trl-sandbox / tests /test_environments.py
ivangabriele's picture
feat: initialize project
2f5127c verified
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from unittest.mock import patch
import torch
from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead, TextEnvironment, TextHistory
class DummyTool:
def __call__(self, text):
return text
def dummy_generate(histories):
for i in range(len(histories)):
histories[i].append_segment("<request><DummyTool>test<call>", torch.tensor([1, 2, 3]), system=False)
return histories
class TextHistoryTest(unittest.TestCase):
def test_text_history_init(self):
text = "Hello there!"
tokens = torch.tensor([1, 2, 3])
history = TextHistory(text, tokens)
self.assertEqual(history.text, text)
self.assertTrue(torch.equal(history.tokens, tokens))
self.assertTrue(torch.equal(history.token_masks, torch.zeros_like(tokens)))
history = TextHistory(text, tokens, system=False)
self.assertTrue(torch.equal(history.token_masks, torch.ones_like(tokens)))
def test_text_history_append_segment(self):
text = "Hello there!"
tokens = torch.tensor([1, 2, 3])
history = TextHistory(text, tokens)
history.append_segment("General Kenobi!", torch.tensor([4, 5, 6]), system=False)
self.assertEqual(history.text, (text + "General Kenobi!"))
self.assertTrue(torch.equal(history.tokens, torch.tensor([1, 2, 3, 4, 5, 6])))
self.assertTrue(torch.equal(history.token_masks, torch.tensor([0, 0, 0, 1, 1, 1])))
history.append_segment("You are a bold one!", torch.tensor([7, 8, 9]))
self.assertEqual(history.text, ((text + "General Kenobi!") + "You are a bold one!"))
self.assertTrue(torch.equal(history.tokens, torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9])))
self.assertTrue(torch.equal(history.token_masks, torch.tensor([0, 0, 0, 1, 1, 1, 0, 0, 0])))
def test_text_history_complete(self):
text = "Hello there!"
tokens = torch.tensor([1, 2, 3])
history = TextHistory(text, tokens)
history.complete()
self.assertTrue(history.completed)
self.assertFalse(history.truncated)
history.complete(truncated=True)
self.assertTrue(history.completed)
self.assertTrue(history.truncated)
def test_text_history_last_segment(self):
text = "Hello there!"
tokens = torch.tensor([1, 2, 3])
history = TextHistory(text, tokens)
history.append_segment("General Kenobi!", torch.tensor([4, 5, 6]))
history.append_segment("You are a bold one!", torch.tensor([7, 8, 9]))
self.assertEqual(history.last_text_segment, "You are a bold one!")
def test_text_history_split_query_response(self):
text = "Hello there!"
tokens = torch.tensor([1, 2, 3])
history = TextHistory(text, tokens)
history.append_segment("General Kenobi!", torch.tensor([4, 5, 6]), system=False)
history.append_segment("You are a bold one!", torch.tensor([7, 8, 9]), system=True)
query, response, mask = history.split_query_response_tokens()
self.assertTrue(torch.equal(query, torch.tensor([1, 2, 3])))
self.assertTrue(torch.equal(response, torch.tensor([4, 5, 6, 7, 8, 9])))
self.assertTrue(torch.equal(mask, torch.tensor([1, 1, 1, 0, 0, 0])))
class TextEnvironmentTester(unittest.TestCase):
def setUp(self):
# model_id
self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
# get models and tokenizer
self.gpt2_model = AutoModelForCausalLMWithValueHead.from_pretrained(self.model_id)
self.gpt2_tokenizer = AutoTokenizer.from_pretrained(self.model_id)
self.gpt2_tokenizer.pad_token = self.gpt2_tokenizer.eos_token
def test_text_environment_setup(self):
env = TextEnvironment(
self.gpt2_model,
self.gpt2_tokenizer,
tools=[DummyTool()],
reward_fn=lambda x: torch.tensor(1),
prompt="I am a prompt!\n",
)
self.assertEqual(env.prompt, "I am a prompt!\n")
self.assertListEqual(list(env.tools.keys()), ["DummyTool"])
self.assertIsInstance(env.tools["DummyTool"], DummyTool)
self.assertEqual(env.reward_fn("Hello there!"), 1)
def test_text_environment_generate(self):
generation_kwargs = {"do_sample": False, "max_new_tokens": 4, "pad_token_id": self.gpt2_tokenizer.eos_token_id}
env = TextEnvironment(
self.gpt2_model,
self.gpt2_tokenizer,
tools=[DummyTool()],
reward_fn=lambda x: torch.tensor(1),
prompt="I am a prompt!\n",
generation_kwargs=generation_kwargs,
)
input_texts = ["this is a test", "this is another, longer test"]
model_inputs = [self.gpt2_tokenizer(txt, return_tensors="pt").input_ids.squeeze() for txt in input_texts]
generations_batched = env._generate_batched(model_inputs, batch_size=2)
generations_batched = self.gpt2_tokenizer.batch_decode(generations_batched)
generations_single = [env._generate_batched([inputs], batch_size=1)[0] for inputs in model_inputs]
generations_single = self.gpt2_tokenizer.batch_decode(generations_single)
self.assertEqual(generations_single, generations_batched)
def test_text_environment_tool_call_parsing(self):
string_valid = "Something something <request><Tool1>Hello there!<call>"
string_invalid_request = "Something something <Tool1>Hello there!<call>"
string_invalid_call = "Something something <request><Tool1>Hello there!"
string_invalid_tool = "Something something <request>|Tool2|Hello there!<call>"
string_invalid_random = "<>abcdefghijklm<>nopqrstuvwxyz<>"
env = TextEnvironment(
self.gpt2_model,
self.gpt2_tokenizer,
tools=[DummyTool()],
reward_fn=lambda x: torch.tensor(1),
prompt="I am a prompt!\n",
)
tool, response = env.parse_tool_call(string_valid)
self.assertEqual(tool, "Tool1")
self.assertEqual(response, "Hello there!")
tool, response = env.parse_tool_call(string_invalid_request)
self.assertIsNone(tool)
self.assertIsNone(response)
tool, response = env.parse_tool_call(string_invalid_call)
self.assertIsNone(tool)
self.assertIsNone(response)
tool, response = env.parse_tool_call(string_invalid_tool)
self.assertIsNone(tool)
self.assertIsNone(response)
tool, response = env.parse_tool_call(string_invalid_random)
self.assertIsNone(tool)
self.assertIsNone(response)
def test_text_environment_tool_truncation(self):
env = TextEnvironment(
self.gpt2_model,
self.gpt2_tokenizer,
tools={"dummy": lambda x: "a" * 1000},
reward_fn=lambda x: torch.tensor(1),
prompt="I am a prompt!\n",
)
env.max_tool_response = 100
history = env.step(TextHistory("<request><dummy>Hello there!<call>", torch.tensor([1, 2, 3])))
self.assertEqual((len(history.last_text_segment) - len(env.response_token)), 100)
env.max_tool_response = 500
history = env.step(TextHistory("<request><dummy>Hello there!<call>", torch.tensor([1, 2, 3])))
self.assertEqual((len(history.last_text_segment) - len(env.response_token)), 500)
env.max_tool_response = 1001
history = env.step(TextHistory("<request><dummy>Hello there!<call>", torch.tensor([1, 2, 3])))
self.assertEqual((len(history.last_text_segment) - len(env.response_token)), 1000)
env.max_tool_response = 2000
history = env.step(TextHistory("<request><dummy>Hello there!<call>", torch.tensor([1, 2, 3])))
self.assertEqual((len(history.last_text_segment) - len(env.response_token)), 1000)
@patch.object(TextEnvironment, "generate", side_effect=dummy_generate)
def test_text_environment_max_calls(self, mock_generate):
env = TextEnvironment(
self.gpt2_model,
self.gpt2_tokenizer,
tools={"DummyTool": DummyTool()},
reward_fn=lambda x: [torch.tensor(1) for _ in x],
prompt="I am a prompt!\n",
)
env.max_turns = 1
_, _, _, _, histories = env.run(["test"])
self.assertEqual(
histories[0].text,
("I am a prompt!\n" + "test") + (1 * "<request><DummyTool>test<call>test<response>"),
)
env.max_turns = 2
_, _, _, _, histories = env.run(["test"])
self.assertEqual(
histories[0].text,
("I am a prompt!\n" + "test") + (2 * "<request><DummyTool>test<call>test<response>"),
)
env.max_turns = 4
_, _, _, _, histories = env.run(["test"])
self.assertEqual(
histories[0].text,
("I am a prompt!\n" + "test") + (4 * "<request><DummyTool>test<call>test<response>"),
)
def test_text_environment_compute_rewards(self):
env = TextEnvironment(
self.gpt2_model,
self.gpt2_tokenizer,
tools={"DummyTool": DummyTool()},
reward_fn=lambda x: [torch.tensor(i) for i, _ in enumerate(x)],
prompt="I am a prompt!\n",
)
histories = [TextHistory("<request><DummyTool>test<call>", torch.tensor([1, 2, 3])) for _ in range(8)]
histories = env.compute_reward(histories)
for i in range(8):
self.assertEqual(histories[i].reward, i)
@patch.object(TextEnvironment, "generate", side_effect=dummy_generate)
def test_text_environment_run(self, mock_generate):
env = TextEnvironment(
self.gpt2_model,
self.gpt2_tokenizer,
tools={"DummyTool": DummyTool()},
reward_fn=lambda x: [torch.tensor(i) for i, _ in enumerate(x)],
prompt="I am a prompt!\n",
max_turns=2,
)
task_1 = "Hello there!"
task_2 = "Hello there! General Kenobi!"
query, response, response_mask, reward, histories = env.run([task_1, task_2])
self.assertEqual(len(query[0]), 8)
self.assertEqual(len(query[1]), 12)
self.assertEqual(len(response[0]), 14)
self.assertEqual(len(response[1]), 14)
self.assertEqual(response_mask[0].sum(), (2 * 3))
# mocked generate always adds 3 toknes
self.assertEqual(response_mask[1].sum(), (2 * 3))
# mocked generate always adds 3 toknes
self.assertEqual(reward[1], 1)
self.assertEqual(
histories[0].text,
("I am a prompt!\n" + "Hello there!") + (2 * "<request><DummyTool>test<call>test<response>"),
)
self.assertEqual(
histories[1].text,
("I am a prompt!\n" + "Hello there! General Kenobi!")
+ (2 * "<request><DummyTool>test<call>test<response>"),
)