MMaDA / inference_mmu.py
jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# coding=utf-8
# Copyright 2025 MMaDA Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
os.environ["TOKENIZERS_PARALLELISM"] = "true"
from PIL import Image
from tqdm import tqdm
import numpy as np
import torch
import wandb
from models import MAGVITv2, MMadaConfig, MMadaModelLM
from training.prompting_utils import UniversalPrompting
from training.utils import get_config, flatten_omega_conf, image_transform
from transformers import AutoTokenizer, AutoConfig
def resize_vocab(model, config):
print(f"Resizing token embeddings to {config.new_vocab_size}")
model.resize_token_embeddings(config.new_vocab_size)
def get_vq_model_class(model_type):
if model_type == "magvitv2":
return MAGVITv2
else:
raise ValueError(f"model_type {model_type} not supported.")
if __name__ == '__main__':
config = get_config()
resume_wandb_run = config.wandb.resume
run_id = config.wandb.get("run_id", None)
if run_id is None:
resume_wandb_run = False
run_id = wandb.util.generate_id()
config.wandb.run_id = run_id
wandb_config = {k: v for k, v in flatten_omega_conf(config, resolve=True)}
wandb.init(
project="demo",
name=config.experiment.name + '_mmu',
config=wandb_config,
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(config.model.mmada.pretrained_model_path, padding_side="left")
uni_prompting = UniversalPrompting(tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length,
special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),
ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob, use_reserved_token=True)
vq_model = get_vq_model_class(config.model.vq_model.type)
vq_model = vq_model.from_pretrained(config.model.vq_model.vq_model_name).to(device)
vq_model.requires_grad_(False)
vq_model.eval()
model = MMadaModelLM.from_pretrained(config.model.mmada.pretrained_model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
model.to(device)
mask_token_id = model.config.mask_token_id
temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions
top_k = 1 # retain only the top_k most likely tokens, clamp others to have 0 probability
file_list = os.listdir(config.mmu_image_root)
file_list = [f for f in file_list if f.lower().endswith(('.jpg', '.png', '.jpeg'))]
responses = ['' for i in range(len(file_list))]
images = []
config.question = config.question.split(' *** ')
for i, file_name in enumerate(tqdm(file_list)):
image_path = os.path.join(config.mmu_image_root, file_name)
image_ori = Image.open(image_path).convert("RGB")
image = image_transform(image_ori, resolution=config.dataset.params.resolution).to(device)
image = image.unsqueeze(0)
images.append(image)
image_tokens = vq_model.get_code(image) + len(uni_prompting.text_tokenizer)
batch_size = 1
for question in config.question:
input_ids = uni_prompting.text_tokenizer(['<|start_header_id|>user<|end_header_id|>\n' + "Please describe this image in detail." +'<eot_id><|start_header_id|>assistant<|end_header_id|>\n'])['input_ids']
input_ids = torch.tensor(input_ids).to(device)
input_ids = torch.cat([
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|mmu|>']).to(device),
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|soi|>']).to(device),
image_tokens,
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|eoi|>']).to(device),
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|sot|>']).to(device),
input_ids
], dim=1).long()
output_ids = model.mmu_generate(input_ids, max_new_tokens=1024, steps=512, block_length=1024)
text = uni_prompting.text_tokenizer.batch_decode(output_ids[:, input_ids.shape[1]:], skip_special_tokens=True)
print(text)
responses[i] += f'User: ' + question + f'\n Answer : ' + text[0] + '\n'
images = torch.cat(images, dim=0)
images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0)
images *= 255.0
images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)
pil_images = [Image.fromarray(image) for image in images]
wandb_images = [wandb.Image(image, caption=responses[i]) for i, image in enumerate(pil_images)]
wandb.log({"multimodal understanding": wandb_images}, step=0)