Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# Modified from https://github.com/facebookresearch/co-tracker/ | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .utils import bilinear_sampler | |
from .modules import Mlp, AttnBlock, CrossAttnBlock, ResidualBlock | |
class EfficientUpdateFormer(nn.Module): | |
""" | |
Transformer model that updates track estimates. | |
""" | |
def __init__( | |
self, | |
space_depth=6, | |
time_depth=6, | |
input_dim=320, | |
hidden_size=384, | |
num_heads=8, | |
output_dim=130, | |
mlp_ratio=4.0, | |
add_space_attn=True, | |
num_virtual_tracks=64, | |
): | |
super().__init__() | |
self.out_channels = 2 | |
self.num_heads = num_heads | |
self.hidden_size = hidden_size | |
self.add_space_attn = add_space_attn | |
# Add input LayerNorm before linear projection | |
self.input_norm = nn.LayerNorm(input_dim) | |
self.input_transform = torch.nn.Linear(input_dim, hidden_size, bias=True) | |
# Add output LayerNorm before final projection | |
self.output_norm = nn.LayerNorm(hidden_size) | |
self.flow_head = torch.nn.Linear(hidden_size, output_dim, bias=True) | |
self.num_virtual_tracks = num_virtual_tracks | |
if self.add_space_attn: | |
self.virual_tracks = nn.Parameter(torch.randn(1, num_virtual_tracks, 1, hidden_size)) | |
else: | |
self.virual_tracks = None | |
self.time_blocks = nn.ModuleList( | |
[ | |
AttnBlock( | |
hidden_size, | |
num_heads, | |
mlp_ratio=mlp_ratio, | |
attn_class=nn.MultiheadAttention, | |
) | |
for _ in range(time_depth) | |
] | |
) | |
if add_space_attn: | |
self.space_virtual_blocks = nn.ModuleList( | |
[ | |
AttnBlock( | |
hidden_size, | |
num_heads, | |
mlp_ratio=mlp_ratio, | |
attn_class=nn.MultiheadAttention, | |
) | |
for _ in range(space_depth) | |
] | |
) | |
self.space_point2virtual_blocks = nn.ModuleList( | |
[CrossAttnBlock(hidden_size, hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(space_depth)] | |
) | |
self.space_virtual2point_blocks = nn.ModuleList( | |
[CrossAttnBlock(hidden_size, hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(space_depth)] | |
) | |
assert len(self.time_blocks) >= len(self.space_virtual2point_blocks) | |
self.initialize_weights() | |
def initialize_weights(self): | |
def _basic_init(module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
torch.nn.init.trunc_normal_(self.flow_head.weight, std=0.001) | |
self.apply(_basic_init) | |
def forward(self, input_tensor, mask=None): | |
# Apply input LayerNorm | |
input_tensor = self.input_norm(input_tensor) | |
tokens = self.input_transform(input_tensor) | |
init_tokens = tokens | |
B, _, T, _ = tokens.shape | |
if self.add_space_attn: | |
virtual_tokens = self.virual_tracks.repeat(B, 1, T, 1) | |
tokens = torch.cat([tokens, virtual_tokens], dim=1) | |
_, N, _, _ = tokens.shape | |
j = 0 | |
for i in range(len(self.time_blocks)): | |
time_tokens = tokens.contiguous().view(B * N, T, -1) # B N T C -> (B N) T C | |
time_tokens = self.time_blocks[i](time_tokens) | |
tokens = time_tokens.view(B, N, T, -1) # (B N) T C -> B N T C | |
if self.add_space_attn and (i % (len(self.time_blocks) // len(self.space_virtual_blocks)) == 0): | |
space_tokens = tokens.permute(0, 2, 1, 3).contiguous().view(B * T, N, -1) # B N T C -> (B T) N C | |
point_tokens = space_tokens[:, : N - self.num_virtual_tracks] | |
virtual_tokens = space_tokens[:, N - self.num_virtual_tracks :] | |
virtual_tokens = self.space_virtual2point_blocks[j](virtual_tokens, point_tokens, mask=mask) | |
virtual_tokens = self.space_virtual_blocks[j](virtual_tokens) | |
point_tokens = self.space_point2virtual_blocks[j](point_tokens, virtual_tokens, mask=mask) | |
space_tokens = torch.cat([point_tokens, virtual_tokens], dim=1) | |
tokens = space_tokens.view(B, T, N, -1).permute(0, 2, 1, 3) # (B T) N C -> B N T C | |
j += 1 | |
if self.add_space_attn: | |
tokens = tokens[:, : N - self.num_virtual_tracks] | |
tokens = tokens + init_tokens | |
# Apply output LayerNorm before final projection | |
tokens = self.output_norm(tokens) | |
flow = self.flow_head(tokens) | |
return flow, None | |
class CorrBlock: | |
def __init__(self, fmaps, num_levels=4, radius=4, multiple_track_feats=False, padding_mode="zeros"): | |
""" | |
Build a pyramid of feature maps from the input. | |
fmaps: Tensor (B, S, C, H, W) | |
num_levels: number of pyramid levels (each downsampled by factor 2) | |
radius: search radius for sampling correlation | |
multiple_track_feats: if True, split the target features per pyramid level | |
padding_mode: passed to grid_sample / bilinear_sampler | |
""" | |
B, S, C, H, W = fmaps.shape | |
self.S, self.C, self.H, self.W = S, C, H, W | |
self.num_levels = num_levels | |
self.radius = radius | |
self.padding_mode = padding_mode | |
self.multiple_track_feats = multiple_track_feats | |
# Build pyramid: each level is half the spatial resolution of the previous | |
self.fmaps_pyramid = [fmaps] # level 0 is full resolution | |
current_fmaps = fmaps | |
for i in range(num_levels - 1): | |
B, S, C, H, W = current_fmaps.shape | |
# Merge batch & sequence dimensions | |
current_fmaps = current_fmaps.reshape(B * S, C, H, W) | |
# Avg pool down by factor 2 | |
current_fmaps = F.avg_pool2d(current_fmaps, kernel_size=2, stride=2) | |
_, _, H_new, W_new = current_fmaps.shape | |
current_fmaps = current_fmaps.reshape(B, S, C, H_new, W_new) | |
self.fmaps_pyramid.append(current_fmaps) | |
# Precompute a delta grid (of shape (2r+1, 2r+1, 2)) for sampling. | |
# This grid is added to the (scaled) coordinate centroids. | |
r = self.radius | |
dx = torch.linspace(-r, r, 2 * r + 1, device=fmaps.device, dtype=fmaps.dtype) | |
dy = torch.linspace(-r, r, 2 * r + 1, device=fmaps.device, dtype=fmaps.dtype) | |
# delta: for every (dy,dx) displacement (i.e. Δx, Δy) | |
self.delta = torch.stack(torch.meshgrid(dy, dx, indexing="ij"), dim=-1) # shape: (2r+1, 2r+1, 2) | |
def corr_sample(self, targets, coords): | |
""" | |
Instead of storing the entire correlation pyramid, we compute each level's correlation | |
volume, sample it immediately, then discard it. This saves GPU memory. | |
Args: | |
targets: Tensor (B, S, N, C) — features for the current targets. | |
coords: Tensor (B, S, N, 2) — coordinates at full resolution. | |
Returns: | |
Tensor (B, S, N, L) where L = num_levels * (2*radius+1)**2 (concatenated sampled correlations) | |
""" | |
B, S, N, C = targets.shape | |
# If you have multiple track features, split them per level. | |
if self.multiple_track_feats: | |
targets_split = torch.split(targets, C // self.num_levels, dim=-1) | |
out_pyramid = [] | |
for i, fmaps in enumerate(self.fmaps_pyramid): | |
# Get current spatial resolution H, W for this pyramid level. | |
B, S, C, H, W = fmaps.shape | |
# Reshape feature maps for correlation computation: | |
# fmap2s: (B, S, C, H*W) | |
fmap2s = fmaps.view(B, S, C, H * W) | |
# Choose appropriate target features. | |
fmap1 = targets_split[i] if self.multiple_track_feats else targets # shape: (B, S, N, C) | |
# Compute correlation directly | |
corrs = compute_corr_level(fmap1, fmap2s, C) | |
corrs = corrs.view(B, S, N, H, W) | |
# Prepare sampling grid: | |
# Scale down the coordinates for the current level. | |
centroid_lvl = coords.reshape(B * S * N, 1, 1, 2) / (2**i) | |
# Make sure our precomputed delta grid is on the same device/dtype. | |
delta_lvl = self.delta.to(coords.device).to(coords.dtype) | |
# Now the grid for grid_sample is: | |
# coords_lvl = centroid_lvl + delta_lvl (broadcasted over grid) | |
coords_lvl = centroid_lvl + delta_lvl.view(1, 2 * self.radius + 1, 2 * self.radius + 1, 2) | |
# Sample from the correlation volume using bilinear interpolation. | |
# We reshape corrs to (B * S * N, 1, H, W) so grid_sample acts over each target. | |
corrs_sampled = bilinear_sampler( | |
corrs.reshape(B * S * N, 1, H, W), coords_lvl, padding_mode=self.padding_mode | |
) | |
# The sampled output is (B * S * N, 1, 2r+1, 2r+1). Flatten the last two dims. | |
corrs_sampled = corrs_sampled.view(B, S, N, -1) # Now shape: (B, S, N, (2r+1)^2) | |
out_pyramid.append(corrs_sampled) | |
# Concatenate all levels along the last dimension. | |
out = torch.cat(out_pyramid, dim=-1).contiguous() | |
return out | |
def compute_corr_level(fmap1, fmap2s, C): | |
# fmap1: (B, S, N, C) | |
# fmap2s: (B, S, C, H*W) | |
corrs = torch.matmul(fmap1, fmap2s) # (B, S, N, H*W) | |
corrs = corrs.view(fmap1.shape[0], fmap1.shape[1], fmap1.shape[2], -1) # (B, S, N, H*W) | |
return corrs / math.sqrt(C) | |