# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from unittest.mock import patch import torch from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead, TextEnvironment, TextHistory class DummyTool: def __call__(self, text): return text def dummy_generate(histories): for i in range(len(histories)): histories[i].append_segment("test", torch.tensor([1, 2, 3]), system=False) return histories class TextHistoryTest(unittest.TestCase): def test_text_history_init(self): text = "Hello there!" tokens = torch.tensor([1, 2, 3]) history = TextHistory(text, tokens) self.assertEqual(history.text, text) self.assertTrue(torch.equal(history.tokens, tokens)) self.assertTrue(torch.equal(history.token_masks, torch.zeros_like(tokens))) history = TextHistory(text, tokens, system=False) self.assertTrue(torch.equal(history.token_masks, torch.ones_like(tokens))) def test_text_history_append_segment(self): text = "Hello there!" tokens = torch.tensor([1, 2, 3]) history = TextHistory(text, tokens) history.append_segment("General Kenobi!", torch.tensor([4, 5, 6]), system=False) self.assertEqual(history.text, (text + "General Kenobi!")) self.assertTrue(torch.equal(history.tokens, torch.tensor([1, 2, 3, 4, 5, 6]))) self.assertTrue(torch.equal(history.token_masks, torch.tensor([0, 0, 0, 1, 1, 1]))) history.append_segment("You are a bold one!", torch.tensor([7, 8, 9])) self.assertEqual(history.text, ((text + "General Kenobi!") + "You are a bold one!")) self.assertTrue(torch.equal(history.tokens, torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9]))) self.assertTrue(torch.equal(history.token_masks, torch.tensor([0, 0, 0, 1, 1, 1, 0, 0, 0]))) def test_text_history_complete(self): text = "Hello there!" tokens = torch.tensor([1, 2, 3]) history = TextHistory(text, tokens) history.complete() self.assertTrue(history.completed) self.assertFalse(history.truncated) history.complete(truncated=True) self.assertTrue(history.completed) self.assertTrue(history.truncated) def test_text_history_last_segment(self): text = "Hello there!" tokens = torch.tensor([1, 2, 3]) history = TextHistory(text, tokens) history.append_segment("General Kenobi!", torch.tensor([4, 5, 6])) history.append_segment("You are a bold one!", torch.tensor([7, 8, 9])) self.assertEqual(history.last_text_segment, "You are a bold one!") def test_text_history_split_query_response(self): text = "Hello there!" tokens = torch.tensor([1, 2, 3]) history = TextHistory(text, tokens) history.append_segment("General Kenobi!", torch.tensor([4, 5, 6]), system=False) history.append_segment("You are a bold one!", torch.tensor([7, 8, 9]), system=True) query, response, mask = history.split_query_response_tokens() self.assertTrue(torch.equal(query, torch.tensor([1, 2, 3]))) self.assertTrue(torch.equal(response, torch.tensor([4, 5, 6, 7, 8, 9]))) self.assertTrue(torch.equal(mask, torch.tensor([1, 1, 1, 0, 0, 0]))) class TextEnvironmentTester(unittest.TestCase): def setUp(self): # model_id self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" # get models and tokenizer self.gpt2_model = AutoModelForCausalLMWithValueHead.from_pretrained(self.model_id) self.gpt2_tokenizer = AutoTokenizer.from_pretrained(self.model_id) self.gpt2_tokenizer.pad_token = self.gpt2_tokenizer.eos_token def test_text_environment_setup(self): env = TextEnvironment( self.gpt2_model, self.gpt2_tokenizer, tools=[DummyTool()], reward_fn=lambda x: torch.tensor(1), prompt="I am a prompt!\n", ) self.assertEqual(env.prompt, "I am a prompt!\n") self.assertListEqual(list(env.tools.keys()), ["DummyTool"]) self.assertIsInstance(env.tools["DummyTool"], DummyTool) self.assertEqual(env.reward_fn("Hello there!"), 1) def test_text_environment_generate(self): generation_kwargs = {"do_sample": False, "max_new_tokens": 4, "pad_token_id": self.gpt2_tokenizer.eos_token_id} env = TextEnvironment( self.gpt2_model, self.gpt2_tokenizer, tools=[DummyTool()], reward_fn=lambda x: torch.tensor(1), prompt="I am a prompt!\n", generation_kwargs=generation_kwargs, ) input_texts = ["this is a test", "this is another, longer test"] model_inputs = [self.gpt2_tokenizer(txt, return_tensors="pt").input_ids.squeeze() for txt in input_texts] generations_batched = env._generate_batched(model_inputs, batch_size=2) generations_batched = self.gpt2_tokenizer.batch_decode(generations_batched) generations_single = [env._generate_batched([inputs], batch_size=1)[0] for inputs in model_inputs] generations_single = self.gpt2_tokenizer.batch_decode(generations_single) self.assertEqual(generations_single, generations_batched) def test_text_environment_tool_call_parsing(self): string_valid = "Something something Hello there!" string_invalid_request = "Something something Hello there!" string_invalid_call = "Something something Hello there!" string_invalid_tool = "Something something |Tool2|Hello there!" string_invalid_random = "<>abcdefghijklm<>nopqrstuvwxyz<>" env = TextEnvironment( self.gpt2_model, self.gpt2_tokenizer, tools=[DummyTool()], reward_fn=lambda x: torch.tensor(1), prompt="I am a prompt!\n", ) tool, response = env.parse_tool_call(string_valid) self.assertEqual(tool, "Tool1") self.assertEqual(response, "Hello there!") tool, response = env.parse_tool_call(string_invalid_request) self.assertIsNone(tool) self.assertIsNone(response) tool, response = env.parse_tool_call(string_invalid_call) self.assertIsNone(tool) self.assertIsNone(response) tool, response = env.parse_tool_call(string_invalid_tool) self.assertIsNone(tool) self.assertIsNone(response) tool, response = env.parse_tool_call(string_invalid_random) self.assertIsNone(tool) self.assertIsNone(response) def test_text_environment_tool_truncation(self): env = TextEnvironment( self.gpt2_model, self.gpt2_tokenizer, tools={"dummy": lambda x: "a" * 1000}, reward_fn=lambda x: torch.tensor(1), prompt="I am a prompt!\n", ) env.max_tool_response = 100 history = env.step(TextHistory("Hello there!", torch.tensor([1, 2, 3]))) self.assertEqual((len(history.last_text_segment) - len(env.response_token)), 100) env.max_tool_response = 500 history = env.step(TextHistory("Hello there!", torch.tensor([1, 2, 3]))) self.assertEqual((len(history.last_text_segment) - len(env.response_token)), 500) env.max_tool_response = 1001 history = env.step(TextHistory("Hello there!", torch.tensor([1, 2, 3]))) self.assertEqual((len(history.last_text_segment) - len(env.response_token)), 1000) env.max_tool_response = 2000 history = env.step(TextHistory("Hello there!", torch.tensor([1, 2, 3]))) self.assertEqual((len(history.last_text_segment) - len(env.response_token)), 1000) @patch.object(TextEnvironment, "generate", side_effect=dummy_generate) def test_text_environment_max_calls(self, mock_generate): env = TextEnvironment( self.gpt2_model, self.gpt2_tokenizer, tools={"DummyTool": DummyTool()}, reward_fn=lambda x: [torch.tensor(1) for _ in x], prompt="I am a prompt!\n", ) env.max_turns = 1 _, _, _, _, histories = env.run(["test"]) self.assertEqual( histories[0].text, ("I am a prompt!\n" + "test") + (1 * "testtest"), ) env.max_turns = 2 _, _, _, _, histories = env.run(["test"]) self.assertEqual( histories[0].text, ("I am a prompt!\n" + "test") + (2 * "testtest"), ) env.max_turns = 4 _, _, _, _, histories = env.run(["test"]) self.assertEqual( histories[0].text, ("I am a prompt!\n" + "test") + (4 * "testtest"), ) def test_text_environment_compute_rewards(self): env = TextEnvironment( self.gpt2_model, self.gpt2_tokenizer, tools={"DummyTool": DummyTool()}, reward_fn=lambda x: [torch.tensor(i) for i, _ in enumerate(x)], prompt="I am a prompt!\n", ) histories = [TextHistory("test", torch.tensor([1, 2, 3])) for _ in range(8)] histories = env.compute_reward(histories) for i in range(8): self.assertEqual(histories[i].reward, i) @patch.object(TextEnvironment, "generate", side_effect=dummy_generate) def test_text_environment_run(self, mock_generate): env = TextEnvironment( self.gpt2_model, self.gpt2_tokenizer, tools={"DummyTool": DummyTool()}, reward_fn=lambda x: [torch.tensor(i) for i, _ in enumerate(x)], prompt="I am a prompt!\n", max_turns=2, ) task_1 = "Hello there!" task_2 = "Hello there! General Kenobi!" query, response, response_mask, reward, histories = env.run([task_1, task_2]) self.assertEqual(len(query[0]), 8) self.assertEqual(len(query[1]), 12) self.assertEqual(len(response[0]), 14) self.assertEqual(len(response[1]), 14) self.assertEqual(response_mask[0].sum(), (2 * 3)) # mocked generate always adds 3 toknes self.assertEqual(response_mask[1].sum(), (2 * 3)) # mocked generate always adds 3 toknes self.assertEqual(reward[1], 1) self.assertEqual( histories[0].text, ("I am a prompt!\n" + "Hello there!") + (2 * "testtest"), ) self.assertEqual( histories[1].text, ("I am a prompt!\n" + "Hello there! General Kenobi!") + (2 * "testtest"), )