File size: 5,551 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
# coding=utf-8
# Copyright 2025 MMaDA Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import inspect
os.environ["TOKENIZERS_PARALLELISM"] = "true"
from PIL import Image
from tqdm import tqdm
import numpy as np
import torch
import wandb
from models import MAGVITv2, get_mask_schedule, MMadaModelLM, MMadaConfig
from training.prompting_utils import UniversalPrompting
from training.utils import get_config, flatten_omega_conf, image_transform
from transformers import AutoTokenizer, AutoConfig, AutoModel
import torch.nn.functional as F
def resize_vocab(model, config):
print(f"Resizing token embeddings to {config.new_vocab_size}")
model.resize_token_embeddings(config.new_vocab_size)
def get_vq_model_class(model_type):
if model_type == "magvitv2":
return MAGVITv2
else:
raise ValueError(f"model_type {model_type} not supported.")
if __name__ == '__main__':
config = get_config()
resume_wandb_run = config.wandb.resume
run_id = config.wandb.get("run_id", None)
if run_id is None:
resume_wandb_run = False
run_id = wandb.util.generate_id()
config.wandb.run_id = run_id
wandb_config = {k: v for k, v in flatten_omega_conf(config, resolve=True)}
wandb.init(
project="demo",
name=config.experiment.name + '_t2i',
config=wandb_config,
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(config.model.mmada.pretrained_model_path, padding_side="left")
uni_prompting = UniversalPrompting(tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length, special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob, use_reserved_token=True)
vq_model = get_vq_model_class(config.model.vq_model.type)
vq_model = vq_model.from_pretrained(config.model.vq_model.vq_model_name).to(device)
vq_model.requires_grad_(False)
vq_model.eval()
model = MMadaModelLM.from_pretrained(config.model.mmada.pretrained_model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
model.to(device)
mask_token_id = model.config.mask_token_id
if config.get("validation_prompts_file", None) is not None:
config.dataset.params.validation_prompts_file = config.validation_prompts_file
config.training.batch_size = config.batch_size
config.training.guidance_scale = config.guidance_scale
config.training.generation_timesteps = config.generation_timesteps
with open(config.dataset.params.validation_prompts_file, "r") as f:
validation_prompts = f.read().splitlines()
for step in tqdm(range(0, len(validation_prompts), config.training.batch_size)):
prompts = validation_prompts[step:step + config.training.batch_size]
image_tokens = torch.ones((len(prompts), config.model.mmada.num_vq_tokens),
dtype=torch.long, device=device) * mask_token_id
input_ids, attention_mask = uni_prompting((prompts, image_tokens), 't2i_gen')
if config.training.guidance_scale > 0:
uncond_input_ids, uncond_attention_mask = uni_prompting(([''] * len(prompts), image_tokens), 't2i_gen')
else:
uncond_input_ids = None
uncond_attention_mask = None
if config.get("mask_schedule", None) is not None:
schedule = config.mask_schedule.schedule
args = config.mask_schedule.get("params", {})
mask_schedule = get_mask_schedule(schedule, **args)
else:
mask_schedule = get_mask_schedule(config.training.get("mask_schedule", "cosine"))
with torch.no_grad():
gen_token_ids = model.t2i_generate(
input_ids=input_ids,
uncond_input_ids=uncond_input_ids,
attention_mask=attention_mask,
uncond_attention_mask=uncond_attention_mask,
guidance_scale=config.training.guidance_scale,
temperature=config.training.get("generation_temperature", 1.0),
timesteps=config.training.generation_timesteps,
noise_schedule=mask_schedule,
noise_type=config.training.get("noise_type", "mask"),
seq_len=config.model.mmada.num_vq_tokens,
uni_prompting=uni_prompting,
config=config,
)
gen_token_ids = torch.clamp(gen_token_ids, max=config.model.mmada.codebook_size - 1, min=0)
images = vq_model.decode_code(gen_token_ids)
images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0)
images *= 255.0
images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)
pil_images = [Image.fromarray(image) for image in images]
wandb_images = [wandb.Image(image, caption=prompts[i]) for i, image in enumerate(pil_images)]
wandb.log({"generated_images": wandb_images}, step=step)
|