# coding=utf-8 # Copyright 2025 MMaDA Team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os os.environ["TOKENIZERS_PARALLELISM"] = "true" from PIL import Image from tqdm import tqdm import numpy as np import torch import wandb from models import MAGVITv2, MMadaConfig, MMadaModelLM from training.prompting_utils import UniversalPrompting from training.utils import get_config, flatten_omega_conf, image_transform from transformers import AutoTokenizer, AutoConfig def resize_vocab(model, config): print(f"Resizing token embeddings to {config.new_vocab_size}") model.resize_token_embeddings(config.new_vocab_size) def get_vq_model_class(model_type): if model_type == "magvitv2": return MAGVITv2 else: raise ValueError(f"model_type {model_type} not supported.") if __name__ == '__main__': config = get_config() resume_wandb_run = config.wandb.resume run_id = config.wandb.get("run_id", None) if run_id is None: resume_wandb_run = False run_id = wandb.util.generate_id() config.wandb.run_id = run_id wandb_config = {k: v for k, v in flatten_omega_conf(config, resolve=True)} wandb.init( project="demo", name=config.experiment.name + '_mmu', config=wandb_config, ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") tokenizer = AutoTokenizer.from_pretrained(config.model.mmada.pretrained_model_path, padding_side="left") uni_prompting = UniversalPrompting(tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length, special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"), ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob, use_reserved_token=True) vq_model = get_vq_model_class(config.model.vq_model.type) vq_model = vq_model.from_pretrained(config.model.vq_model.vq_model_name).to(device) vq_model.requires_grad_(False) vq_model.eval() model = MMadaModelLM.from_pretrained(config.model.mmada.pretrained_model_path, trust_remote_code=True, torch_dtype=torch.bfloat16) model.to(device) mask_token_id = model.config.mask_token_id temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions top_k = 1 # retain only the top_k most likely tokens, clamp others to have 0 probability file_list = os.listdir(config.mmu_image_root) file_list = [f for f in file_list if f.lower().endswith(('.jpg', '.png', '.jpeg'))] responses = ['' for i in range(len(file_list))] images = [] config.question = config.question.split(' *** ') for i, file_name in enumerate(tqdm(file_list)): image_path = os.path.join(config.mmu_image_root, file_name) image_ori = Image.open(image_path).convert("RGB") image = image_transform(image_ori, resolution=config.dataset.params.resolution).to(device) image = image.unsqueeze(0) images.append(image) image_tokens = vq_model.get_code(image) + len(uni_prompting.text_tokenizer) batch_size = 1 for question in config.question: input_ids = uni_prompting.text_tokenizer(['<|start_header_id|>user<|end_header_id|>\n' + "Please describe this image in detail." +'<|start_header_id|>assistant<|end_header_id|>\n'])['input_ids'] input_ids = torch.tensor(input_ids).to(device) input_ids = torch.cat([ (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|mmu|>']).to(device), (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|soi|>']).to(device), image_tokens, (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|eoi|>']).to(device), (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|sot|>']).to(device), input_ids ], dim=1).long() output_ids = model.mmu_generate(input_ids, max_new_tokens=1024, steps=512, block_length=1024) text = uni_prompting.text_tokenizer.batch_decode(output_ids[:, input_ids.shape[1]:], skip_special_tokens=True) print(text) responses[i] += f'User: ' + question + f'\n Answer : ' + text[0] + '\n' images = torch.cat(images, dim=0) images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0) images *= 255.0 images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) pil_images = [Image.fromarray(image) for image in images] wandb_images = [wandb.Image(image, caption=responses[i]) for i, image in enumerate(pil_images)] wandb.log({"multimodal understanding": wandb_images}, step=0)