File size: 11,564 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
from unittest.mock import patch

import torch
from transformers import AutoTokenizer

from trl import AutoModelForCausalLMWithValueHead, TextEnvironment, TextHistory


class DummyTool:
    def __call__(self, text):
        return text


def dummy_generate(histories):
    for i in range(len(histories)):
        histories[i].append_segment("<request><DummyTool>test<call>", torch.tensor([1, 2, 3]), system=False)
    return histories


class TextHistoryTest(unittest.TestCase):
    def test_text_history_init(self):
        text = "Hello there!"
        tokens = torch.tensor([1, 2, 3])

        history = TextHistory(text, tokens)
        self.assertEqual(history.text, text)
        self.assertTrue(torch.equal(history.tokens, tokens))
        self.assertTrue(torch.equal(history.token_masks, torch.zeros_like(tokens)))

        history = TextHistory(text, tokens, system=False)
        self.assertTrue(torch.equal(history.token_masks, torch.ones_like(tokens)))

    def test_text_history_append_segment(self):
        text = "Hello there!"
        tokens = torch.tensor([1, 2, 3])

        history = TextHistory(text, tokens)
        history.append_segment("General Kenobi!", torch.tensor([4, 5, 6]), system=False)
        self.assertEqual(history.text, (text + "General Kenobi!"))
        self.assertTrue(torch.equal(history.tokens, torch.tensor([1, 2, 3, 4, 5, 6])))
        self.assertTrue(torch.equal(history.token_masks, torch.tensor([0, 0, 0, 1, 1, 1])))

        history.append_segment("You are a bold one!", torch.tensor([7, 8, 9]))
        self.assertEqual(history.text, ((text + "General Kenobi!") + "You are a bold one!"))
        self.assertTrue(torch.equal(history.tokens, torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9])))
        self.assertTrue(torch.equal(history.token_masks, torch.tensor([0, 0, 0, 1, 1, 1, 0, 0, 0])))

    def test_text_history_complete(self):
        text = "Hello there!"
        tokens = torch.tensor([1, 2, 3])
        history = TextHistory(text, tokens)
        history.complete()
        self.assertTrue(history.completed)
        self.assertFalse(history.truncated)

        history.complete(truncated=True)
        self.assertTrue(history.completed)
        self.assertTrue(history.truncated)

    def test_text_history_last_segment(self):
        text = "Hello there!"
        tokens = torch.tensor([1, 2, 3])
        history = TextHistory(text, tokens)
        history.append_segment("General Kenobi!", torch.tensor([4, 5, 6]))
        history.append_segment("You are a bold one!", torch.tensor([7, 8, 9]))
        self.assertEqual(history.last_text_segment, "You are a bold one!")

    def test_text_history_split_query_response(self):
        text = "Hello there!"
        tokens = torch.tensor([1, 2, 3])
        history = TextHistory(text, tokens)
        history.append_segment("General Kenobi!", torch.tensor([4, 5, 6]), system=False)
        history.append_segment("You are a bold one!", torch.tensor([7, 8, 9]), system=True)
        query, response, mask = history.split_query_response_tokens()

        self.assertTrue(torch.equal(query, torch.tensor([1, 2, 3])))
        self.assertTrue(torch.equal(response, torch.tensor([4, 5, 6, 7, 8, 9])))
        self.assertTrue(torch.equal(mask, torch.tensor([1, 1, 1, 0, 0, 0])))


class TextEnvironmentTester(unittest.TestCase):
    def setUp(self):
        # model_id
        self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"

        # get models and tokenizer
        self.gpt2_model = AutoModelForCausalLMWithValueHead.from_pretrained(self.model_id)
        self.gpt2_tokenizer = AutoTokenizer.from_pretrained(self.model_id)
        self.gpt2_tokenizer.pad_token = self.gpt2_tokenizer.eos_token

    def test_text_environment_setup(self):
        env = TextEnvironment(
            self.gpt2_model,
            self.gpt2_tokenizer,
            tools=[DummyTool()],
            reward_fn=lambda x: torch.tensor(1),
            prompt="I am a prompt!\n",
        )
        self.assertEqual(env.prompt, "I am a prompt!\n")
        self.assertListEqual(list(env.tools.keys()), ["DummyTool"])
        self.assertIsInstance(env.tools["DummyTool"], DummyTool)
        self.assertEqual(env.reward_fn("Hello there!"), 1)

    def test_text_environment_generate(self):
        generation_kwargs = {"do_sample": False, "max_new_tokens": 4, "pad_token_id": self.gpt2_tokenizer.eos_token_id}
        env = TextEnvironment(
            self.gpt2_model,
            self.gpt2_tokenizer,
            tools=[DummyTool()],
            reward_fn=lambda x: torch.tensor(1),
            prompt="I am a prompt!\n",
            generation_kwargs=generation_kwargs,
        )

        input_texts = ["this is a test", "this is another, longer test"]

        model_inputs = [self.gpt2_tokenizer(txt, return_tensors="pt").input_ids.squeeze() for txt in input_texts]

        generations_batched = env._generate_batched(model_inputs, batch_size=2)
        generations_batched = self.gpt2_tokenizer.batch_decode(generations_batched)

        generations_single = [env._generate_batched([inputs], batch_size=1)[0] for inputs in model_inputs]
        generations_single = self.gpt2_tokenizer.batch_decode(generations_single)

        self.assertEqual(generations_single, generations_batched)

    def test_text_environment_tool_call_parsing(self):
        string_valid = "Something something <request><Tool1>Hello there!<call>"
        string_invalid_request = "Something something <Tool1>Hello there!<call>"
        string_invalid_call = "Something something <request><Tool1>Hello there!"
        string_invalid_tool = "Something something <request>|Tool2|Hello there!<call>"
        string_invalid_random = "<>abcdefghijklm<>nopqrstuvwxyz<>"

        env = TextEnvironment(
            self.gpt2_model,
            self.gpt2_tokenizer,
            tools=[DummyTool()],
            reward_fn=lambda x: torch.tensor(1),
            prompt="I am a prompt!\n",
        )
        tool, response = env.parse_tool_call(string_valid)
        self.assertEqual(tool, "Tool1")
        self.assertEqual(response, "Hello there!")

        tool, response = env.parse_tool_call(string_invalid_request)
        self.assertIsNone(tool)
        self.assertIsNone(response)

        tool, response = env.parse_tool_call(string_invalid_call)
        self.assertIsNone(tool)
        self.assertIsNone(response)

        tool, response = env.parse_tool_call(string_invalid_tool)
        self.assertIsNone(tool)
        self.assertIsNone(response)

        tool, response = env.parse_tool_call(string_invalid_random)
        self.assertIsNone(tool)
        self.assertIsNone(response)

    def test_text_environment_tool_truncation(self):
        env = TextEnvironment(
            self.gpt2_model,
            self.gpt2_tokenizer,
            tools={"dummy": lambda x: "a" * 1000},
            reward_fn=lambda x: torch.tensor(1),
            prompt="I am a prompt!\n",
        )

        env.max_tool_response = 100
        history = env.step(TextHistory("<request><dummy>Hello there!<call>", torch.tensor([1, 2, 3])))
        self.assertEqual((len(history.last_text_segment) - len(env.response_token)), 100)

        env.max_tool_response = 500
        history = env.step(TextHistory("<request><dummy>Hello there!<call>", torch.tensor([1, 2, 3])))
        self.assertEqual((len(history.last_text_segment) - len(env.response_token)), 500)

        env.max_tool_response = 1001
        history = env.step(TextHistory("<request><dummy>Hello there!<call>", torch.tensor([1, 2, 3])))
        self.assertEqual((len(history.last_text_segment) - len(env.response_token)), 1000)

        env.max_tool_response = 2000
        history = env.step(TextHistory("<request><dummy>Hello there!<call>", torch.tensor([1, 2, 3])))
        self.assertEqual((len(history.last_text_segment) - len(env.response_token)), 1000)

    @patch.object(TextEnvironment, "generate", side_effect=dummy_generate)
    def test_text_environment_max_calls(self, mock_generate):
        env = TextEnvironment(
            self.gpt2_model,
            self.gpt2_tokenizer,
            tools={"DummyTool": DummyTool()},
            reward_fn=lambda x: [torch.tensor(1) for _ in x],
            prompt="I am a prompt!\n",
        )

        env.max_turns = 1
        _, _, _, _, histories = env.run(["test"])
        self.assertEqual(
            histories[0].text,
            ("I am a prompt!\n" + "test") + (1 * "<request><DummyTool>test<call>test<response>"),
        )

        env.max_turns = 2
        _, _, _, _, histories = env.run(["test"])
        self.assertEqual(
            histories[0].text,
            ("I am a prompt!\n" + "test") + (2 * "<request><DummyTool>test<call>test<response>"),
        )

        env.max_turns = 4
        _, _, _, _, histories = env.run(["test"])
        self.assertEqual(
            histories[0].text,
            ("I am a prompt!\n" + "test") + (4 * "<request><DummyTool>test<call>test<response>"),
        )

    def test_text_environment_compute_rewards(self):
        env = TextEnvironment(
            self.gpt2_model,
            self.gpt2_tokenizer,
            tools={"DummyTool": DummyTool()},
            reward_fn=lambda x: [torch.tensor(i) for i, _ in enumerate(x)],
            prompt="I am a prompt!\n",
        )

        histories = [TextHistory("<request><DummyTool>test<call>", torch.tensor([1, 2, 3])) for _ in range(8)]
        histories = env.compute_reward(histories)

        for i in range(8):
            self.assertEqual(histories[i].reward, i)

    @patch.object(TextEnvironment, "generate", side_effect=dummy_generate)
    def test_text_environment_run(self, mock_generate):
        env = TextEnvironment(
            self.gpt2_model,
            self.gpt2_tokenizer,
            tools={"DummyTool": DummyTool()},
            reward_fn=lambda x: [torch.tensor(i) for i, _ in enumerate(x)],
            prompt="I am a prompt!\n",
            max_turns=2,
        )
        task_1 = "Hello there!"
        task_2 = "Hello there! General Kenobi!"

        query, response, response_mask, reward, histories = env.run([task_1, task_2])
        self.assertEqual(len(query[0]), 8)
        self.assertEqual(len(query[1]), 12)
        self.assertEqual(len(response[0]), 14)
        self.assertEqual(len(response[1]), 14)
        self.assertEqual(response_mask[0].sum(), (2 * 3))
        # mocked generate always adds 3 toknes
        self.assertEqual(response_mask[1].sum(), (2 * 3))
        # mocked generate always adds 3 toknes
        self.assertEqual(reward[1], 1)
        self.assertEqual(
            histories[0].text,
            ("I am a prompt!\n" + "Hello there!") + (2 * "<request><DummyTool>test<call>test<response>"),
        )
        self.assertEqual(
            histories[1].text,
            ("I am a prompt!\n" + "Hello there! General Kenobi!")
            + (2 * "<request><DummyTool>test<call>test<response>"),
        )