File size: 10,030 Bytes
c295391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.


# Modified from https://github.com/facebookresearch/co-tracker/

import math
import torch
import torch.nn as nn
import torch.nn.functional as F

from .utils import bilinear_sampler
from .modules import Mlp, AttnBlock, CrossAttnBlock, ResidualBlock


class EfficientUpdateFormer(nn.Module):
    """
    Transformer model that updates track estimates.
    """

    def __init__(
        self,
        space_depth=6,
        time_depth=6,
        input_dim=320,
        hidden_size=384,
        num_heads=8,
        output_dim=130,
        mlp_ratio=4.0,
        add_space_attn=True,
        num_virtual_tracks=64,
    ):
        super().__init__()

        self.out_channels = 2
        self.num_heads = num_heads
        self.hidden_size = hidden_size
        self.add_space_attn = add_space_attn

        # Add input LayerNorm before linear projection
        self.input_norm = nn.LayerNorm(input_dim)
        self.input_transform = torch.nn.Linear(input_dim, hidden_size, bias=True)

        # Add output LayerNorm before final projection
        self.output_norm = nn.LayerNorm(hidden_size)
        self.flow_head = torch.nn.Linear(hidden_size, output_dim, bias=True)
        self.num_virtual_tracks = num_virtual_tracks

        if self.add_space_attn:
            self.virual_tracks = nn.Parameter(torch.randn(1, num_virtual_tracks, 1, hidden_size))
        else:
            self.virual_tracks = None

        self.time_blocks = nn.ModuleList(
            [
                AttnBlock(
                    hidden_size,
                    num_heads,
                    mlp_ratio=mlp_ratio,
                    attn_class=nn.MultiheadAttention,
                )
                for _ in range(time_depth)
            ]
        )

        if add_space_attn:
            self.space_virtual_blocks = nn.ModuleList(
                [
                    AttnBlock(
                        hidden_size,
                        num_heads,
                        mlp_ratio=mlp_ratio,
                        attn_class=nn.MultiheadAttention,
                    )
                    for _ in range(space_depth)
                ]
            )
            self.space_point2virtual_blocks = nn.ModuleList(
                [CrossAttnBlock(hidden_size, hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(space_depth)]
            )
            self.space_virtual2point_blocks = nn.ModuleList(
                [CrossAttnBlock(hidden_size, hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(space_depth)]
            )
            assert len(self.time_blocks) >= len(self.space_virtual2point_blocks)
        self.initialize_weights()

    def initialize_weights(self):
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)
            torch.nn.init.trunc_normal_(self.flow_head.weight, std=0.001)

        self.apply(_basic_init)

    def forward(self, input_tensor, mask=None):
        # Apply input LayerNorm
        input_tensor = self.input_norm(input_tensor)
        tokens = self.input_transform(input_tensor)

        init_tokens = tokens

        B, _, T, _ = tokens.shape

        if self.add_space_attn:
            virtual_tokens = self.virual_tracks.repeat(B, 1, T, 1)
            tokens = torch.cat([tokens, virtual_tokens], dim=1)

        _, N, _, _ = tokens.shape

        j = 0
        for i in range(len(self.time_blocks)):
            time_tokens = tokens.contiguous().view(B * N, T, -1)  # B N T C -> (B N) T C

            time_tokens = self.time_blocks[i](time_tokens)

            tokens = time_tokens.view(B, N, T, -1)  # (B N) T C -> B N T C
            if self.add_space_attn and (i % (len(self.time_blocks) // len(self.space_virtual_blocks)) == 0):
                space_tokens = tokens.permute(0, 2, 1, 3).contiguous().view(B * T, N, -1)  # B N T C -> (B T) N C
                point_tokens = space_tokens[:, : N - self.num_virtual_tracks]
                virtual_tokens = space_tokens[:, N - self.num_virtual_tracks :]

                virtual_tokens = self.space_virtual2point_blocks[j](virtual_tokens, point_tokens, mask=mask)
                virtual_tokens = self.space_virtual_blocks[j](virtual_tokens)
                point_tokens = self.space_point2virtual_blocks[j](point_tokens, virtual_tokens, mask=mask)

                space_tokens = torch.cat([point_tokens, virtual_tokens], dim=1)
                tokens = space_tokens.view(B, T, N, -1).permute(0, 2, 1, 3)  # (B T) N C -> B N T C
                j += 1

        if self.add_space_attn:
            tokens = tokens[:, : N - self.num_virtual_tracks]

        tokens = tokens + init_tokens

        # Apply output LayerNorm before final projection
        tokens = self.output_norm(tokens)
        flow = self.flow_head(tokens)

        return flow, None


class CorrBlock:
    def __init__(self, fmaps, num_levels=4, radius=4, multiple_track_feats=False, padding_mode="zeros"):
        """
        Build a pyramid of feature maps from the input.

        fmaps: Tensor (B, S, C, H, W)
        num_levels: number of pyramid levels (each downsampled by factor 2)
        radius: search radius for sampling correlation
        multiple_track_feats: if True, split the target features per pyramid level
        padding_mode: passed to grid_sample / bilinear_sampler
        """
        B, S, C, H, W = fmaps.shape
        self.S, self.C, self.H, self.W = S, C, H, W
        self.num_levels = num_levels
        self.radius = radius
        self.padding_mode = padding_mode
        self.multiple_track_feats = multiple_track_feats

        # Build pyramid: each level is half the spatial resolution of the previous
        self.fmaps_pyramid = [fmaps]  # level 0 is full resolution
        current_fmaps = fmaps
        for i in range(num_levels - 1):
            B, S, C, H, W = current_fmaps.shape
            # Merge batch & sequence dimensions
            current_fmaps = current_fmaps.reshape(B * S, C, H, W)
            # Avg pool down by factor 2
            current_fmaps = F.avg_pool2d(current_fmaps, kernel_size=2, stride=2)
            _, _, H_new, W_new = current_fmaps.shape
            current_fmaps = current_fmaps.reshape(B, S, C, H_new, W_new)
            self.fmaps_pyramid.append(current_fmaps)

        # Precompute a delta grid (of shape (2r+1, 2r+1, 2)) for sampling.
        # This grid is added to the (scaled) coordinate centroids.
        r = self.radius
        dx = torch.linspace(-r, r, 2 * r + 1, device=fmaps.device, dtype=fmaps.dtype)
        dy = torch.linspace(-r, r, 2 * r + 1, device=fmaps.device, dtype=fmaps.dtype)
        # delta: for every (dy,dx) displacement (i.e. Δx, Δy)
        self.delta = torch.stack(torch.meshgrid(dy, dx, indexing="ij"), dim=-1)  # shape: (2r+1, 2r+1, 2)

    def corr_sample(self, targets, coords):
        """
        Instead of storing the entire correlation pyramid, we compute each level's correlation
        volume, sample it immediately, then discard it. This saves GPU memory.

        Args:
          targets: Tensor (B, S, N, C) — features for the current targets.
          coords: Tensor (B, S, N, 2) — coordinates at full resolution.

        Returns:
          Tensor (B, S, N, L) where L = num_levels * (2*radius+1)**2 (concatenated sampled correlations)
        """
        B, S, N, C = targets.shape

        # If you have multiple track features, split them per level.
        if self.multiple_track_feats:
            targets_split = torch.split(targets, C // self.num_levels, dim=-1)

        out_pyramid = []
        for i, fmaps in enumerate(self.fmaps_pyramid):
            # Get current spatial resolution H, W for this pyramid level.
            B, S, C, H, W = fmaps.shape
            # Reshape feature maps for correlation computation:
            # fmap2s: (B, S, C, H*W)
            fmap2s = fmaps.view(B, S, C, H * W)
            # Choose appropriate target features.
            fmap1 = targets_split[i] if self.multiple_track_feats else targets  # shape: (B, S, N, C)

            # Compute correlation directly
            corrs = compute_corr_level(fmap1, fmap2s, C)
            corrs = corrs.view(B, S, N, H, W)

            # Prepare sampling grid:
            # Scale down the coordinates for the current level.
            centroid_lvl = coords.reshape(B * S * N, 1, 1, 2) / (2**i)
            # Make sure our precomputed delta grid is on the same device/dtype.
            delta_lvl = self.delta.to(coords.device).to(coords.dtype)
            # Now the grid for grid_sample is:
            # coords_lvl = centroid_lvl + delta_lvl   (broadcasted over grid)
            coords_lvl = centroid_lvl + delta_lvl.view(1, 2 * self.radius + 1, 2 * self.radius + 1, 2)

            # Sample from the correlation volume using bilinear interpolation.
            # We reshape corrs to (B * S * N, 1, H, W) so grid_sample acts over each target.
            corrs_sampled = bilinear_sampler(
                corrs.reshape(B * S * N, 1, H, W), coords_lvl, padding_mode=self.padding_mode
            )
            # The sampled output is (B * S * N, 1, 2r+1, 2r+1). Flatten the last two dims.
            corrs_sampled = corrs_sampled.view(B, S, N, -1)  # Now shape: (B, S, N, (2r+1)^2)
            out_pyramid.append(corrs_sampled)

        # Concatenate all levels along the last dimension.
        out = torch.cat(out_pyramid, dim=-1).contiguous()
        return out


def compute_corr_level(fmap1, fmap2s, C):
    # fmap1: (B, S, N, C)
    # fmap2s: (B, S, C, H*W)
    corrs = torch.matmul(fmap1, fmap2s)  # (B, S, N, H*W)
    corrs = corrs.view(fmap1.shape[0], fmap1.shape[1], fmap1.shape[2], -1)  # (B, S, N, H*W)
    return corrs / math.sqrt(C)