GhostPack / ghostpacklora.py
ghostai1's picture
Create ghostpacklora.py
2574d7a verified
#!/usr/bin/env python3
# ==========================================================
# FILE: ghostpack.py
# ==========================================================
import os, sys, time, json, argparse, importlib.util, subprocess, traceback
import torch, einops, numpy as np, gradio as gr
from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import (
LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer,
SiglipImageProcessor, SiglipVisionModel
)
try:
from diffusers_helper.hf_login import login
from diffusers_helper.hunyuan import (
encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
)
from diffusers_helper.utils import (
save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw,
resize_and_center_crop, generate_timestamp
)
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import (
gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation,
offload_model_from_device_for_memory_preservation, fake_diffusers_current_device,
DynamicSwapInstaller, unload_complete_models, load_model_as_complete
)
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
except ImportError as e:
with open(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'outputs', 'install_logs.txt'), 'a') as f:
f.write(f"[Dependency Error] {str(e)}\n")
print(f"Dependency error: {str(e)}. Check outputs/install_logs.txt.")
sys.exit(1)
try:
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
except ImportError as e:
with open(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'outputs', 'install_logs.txt'), 'a') as f:
f.write(f"[Dependency Error] {str(e)}\n")
print(f"Dependency error: {str(e)}. Install huggingface_hub and safetensors: pip install huggingface_hub safetensors")
sys.exit(1)
# ------------------------- CLI ----------------------------
parser = argparse.ArgumentParser()
parser.add_argument('--share', action='store_true')
parser.add_argument('--server', type=str, default='0.0.0.0')
parser.add_argument('--port', type=int)
parser.add_argument('--inbrowser', action='store_true')
parser.add_argument('--cli', action='store_true')
args = parser.parse_args()
BASE = os.path.abspath(os.path.dirname(__file__))
os.environ['HF_HOME'] = os.path.join(BASE, 'hf_download')
LORA_CACHE = os.path.join(BASE, 'dlora')
os.makedirs(LORA_CACHE, exist_ok=True)
# Set HF token from environment variable
HF_TOKEN = os.getenv('HF_TOKEN', 'XXXXXXXXXXXXXXXXXXXXXXXX')
if args.cli:
print("๐Ÿ‘ป GhostPack F1 Pro CLI\n")
print("python ghostpack.py # launch UI")
print("python ghostpack.py --cli # show help\n")
sys.exit(0)
# ---------------------- Paths -----------------------------
OUT_BASE = os.path.join(BASE, 'outputs')
OUT_IMG = os.path.join(OUT_BASE, 'img')
OUT_TMP = os.path.join(OUT_BASE, 'tmp_vid')
OUT_VID = os.path.join(OUT_BASE, 'vid')
PROMPT_LOG = os.path.join(OUT_BASE, 'prompts.txt')
SAVED_PROMPTS = os.path.join(OUT_BASE, 'saved_prompts.json')
INSTALL_LOG = os.path.join(OUT_BASE, 'install_logs.txt')
for d in (OUT_BASE, OUT_IMG, OUT_TMP, OUT_VID):
os.makedirs(d, exist_ok=True)
if not os.path.exists(SAVED_PROMPTS):
json.dump([], open(SAVED_PROMPTS,'w'))
if not os.path.exists(INSTALL_LOG):
open(INSTALL_LOG,'w').close()
# ---------------- Auto-Downloader ------------------------
def auto_download_fastvideo_lora():
repo_id = "Kijai/HunyuanVideo_comfy"
filename = "hyvideo_FastVideo_LoRA-fp8.safetensors"
try:
msg, lora_path = download_lora(repo_id, filename, HF_TOKEN)
return msg
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[Auto-Download Error] {repo_id}/{filename}: {str(e)}\n")
return f"โŒ Auto-download failed: {str(e)}"
# Run auto-downloader at startup
auto_download_status = auto_download_fastvideo_lora()
# ---------------- Prompt utils ---------------------------
def get_last_prompts():
return json.load(open(SAVED_PROMPTS))[-5:][::-1]
def save_prompt_fn(p, n):
if not p:
return "โŒ No prompt"
data = json.load(open(SAVED_PROMPTS))
entry = {'prompt': p, 'negative': n}
if entry not in data:
data.append(entry)
json.dump(data, open(SAVED_PROMPTS,'w'))
return "โœ… Saved"
def load_prompt_fn(idx):
lst = get_last_prompts()
return lst[idx]['prompt'] if idx < len(lst) else ""
# ---------------- Cleanup utils --------------------------
def clear_temp_videos():
try:
[os.remove(os.path.join(OUT_TMP,f)) for f in os.listdir(OUT_TMP)]
return "โœ… Temp cleared"
except Exception as e:
return f"โŒ Failed to clear temp: {str(e)}"
def clear_old_files():
try:
cutoff = time.time() - 7*24*3600
c = 0
for d in (OUT_TMP, OUT_IMG):
for f in os.listdir(d):
p = os.path.join(d, f)
if os.path.isfile(p) and os.path.getmtime(p) < cutoff:
os.remove(p)
c += 1
return f"โœ… {c} old files removed"
except Exception as e:
return f"โŒ Failed to clear old files: {str(e)}"
def clear_images():
try:
[os.remove(os.path.join(OUT_IMG,f)) for f in os.listdir(OUT_IMG)]
return "โœ… Images cleared"
except Exception as e:
return f"โŒ Failed to clear images: {str(e)}"
def clear_videos():
try:
[os.remove(os.path.join(OUT_VID,f)) for f in os.listdir(OUT_VID)]
return "โœ… Videos cleared"
except Exception as e:
return f"โŒ Failed to clear videos: {str(e)}"
# ---------------- Gallery helpers ------------------------
def list_images():
try:
return sorted(
[os.path.join(OUT_IMG,f) for f in os.listdir(OUT_IMG) if f.lower().endswith(('.png','.jpg'))],
key=os.path.getmtime
)
except Exception:
return []
def list_videos():
try:
return sorted(
[os.path.join(OUT_VID,f) for f in os.listdir(OUT_VID) if f.lower().endswith('.mp4')],
key=os.path.getmtime
)
except Exception:
return []
def list_loras():
try:
return sorted(
[os.path.join(LORA_CACHE,f) for f in os.listdir(LORA_CACHE) if f.lower().endswith('.safetensors')],
key=os.path.getmtime
)
except Exception:
return []
def load_image(sel):
try:
imgs = list_images()
if sel in [os.path.basename(p) for p in imgs]:
pth = imgs[[os.path.basename(p) for p in imgs].index(sel)]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
return gr.update(), gr.update()
except Exception as e:
return gr.update(), gr.update(value=f"โŒ Error: {str(e)}")
def load_video(sel):
try:
vids = list_videos()
if sel in [os.path.basename(p) for p in vids]:
pth = vids[[os.path.basename(p) for p in vids].index(sel)]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
return gr.update(), gr.update()
except Exception as e:
return gr.update(), gr.update(value=f"โŒ Error: {str(e)}")
def load_lora_select(sel):
try:
loras = list_loras()
if sel in [os.path.basename(p) for p in loras]:
pth = loras[[os.path.basename(p) for p in loras].index(sel)]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
return gr.update(), gr.update()
except Exception as e:
return gr.update(), gr.update(value=f"โŒ Error: {str(e)}")
def next_image_and_load(sel):
try:
imgs = list_images()
if not imgs:
return gr.update(), gr.update()
names = [os.path.basename(i) for i in imgs]
idx = (names.index(sel)+1) % len(names) if sel in names else 0
pth = imgs[idx]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
except Exception:
return gr.update(), gr.update()
def next_video_and_load(sel):
try:
vids = list_videos()
if not vids:
return gr.update(), gr.update()
names = [os.path.basename(v) for v in vids]
idx = (names.index(sel)+1) % len(names) if sel in names else 0
pth = vids[idx]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
except Exception:
return gr.update(), gr.update()
def next_lora_and_load(sel):
try:
loras = list_loras()
if not loras:
return gr.update(), gr.update()
names = [os.path.basename(l) for l in loras]
idx = (names.index(sel)+1) % len(names) if sel in names else 0
pth = loras[idx]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
except Exception:
return gr.update(), gr.update()
def gallery_image_select(evt: gr.SelectData):
try:
imgs = list_images()
if evt.index is not None and evt.index < len(imgs):
pth = imgs[evt.index]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
return gr.update(), gr.update()
except Exception:
return gr.update(), gr.update()
def gallery_video_select(evt: gr.SelectData):
try:
vids = list_videos()
if evt.index is not None and evt.index < len(vids):
pth = vids[evt.index]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
return gr.update(), gr.update()
except Exception:
return gr.update(), gr.update()
def gallery_lora_select(evt: gr.SelectData):
try:
loras = list_loras()
if evt.index is not None and evt.index < len(loras):
pth = loras[evt.index]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
return gr.update(), gr.update()
except Exception:
return gr.update(), gr.update()
# ---------------- Install status -------------------------
def check_mod(n):
return importlib.util.find_spec(n) is not None
def status_xformers():
return "โœ… xformers" if check_mod("xformers") else "โŒ xformers"
def status_sage():
return "โœ… sage-attn" if check_mod("sageattention") else "โŒ sage-attn"
def status_flash():
return "โœ… flash-attn" if check_mod("flash_attn") else "โš ๏ธ flash-attn"
def install_pkg(pkg, warn=None):
try:
if warn:
print(warn)
time.sleep(1)
out = subprocess.check_output(
[sys.executable, "-m", "pip", "install", pkg],
stderr=subprocess.STDOUT, text=True
)
res = f"โœ… {pkg}\n{out}\n"
except subprocess.CalledProcessError as e:
res = f"โŒ {pkg}\n{e.output}\n"
with open(INSTALL_LOG, 'a') as f:
f.write(f"[{pkg}] {res}")
return res
install_xformers = lambda: install_pkg("xformers")
install_sage_attn = lambda: install_pkg("sage-attn")
install_flash_attn = lambda: install_pkg("flash-attn","โš ๏ธ long compile")
refresh_logs = lambda: open(INSTALL_LOG).read()
clear_logs = lambda: (open(INSTALL_LOG,'w').close() or "โœ… Logs cleared")
# ---------------- LoRA Download and Load ------------------
def download_lora(repo_id, filename, hf_token):
try:
lora_path = os.path.join(LORA_CACHE, filename)
if not os.path.exists(lora_path):
if get_cuda_free_memory_gb(gpu) < 2:
return "โŒ Low VRAM (<2GB). Free up memory.", None
hf_hub_download(
repo_id=repo_id,
filename=filename,
local_dir=LORA_CACHE,
token=hf_token
)
with open(INSTALL_LOG, 'a') as f:
f.write(f"[LoRA Download] {repo_id}/{filename} downloaded to {lora_path}\n")
return "โœ… LoRA downloaded", lora_path
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[LoRA Download Error] {repo_id}/{filename}: {str(e)}\n")
return f"โŒ Download failed: {str(e)}", None
def load_lora(transformer, lora_path, lora_weight):
try:
if lora_path and os.path.exists(lora_path):
if hasattr(transformer, 'load_lora_weights'):
transformer.load_lora_weights(
lora_path,
adapter_name="fastvideo",
weight=lora_weight
)
with open(INSTALL_LOG, 'a') as f:
f.write(f"[LoRA Load] {lora_path} loaded with standard method, weight {lora_weight}\n")
return "โœ… LoRA loaded"
else:
# Manual LoRA loading
lora_weights = load_file(lora_path)
state_dict = transformer.state_dict()
for key, value in lora_weights.items():
if key in state_dict:
state_dict[key] = state_dict[key] + lora_weight * value.to(state_dict[key].device)
else:
# Try partial key matching for common transformer layers
for model_key in state_dict:
if key.split('.')[-1] in model_key and ('self_attn' in model_key or 'ffn' in model_key):
state_dict[model_key] = state_dict[model_key] + lora_weight * value.to(state_dict[model_key].device)
break
else:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[LoRA Load Warning] Key {key} not found in model state_dict\n")
transformer.load_state_dict(state_dict)
with open(INSTALL_LOG, 'a') as f:
f.write(f"[LoRA Load] {lora_path} loaded manually, weight {lora_weight}\n")
return "โœ… LoRA loaded manually"
return "โŒ No valid LoRA path"
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[LoRA Load Error] {lora_path}: {str(e)}\n")
return f"โš ๏ธ LoRA not supported, using base model: {str(e)}"
def delete_lora(sel):
try:
loras = list_loras()
if sel in [os.path.basename(p) for p in loras]:
pth = loras[[os.path.basename(p) for p in loras].index(sel)]
os.remove(pth)
with open(INSTALL_LOG, 'a') as f:
f.write(f"[LoRA Delete] {pth} deleted\n")
return "โœ… LoRA deleted", gr.update(choices=[os.path.basename(l) for l in list_loras()], value=None)
return "โŒ No LoRA selected", gr.update()
except Exception as e:
return f"โŒ Delete failed: {str(e)}", gr.update()
# ---------------- Model load -----------------------------
free_mem = get_cuda_free_memory_gb(gpu)
hv = free_mem > 60
try:
text_encoder = LlamaModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='text_encoder', torch_dtype=torch.float16, token=HF_TOKEN
).cpu().eval()
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[Model Load Error] text_encoder: {str(e)}\n")
raise gr.Error(f"Failed to load text_encoder: {str(e)}")
try:
text_encoder_2 = CLIPTextModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='text_encoder_2', torch_dtype=torch.float16, token=HF_TOKEN
).cpu().eval()
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[Model Load Error] text_encoder_2: {str(e)}\n")
raise gr.Error(f"Failed to load text_encoder_2: {str(e)}")
try:
tokenizer = LlamaTokenizerFast.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='tokenizer', token=HF_TOKEN
)
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[Model Load Error] tokenizer: {str(e)}\n")
raise gr.Error(f"Failed to load tokenizer: {str(e)}")
try:
tokenizer_2 = CLIPTokenizer.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='tokenizer_2', token=HF_TOKEN
)
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[Model Load Error] tokenizer_2: {str(e)}\n")
raise gr.Error(f"Failed to load tokenizer_2: {str(e)}")
try:
vae = AutoencoderKLHunyuanVideo.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='vae', torch_dtype=torch.float16, token=HF_TOKEN
).cpu().eval()
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[Model Load Error] vae: {str(e)}\n")
raise gr.Error(f"Failed to load vae: {str(e)}")
try:
feature_extractor = SiglipImageProcessor.from_pretrained(
"lllyasviel/flux_redux_bfl", subfolder='feature_extractor', token=HF_TOKEN
)
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[Model Load Error] feature_extractor: {str(e)}\n")
raise gr.Error(f"Failed to load feature_extractor: {str(e)}")
try:
image_encoder = SiglipVisionModel.from_pretrained(
"lllyasviel/flux_redux_bfl",
subfolder='image_encoder', torch_dtype=torch.float16, token=HF_TOKEN
).cpu().eval()
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[Model Load Error] image_encoder: {str(e)}\n")
raise gr.Error(f"Failed to load image_encoder: {str(e)}")
try:
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
"lllyasviel/FramePack_F1_I2V_HY_20250503",
torch_dtype=torch.bfloat16, token=HF_TOKEN
).cpu().eval()
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[Model Load Error] transformer: {str(e)}\n")
raise gr.Error(f"Failed to load transformer: {str(e)}")
if not hv:
vae.enable_slicing()
vae.enable_tiling()
transformer.high_quality_fp32_output_for_inference = True
transformer.to(dtype=torch.bfloat16)
for m in (vae, image_encoder, text_encoder, text_encoder_2):
m.to(dtype=torch.float16)
for m in (vae, image_encoder, text_encoder, text_encoder_2, transformer):
m.requires_grad_(False)
if not hv:
DynamicSwapInstaller.install_model(transformer, device=gpu)
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
for m in (text_encoder, text_encoder_2, image_encoder, vae, transformer):
m.to(gpu)
stream = AsyncStream()
# ---------------- Worker -------------------------------
@torch.no_grad()
def worker(img, prompt, n_p, seed, secs, win, stp, cfg, gsc, rsc, keep, tea, crf, lora_path, lora_weight, disable_prompt_mods):
# Download and load LoRA if specified
lora_msg = "No LoRA specified"
if lora_path:
try:
if lora_path.startswith("http") or lora_path.startswith("Kijai/"):
repo_id = "Kijai/HunyuanVideo_comfy"
filename = "hyvideo_FastVideo_LoRA-fp8.safetensors"
lora_msg, lora_path = download_lora(repo_id, filename, HF_TOKEN)
if not lora_path:
raise gr.Error(lora_msg)
lora_msg = load_lora(transformer, lora_path, lora_weight)
if "โš ๏ธ" in lora_msg or "โŒ" in lora_msg:
print(lora_msg)
else:
stp = 8 # Override steps for FastVideo LoRA
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[LoRA Error] {lora_path}: {str(e)}\n")
lora_msg = f"โš ๏ธ LoRA failed, using base model: {str(e)}"
# Validate prompt
try:
if not disable_prompt_mods:
if "stop" not in prompt.lower() and secs > 5:
prompt += " The subject stops moving after 5 seconds."
if "smooth" not in prompt.lower():
prompt = f"Smooth animation: {prompt}"
if "silent" not in prompt.lower():
prompt += ", silent"
if len(prompt.split()) > 50:
print("Warning: Complex prompt may slow rendering or cause instability.")
except Exception as e:
raise gr.Error(f"Prompt validation failed: {str(e)}")
# Check VRAM availability
if get_cuda_free_memory_gb(gpu) < 2:
raise gr.Error("Low VRAM (<2GB). Lower 'kee' or 'win'.")
sections = max(round((secs*30)/(win*4)), 1)
jid = generate_timestamp()
try:
with open(PROMPT_LOG, 'a') as f:
f.write(f"{jid}\t{prompt}\t{n_p}\n")
except Exception as e:
print(f"Failed to log prompt: {str(e)}")
stream.output_queue.push(('progress', (None, "", make_progress_bar_html(0, "Start"))))
try:
if not hv:
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
fake_diffusers_current_device(text_encoder, gpu)
load_model_as_complete(text_encoder_2, gpu)
lv, cp = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
if cfg == 1:
lv_n = torch.zeros_like(lv)
cp_n = torch.zeros_like(cp)
else:
lv_n, cp_n = encode_prompt_conds(n_p, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
lv, m = crop_or_pad_yield_mask(lv, 512)
lv_n, m_n = crop_or_pad_yield_mask(lv_n, 512)
lv, cp, lv_n, cp_n = [x.to(torch.bfloat16) for x in (lv, cp, lv_n, cp_n)]
H, W, _ = img.shape
h, w = find_nearest_bucket(H, W, 640)
img_np = resize_and_center_crop(img, w, h)
Image.fromarray(img_np).save(os.path.join(OUT_IMG, f"{jid}.png"))
img_pt = (torch.from_numpy(img_np).float()/127.5-1).permute(2,0,1)[None,:,None]
if not hv:
load_model_as_complete(vae, gpu)
start_lat = vae_encode(img_pt, vae)
if not hv:
load_model_as_complete(image_encoder, gpu)
img_emb = hf_clip_vision_encode(img_np, feature_extractor, image_encoder).last_hidden_state.to(torch.bfloat16)
gen = torch.Generator("cpu").manual_seed(seed)
hist_lat = torch.zeros((1,16,1+2+16,h//8,w//8), dtype=torch.float16).cpu()
hist_px = None
total = 0
pad_seq = [3] + [2]*(sections-3) + [1,0] if sections>4 else list(reversed(range(sections)))
for pad in pad_seq:
last = pad == 0
if stream.input_queue.top() == "end":
stream.output_queue.push(("end", None))
return
pad_sz = pad * win
idx = torch.arange(0, sum([1,pad_sz,win,1,2,16]))[None].to(device=gpu)
a,b,c,d,e,f = idx.split([1,pad_sz,win,1,2,16],1)
clean_idx = torch.cat([a,d],1)
pre = start_lat.to(hist_lat)
post, two, four = hist_lat[:,:,:1+2+16].split([1,2,16],2)
clean = torch.cat([pre, post],2)
if not hv:
unload_complete_models()
move_model_to_device_with_memory_preservation(transformer, gpu, keep)
transformer.initialize_teacache(tea, stp)
def cb(d):
pv = vae_decode_fake(d["denoised"])
pv = (pv*255).cpu().numpy().clip(0,255).astype(np.uint8)
pv = einops.rearrange(pv, "b c t h w -> (b h) (t w) c")
cur = d["i"]+1
stream.output_queue.push(('progress', (pv, f"{cur}/{stp}", make_progress_bar_html(int(100*cur/stp), f"{cur}/{stp}"))))
if stream.input_queue.top()=="end":
stream.output_queue.push(("end", None))
raise KeyboardInterrupt
new_lat = sample_hunyuan(
transformer=transformer, sampler="unipc", width=w, height=h, frames=win*4-3,
real_guidance_scale=cfg, distilled_guidance_scale=gsc, guidance_rescale=rsc,
num_inference_steps=stp, generator=gen,
prompt_embeds=lv, prompt_embeds_mask=m, prompt_poolers=cp,
negative_prompt_embeds=lv_n, negative_prompt_embeds_mask=m_n, negative_prompt_poolers=cp_n,
device=gpu, dtype=torch.bfloat16, image_embeddings=img_emb,
latent_indices=c, clean_latents=clean, clean_latent_indices=clean_idx,
clean_latents_2x=two, clean_latent_2x_indices=e,
clean_latents_4x=four, clean_latent_4x_indices=f, callback=cb
)
if last:
new_lat = torch.cat([start_lat.to(new_lat), new_lat],2)
total += new_lat.shape[2]
hist_lat = torch.cat([new_lat.to(hist_lat), hist_lat],2)
if not hv:
offload_model_from_device_for_memory_preservation(transformer, gpu, 8)
load_model_as_complete(vae, gpu)
real = hist_lat[:,:,:total]
if hist_px is None:
hist_px = vae_decode(real, vae).cpu()
else:
overlap = win*4-3
curr = vae_decode(real[:,:,:win*2], vae).cpu()
hist_px = soft_append_bcthw(curr, hist_px, overlap)
if not hv:
unload_complete_models()
tmp = os.path.join(OUT_TMP, f"{jid}_{total}.mp4")
save_bcthw_as_mp4(hist_px, tmp, fps=30, crf=crf)
stream.output_queue.push(('file', tmp))
if last:
fin = os.path.join(OUT_VID, f"{jid}_{total}.mp4")
os.replace(tmp, fin)
stream.output_queue.push(('complete', fin))
break
except Exception as e:
traceback.print_exc()
with open(INSTALL_LOG, 'a') as f:
f.write(f"[Worker Error] {str(e)}\n")
stream.output_queue.push(("end", None))
return lora_msg
# ---------------- Process Function -----------------------
@torch.no_grad()
def process(img, prm, npr, sd, sec, win, stp, cfg, gsc, rsc, kee, tea, crf, lora_path, lora_weight, disable_prompt_mods):
global stream
if img is None:
raise gr.Error("Upload an image")
yield None, None, "", "", gr.update(interactive=False), gr.update(interactive=True), gr.update()
stream = AsyncStream()
lora_msg = async_run(worker, img, prm, npr, sd, sec, win, stp, cfg, gsc, rsc, kee, tea, crf, lora_path, lora_weight, disable_prompt_mods)
out, log = None, ""
while True:
flag, data = stream.output_queue.next()
if flag == "file":
out = data
yield out, gr.update(), gr.update(), log, gr.update(interactive=False), gr.update(interactive=True), gr.update(value=lora_msg)
if flag == "progress":
pv, desc, html = data
log = desc
yield gr.update(), gr.update(visible=True, value=pv), desc, html, gr.update(interactive=False), gr.update(interactive=True), gr.update(value=lora_msg)
if flag in ("complete", "end"):
yield out, gr.update(visible=False), gr.update(), "", gr.update(interactive=True), gr.update(interactive=False), gr.update(value=lora_msg)
break
def end_process():
stream.input_queue.push("end")
# ------------------- UI ------------------------------
quick_prompts = [
["Smooth animation: A character waves for 3 seconds, then stands still for 2 seconds, static camera, silent."],
["Smooth animation: A character moves for 5 seconds, static camera, silent."]
]
css = make_progress_bar_css() + """
.orange-button{background:#ff6200;color:#fff;border-color:#ff6200;}
.load-button{background:#4CAF50;color:#fff;border-color:#4CAF50;margin-left:10px;}
.big-setting-button{background:#0066cc;color:#fff;border:none;padding:14px 24px;font-size:18px;width:100%;border-radius:6px;margin:8px 0;}
.styled-dropdown{width:250px;padding:5px;border-radius:4px;}
.viewer-column{width:100%;max-width:900px;margin:0 auto;}
.media-preview img,.media-preview video{max-width:100%;height:380px;object-fit:contain;border:1px solid #444;border-radius:6px;}
.media-container{display:flex;gap:20px;align-items:flex-start;}
.control-box{min-width:220px;}
.control-grid{display:grid;grid-template-columns:1fr 1fr;gap:10px;}
.image-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;}
.image-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;}
.image-gallery img{object-fit:contain;height:360px!important;width:300px!important;}
.video-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;}
.video-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;}
.video-gallery video{object-fit:contain;height:360px!important;width:300px!important;}
.lora-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;}
.lora-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;}
.lora-gallery .gallery-item div{text-align:center;font-size:16px;color:#fff;}
"""
blk = gr.Blocks(css=css).queue()
with blk:
gr.Markdown("# ๐Ÿ‘ป GhostPack F1 Pro")
with gr.Tabs():
with gr.TabItem("๐Ÿ‘ป Generate"):
with gr.Row():
with gr.Column():
img_in = gr.Image(sources="upload", type="numpy", label="Image", height=320)
prm = gr.Textbox(label="Prompt")
npr = gr.Textbox(label="Negative Prompt", value="low quality, blurry, speaking, talking, moaning, vocalizing, lip movement, mouth animation, sound, dialogue, speech, whispering, shouting, lip sync, facial animation, expressive face, verbal expression, animated mouth")
save_msg = gr.Markdown("")
lora_path = gr.Textbox(
label="FastVideo LoRA Path or HF Repo",
value="Kijai/HunyuanVideo_comfy",
placeholder="e.g., Kijai/HunyuanVideo_comfy/hyvideo_FastVideo_LoRA-fp8.safetensors or /path/to/hyvideo_FastVideo_LoRA-fp8.safetensors"
)
lora_weight = gr.Slider(label="LoRA Weight", minimum=0.5, maximum=1.5, value=1.0, step=0.1)
disable_prompt_mods = gr.Checkbox(label="Disable Prompt Modifications", value=False)
lora_status_gen = gr.Markdown(value=auto_download_status)
btn_save = gr.Button("Save Prompt")
btn1, btn2, btn3 = gr.Button("Load Most Recent"), gr.Button("Load 2nd Recent"), gr.Button("Load 3rd Recent")
ds = gr.Dataset(samples=quick_prompts, label="Quick List", components=[prm])
ds.click(lambda x: x[0], [ds], [prm])
btn_save.click(save_prompt_fn, [prm, npr], [save_msg])
btn1.click(lambda: load_prompt_fn(0), [], [prm])
btn2.click(lambda: load_prompt_fn(1), [], [prm])
btn3.click(lambda: load_prompt_fn(2), [], [prm])
with gr.Row():
b_go, b_end = gr.Button("Start"), gr.Button("End", interactive=False)
with gr.Group():
tea = gr.Checkbox(label="Use TeaCache", value=True)
se = gr.Number(label="Seed", value=31337, precision=0)
sec = gr.Slider(label="Video Length (s)", minimum=1, maximum=120, value=5, step=0.1)
win = gr.Slider(label="Latent Window", minimum=1, maximum=33, value=5, step=1)
stp = gr.Slider(label="Steps", minimum=1, maximum=100, value=8, step=1)
cfg = gr.Slider(label="CFG", minimum=1, maximum=32, value=1, step=0.01, visible=False)
gsc = gr.Slider(label="Distilled CFG", minimum=1, maximum=32, value=5, step=0.01)
rsc = gr.Slider(label="CFG Re-Scale", minimum=0, maximum=1, value=0.5, step=0.01)
kee = gr.Slider(label="GPU Keep (GB)", minimum=4, maximum=free_mem, value=6, step=0.1)
crf = gr.Slider(label="MP4 CRF", minimum=0, maximum=100, value=20, step=1)
with gr.Column():
pv = gr.Image(label="Next Latents", height=200, visible=False)
vid = gr.Video(label="Finished", autoplay=True, height=500, loop=True, show_share_button=False)
log_md = gr.Markdown("")
bar = gr.HTML("")
b_go.click(
process,
[img_in, prm, npr, se, sec, win, stp, cfg, gsc, rsc, kee, tea, crf, lora_path, lora_weight, disable_prompt_mods],
[vid, pv, log_md, bar, b_go, b_end, lora_status_gen]
)
b_end.click(end_process)
with gr.TabItem("๐Ÿ–ผ๏ธ Image Gallery"):
with gr.Row(elem_classes="media-container"):
with gr.Column(scale=3):
image_preview = gr.Image(
label="Viewer",
value=(list_images()[0] if list_images() else None),
interactive=False, elem_classes="media-preview"
)
with gr.Column(elem_classes="control-box"):
image_dropdown = gr.Dropdown(
choices=[os.path.basename(i) for i in list_images()],
value=(os.path.basename(list_images()[0]) if list_images() else None),
label="Select", elem_classes="styled-dropdown"
)
with gr.Row(elem_classes="control-grid"):
load_btn = gr.Button("Load", elem_classes="load-button")
next_btn = gr.Button("Next", elem_classes="load-button")
with gr.Row(elem_classes="control-grid"):
refresh_btn = gr.Button("Refresh")
delete_btn = gr.Button("Delete", elem_classes="orange-button")
image_gallery = gr.Gallery(
value=list_images(), label="Thumbnails", columns=6, height=360,
allow_preview=False, type="filepath", elem_classes="image-gallery"
)
load_btn.click(load_image, [image_dropdown], [image_preview, image_dropdown])
next_btn.click(next_image_and_load, [image_dropdown], [image_preview, image_dropdown])
refresh_btn.click(lambda: (
gr.update(choices=[os.path.basename(i) for i in list_images()],
value=os.path.basename(list_images()[0]) if list_images() else None),
gr.update(value=list_images()[0] if list_images() else None),
gr.update(value=list_images())
), [], [image_dropdown, image_preview, image_gallery])
delete_btn.click(lambda sel: (os.remove(os.path.join(OUT_IMG, sel)) if sel else None) or load_image(""),
[image_dropdown], [image_preview, image_dropdown])
image_gallery.select(gallery_image_select, [], [image_preview, image_dropdown])
with gr.TabItem("๐ŸŽฌ Video Gallery"):
with gr.Row(elem_classes="media-container"):
with gr.Column(scale=3):
video_preview = gr.Video(
label="Viewer",
value=(list_videos()[0] if list_videos() else None),
autoplay=True, loop=True, interactive=False, elem_classes="media-preview"
)
with gr.Column(elem_classes="control-box"):
video_dropdown = gr.Dropdown(
choices=[os.path.basename(v) for v in list_videos()],
value=(os.path.basename(list_videos()[0]) if list_videos() else None),
label="Select", elem_classes="styled-dropdown"
)
with gr.Row(elem_classes="control-grid"):
load_vbtn = gr.Button("Load", elem_classes="load-button")
next_vbtn = gr.Button("Next", elem_classes="load-button")
with gr.Row(elem_classes="control-grid"):
refresh_v = gr.Button("Refresh")
delete_v = gr.Button("Delete", elem_classes="orange-button")
video_gallery = gr.Gallery(
value=list_videos(), label="Thumbnails", columns=6, height=360,
allow_preview=False, type="filepath", elem_classes="video-gallery"
)
load_vbtn.click(load_video, [video_dropdown], [video_preview, video_dropdown])
next_vbtn.click(next_video_and_load, [video_dropdown], [video_preview, video_dropdown])
refresh_v.click(lambda: (
gr.update(choices=[os.path.basename(v) for v in list_videos()],
value=os.path.basename(list_videos()[0]) if list_videos() else None),
gr.update(value=list_videos()[0] if list_videos() else None),
gr.update(value=list_videos())
), [], [video_dropdown, video_preview, video_gallery])
delete_v.click(lambda sel: (os.remove(os.path.join(OUT_VID, sel)) if sel else None) or load_video(""),
[video_dropdown], [video_preview, video_dropdown])
video_gallery.select(gallery_video_select, [], [video_preview, video_dropdown])
with gr.TabItem("๐Ÿ“ฆ LoRA Management"):
with gr.Row(elem_classes="media-container"):
with gr.Column(scale=3):
lora_status = gr.Markdown("")
with gr.Column(elem_classes="control-box"):
lora_dropdown = gr.Dropdown(
choices=[os.path.basename(l) for l in list_loras()],
value=(os.path.basename(list_loras()[0]) if list_loras() else None),
label="Select LoRA", elem_classes="styled-dropdown"
)
with gr.Row(elem_classes="control-grid"):
load_lora_btn = gr.Button("Load", elem_classes="load-button")
next_lora_btn = gr.Button("Next", elem_classes="load-button")
with gr.Row(elem_classes="control-grid"):
refresh_lora_btn = gr.Button("Refresh")
delete_lora_btn = gr.Button("Delete", elem_classes="orange-button")
download_fastvideo_btn = gr.Button("Download FastVideo LoRA", elem_classes="big-setting-button")
lora_gallery = gr.Gallery(
value=[(l, os.path.basename(l)) for l in list_loras()], label="LoRA Files", columns=6, height=360,
allow_preview=False, elem_classes="lora-gallery"
)
load_lora_btn.click(load_lora_select, [lora_dropdown], [lora_path, lora_dropdown])
next_lora_btn.click(next_lora_and_load, [lora_dropdown], [lora_path, lora_dropdown])
refresh_lora_btn.click(lambda: (
gr.update(choices=[os.path.basename(l) for l in list_loras()],
value=os.path.basename(list_loras()[0]) if list_loras() else None),
gr.update(value=[(l, os.path.basename(l)) for l in list_loras()])
), [], [lora_dropdown, lora_gallery])
delete_lora_btn.click(delete_lora, [lora_dropdown], [lora_status, lora_dropdown])
download_fastvideo_btn.click(
lambda: auto_download_fastvideo_lora(),
[], [lora_status]
)
lora_gallery.select(gallery_lora_select, [], [lora_path, lora_dropdown])
with gr.TabItem("๐Ÿ‘ป About"):
gr.Markdown("## GhostPack F1 Pro")
with gr.Row():
with gr.Column():
gr.Markdown("**๐Ÿ› ๏ธ Description**\nImage-to-Video toolkit powered by HunyuanVideo & FramePack-F1")
with gr.Column():
gr.Markdown("**๐Ÿ“ฆ Version**\n2025-05-03")
with gr.Column():
gr.Markdown("**โœ๏ธ Author**\nGhostAI")
with gr.Column():
gr.Markdown("**๐Ÿ”— Repo**\nhttps://huggingface.co/spaces/ghostai1/GhostPack")
with gr.TabItem("โš™๏ธ Settings"):
ct = gr.Button("Clear Temp", elem_classes="big-setting-button")
ctmsg = gr.Markdown("")
co = gr.Button("Clear Old", elem_classes="big-setting-button")
comsg= gr.Markdown("")
ci = gr.Button("Clear Images", elem_classes="big-setting-button")
cimg= gr.Markdown("")
cv = gr.Button("Clear Videos", elem_classes="big-setting-button")
cvid= gr.Markdown("")
ct.click(clear_temp_videos, [], ctmsg)
co.click(clear_old_files, [], comsg)
ci.click(clear_images, [], cimg)
cv.click(clear_videos, [], cvid)
with gr.TabItem("๐Ÿ› ๏ธ Install"):
xs = gr.Textbox(value=status_xformers(), interactive=False, label="xformers")
bx = gr.Button("Install xformers", elem_classes="big-setting-button")
ss = gr.Textbox(value=status_sage(), interactive=False, label="sage-attn")
bs = gr.Button("Install sage-attn", elem_classes="big-setting-button")
fs = gr.Textbox(value=status_flash(),interactive=False, label="flash-attn")
bf = gr.Button("Install flash-attn", elem_classes="big-setting-button")
bx.click(install_xformers, [], xs)
bs.click(install_sage_attn, [], ss)
bf.click(install_flash_attn, [], fs)
with gr.TabItem("๐Ÿ“œ Logs"):
logs = gr.Textbox(lines=20, interactive=False, label="Install Logs")
rl = gr.Button("Refresh", elem_classes="big-setting-button")
cl = gr.Button("Clear", elem_classes="big-setting-button")
rl.click(refresh_logs, [], logs)
cl.click(clear_logs, [], logs)
# Force video previews to seek to 2s
gr.HTML("""<script>
document.querySelectorAll('.video-gallery video').forEach(v => {
v.addEventListener('loadedmetadata', () => {
if (v.duration > 2) v.currentTime = 2;
});
});
</script>""")
blk.launch(
server_name=args.server,
server_port=args.port,
share=args.share,
inbrowser=args.inbrowser
)