# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Modified from https://github.com/facebookresearch/co-tracker/ import math import torch import torch.nn as nn import torch.nn.functional as F from .utils import bilinear_sampler from .modules import Mlp, AttnBlock, CrossAttnBlock, ResidualBlock class EfficientUpdateFormer(nn.Module): """ Transformer model that updates track estimates. """ def __init__( self, space_depth=6, time_depth=6, input_dim=320, hidden_size=384, num_heads=8, output_dim=130, mlp_ratio=4.0, add_space_attn=True, num_virtual_tracks=64, ): super().__init__() self.out_channels = 2 self.num_heads = num_heads self.hidden_size = hidden_size self.add_space_attn = add_space_attn # Add input LayerNorm before linear projection self.input_norm = nn.LayerNorm(input_dim) self.input_transform = torch.nn.Linear(input_dim, hidden_size, bias=True) # Add output LayerNorm before final projection self.output_norm = nn.LayerNorm(hidden_size) self.flow_head = torch.nn.Linear(hidden_size, output_dim, bias=True) self.num_virtual_tracks = num_virtual_tracks if self.add_space_attn: self.virual_tracks = nn.Parameter(torch.randn(1, num_virtual_tracks, 1, hidden_size)) else: self.virual_tracks = None self.time_blocks = nn.ModuleList( [ AttnBlock( hidden_size, num_heads, mlp_ratio=mlp_ratio, attn_class=nn.MultiheadAttention, ) for _ in range(time_depth) ] ) if add_space_attn: self.space_virtual_blocks = nn.ModuleList( [ AttnBlock( hidden_size, num_heads, mlp_ratio=mlp_ratio, attn_class=nn.MultiheadAttention, ) for _ in range(space_depth) ] ) self.space_point2virtual_blocks = nn.ModuleList( [CrossAttnBlock(hidden_size, hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(space_depth)] ) self.space_virtual2point_blocks = nn.ModuleList( [CrossAttnBlock(hidden_size, hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(space_depth)] ) assert len(self.time_blocks) >= len(self.space_virtual2point_blocks) self.initialize_weights() def initialize_weights(self): def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) torch.nn.init.trunc_normal_(self.flow_head.weight, std=0.001) self.apply(_basic_init) def forward(self, input_tensor, mask=None): # Apply input LayerNorm input_tensor = self.input_norm(input_tensor) tokens = self.input_transform(input_tensor) init_tokens = tokens B, _, T, _ = tokens.shape if self.add_space_attn: virtual_tokens = self.virual_tracks.repeat(B, 1, T, 1) tokens = torch.cat([tokens, virtual_tokens], dim=1) _, N, _, _ = tokens.shape j = 0 for i in range(len(self.time_blocks)): time_tokens = tokens.contiguous().view(B * N, T, -1) # B N T C -> (B N) T C time_tokens = self.time_blocks[i](time_tokens) tokens = time_tokens.view(B, N, T, -1) # (B N) T C -> B N T C if self.add_space_attn and (i % (len(self.time_blocks) // len(self.space_virtual_blocks)) == 0): space_tokens = tokens.permute(0, 2, 1, 3).contiguous().view(B * T, N, -1) # B N T C -> (B T) N C point_tokens = space_tokens[:, : N - self.num_virtual_tracks] virtual_tokens = space_tokens[:, N - self.num_virtual_tracks :] virtual_tokens = self.space_virtual2point_blocks[j](virtual_tokens, point_tokens, mask=mask) virtual_tokens = self.space_virtual_blocks[j](virtual_tokens) point_tokens = self.space_point2virtual_blocks[j](point_tokens, virtual_tokens, mask=mask) space_tokens = torch.cat([point_tokens, virtual_tokens], dim=1) tokens = space_tokens.view(B, T, N, -1).permute(0, 2, 1, 3) # (B T) N C -> B N T C j += 1 if self.add_space_attn: tokens = tokens[:, : N - self.num_virtual_tracks] tokens = tokens + init_tokens # Apply output LayerNorm before final projection tokens = self.output_norm(tokens) flow = self.flow_head(tokens) return flow, None class CorrBlock: def __init__(self, fmaps, num_levels=4, radius=4, multiple_track_feats=False, padding_mode="zeros"): """ Build a pyramid of feature maps from the input. fmaps: Tensor (B, S, C, H, W) num_levels: number of pyramid levels (each downsampled by factor 2) radius: search radius for sampling correlation multiple_track_feats: if True, split the target features per pyramid level padding_mode: passed to grid_sample / bilinear_sampler """ B, S, C, H, W = fmaps.shape self.S, self.C, self.H, self.W = S, C, H, W self.num_levels = num_levels self.radius = radius self.padding_mode = padding_mode self.multiple_track_feats = multiple_track_feats # Build pyramid: each level is half the spatial resolution of the previous self.fmaps_pyramid = [fmaps] # level 0 is full resolution current_fmaps = fmaps for i in range(num_levels - 1): B, S, C, H, W = current_fmaps.shape # Merge batch & sequence dimensions current_fmaps = current_fmaps.reshape(B * S, C, H, W) # Avg pool down by factor 2 current_fmaps = F.avg_pool2d(current_fmaps, kernel_size=2, stride=2) _, _, H_new, W_new = current_fmaps.shape current_fmaps = current_fmaps.reshape(B, S, C, H_new, W_new) self.fmaps_pyramid.append(current_fmaps) # Precompute a delta grid (of shape (2r+1, 2r+1, 2)) for sampling. # This grid is added to the (scaled) coordinate centroids. r = self.radius dx = torch.linspace(-r, r, 2 * r + 1, device=fmaps.device, dtype=fmaps.dtype) dy = torch.linspace(-r, r, 2 * r + 1, device=fmaps.device, dtype=fmaps.dtype) # delta: for every (dy,dx) displacement (i.e. Δx, Δy) self.delta = torch.stack(torch.meshgrid(dy, dx, indexing="ij"), dim=-1) # shape: (2r+1, 2r+1, 2) def corr_sample(self, targets, coords): """ Instead of storing the entire correlation pyramid, we compute each level's correlation volume, sample it immediately, then discard it. This saves GPU memory. Args: targets: Tensor (B, S, N, C) — features for the current targets. coords: Tensor (B, S, N, 2) — coordinates at full resolution. Returns: Tensor (B, S, N, L) where L = num_levels * (2*radius+1)**2 (concatenated sampled correlations) """ B, S, N, C = targets.shape # If you have multiple track features, split them per level. if self.multiple_track_feats: targets_split = torch.split(targets, C // self.num_levels, dim=-1) out_pyramid = [] for i, fmaps in enumerate(self.fmaps_pyramid): # Get current spatial resolution H, W for this pyramid level. B, S, C, H, W = fmaps.shape # Reshape feature maps for correlation computation: # fmap2s: (B, S, C, H*W) fmap2s = fmaps.view(B, S, C, H * W) # Choose appropriate target features. fmap1 = targets_split[i] if self.multiple_track_feats else targets # shape: (B, S, N, C) # Compute correlation directly corrs = compute_corr_level(fmap1, fmap2s, C) corrs = corrs.view(B, S, N, H, W) # Prepare sampling grid: # Scale down the coordinates for the current level. centroid_lvl = coords.reshape(B * S * N, 1, 1, 2) / (2**i) # Make sure our precomputed delta grid is on the same device/dtype. delta_lvl = self.delta.to(coords.device).to(coords.dtype) # Now the grid for grid_sample is: # coords_lvl = centroid_lvl + delta_lvl (broadcasted over grid) coords_lvl = centroid_lvl + delta_lvl.view(1, 2 * self.radius + 1, 2 * self.radius + 1, 2) # Sample from the correlation volume using bilinear interpolation. # We reshape corrs to (B * S * N, 1, H, W) so grid_sample acts over each target. corrs_sampled = bilinear_sampler( corrs.reshape(B * S * N, 1, H, W), coords_lvl, padding_mode=self.padding_mode ) # The sampled output is (B * S * N, 1, 2r+1, 2r+1). Flatten the last two dims. corrs_sampled = corrs_sampled.view(B, S, N, -1) # Now shape: (B, S, N, (2r+1)^2) out_pyramid.append(corrs_sampled) # Concatenate all levels along the last dimension. out = torch.cat(out_pyramid, dim=-1).contiguous() return out def compute_corr_level(fmap1, fmap2s, C): # fmap1: (B, S, N, C) # fmap2s: (B, S, C, H*W) corrs = torch.matmul(fmap1, fmap2s) # (B, S, N, H*W) corrs = corrs.view(fmap1.shape[0], fmap1.shape[1], fmap1.shape[2], -1) # (B, S, N, H*W) return corrs / math.sqrt(C)