig, AutoModel |
|
import torch.nn.functional as F |
|
|
|
def resize_vocab(model, config): |
|
print(f"Resizing token embeddings to {config.new_vocab_size}") |
|
model.resize_token_embeddings(config.new_vocab_size) |
|
|
|
|
|
def get_vq_model_class(model_type): |
|
if model_type == "magvitv2": |
|
return MAGVITv2 |
|
else: |
|
raise ValueError(f"model_type {model_type} not supported.") |
|
|
|
if __name__ == '__main__': |
|
|
|
config = get_config() |
|
|
|
|
|
resume_wandb_run = config.wandb.resume |
|
run_id = config.wandb.get("run_id", None) |
|
if run_id is None: |
|
resume_wandb_run = False |
|
run_id = wandb.util.generate_id() |
|
config.wandb.run_id = run_id |
|
|
|
wandb_config = {k: v for k, v in flatten_omega_conf(config, resolve=True)} |
|
|
|
wandb.init( |
|
project="demo", |
|
name=config.experiment.name + '_t2i', |
|
config=wandb_config, |
|
) |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
tokenizer = AutoTokenizer.from_pretrained(config.model.mmada.pretrained_model_path, padding_side="left") |
|
|
|
uni_prompting = UniversalPrompting(tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length, special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob, use_reserved_token=True) |
|
|
|
vq_model = get_vq_model_class(config.model.vq_model.type) |
|
vq_model = vq_model.from_pretrained(config.model.vq_model.vq_model_name).to(device) |
|
vq_model.requires_grad_(False) |
|
vq_model.eval() |
|
model = MMadaModelLM.from_pretrained(config.model.mmada.pretrained_model_path, trust_remote_code=True, torch_dtype=torch.bfloat16) |
|
|
|
|
|
model.to(device) |
|
|
|
mask_token_id = model.config.mask_token_id |
|
if config.get("validation_prompts_file", None) is not None: |
|
config.dataset.params.validation_prompts_file = config.validation_prompts_file |
|
config.training.batch_size = config.batch_size |
|
|
|
config.training.guidance_scale = config.guidance_scale |
|
config.training.generation_timesteps = config.generation_timesteps |
|
|
|
with open(config.dataset.params.validation_prompts_file, "r") as f: |
|
validation_prompts = f.read().splitlines() |
|
|
|
for step in tqdm(range(0, len(validation_prompts), config.training.batch_size)): |
|
prompts = validation_prompts[step:step + config.training.batch_size] |
|
|
|
image_tokens = torch.ones((len(prompts), config.model.mmada.num_vq_tokens), |
|
dtype=torch.long, device=device) * mask_token_id |
|
input_ids, attention_mask = uni_prompting((prompts, image_tokens), 't2i_gen') |
|
if config.training.guidance_scale > 0: |
|
uncond_input_ids, uncond_attention_mask = uni_prompting(([''] * len(prompts), image_tokens), 't2i_gen') |
|
else: |
|
uncond_input_ids = None |
|
uncond_attention_mask = None |
|
|
|
if config.get("mask_schedule", None) is not None: |
|
schedule = config.mask_schedule.schedule |
|
args = config.mask_schedule.get("params", {}) |
|
mask_schedule = get_mask_schedule(schedule, **args) |
|
else: |
|
mask_schedule = get_mask_schedule(config.training.get("mask_schedule", "cosine")) |
|
with torch.no_grad(): |
|
gen_token_ids = model.t2i_generate( |
|
input_ids=input_ids, |
|
uncond_input_ids=uncond_input_ids, |
|
attention_mask=attention_mask, |
|
uncond_attention_mask=uncond_attention_mask, |
|
guidance_scale=config.training.guidance_scale, |
|
temperature=config.training.get("generation_temperature", 1.0), |
|
timesteps=config.training.generation_timesteps, |
|
noise_schedule=mask_schedule, |
|
noise_type=config.training.get("noise_type", "mask"), |
|
seq_len=config.model.mmada.num_vq_tokens, |
|
uni_prompting=uni_prompting, |
|
config=config, |
|
) |
|
|
|
gen_token_ids = torch.clamp(gen_token_ids, max=config.model.mmada.codebook_size - 1, min=0) |
|
images = vq_model.decode_code(gen_token_ids) |
|
|
|
images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0) |
|
images *= 255.0 |
|
images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) |
|
pil_images = [Image.fromarray(image) for image in images] |
|
|
|
wandb_images = [wandb.Image(image, caption=prompts[i]) for i, image in enumerate(pil_images)] |
|
wandb.log({"generated_images": wandb_images}, step=step) |
|
|