Spaces:
Running
Running
File size: 42,978 Bytes
2574d7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 |
#!/usr/bin/env python3
# ==========================================================
# FILE: ghostpack.py
# ==========================================================
import os, sys, time, json, argparse, importlib.util, subprocess, traceback
import torch, einops, numpy as np, gradio as gr
from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import (
LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer,
SiglipImageProcessor, SiglipVisionModel
)
try:
from diffusers_helper.hf_login import login
from diffusers_helper.hunyuan import (
encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
)
from diffusers_helper.utils import (
save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw,
resize_and_center_crop, generate_timestamp
)
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import (
gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation,
offload_model_from_device_for_memory_preservation, fake_diffusers_current_device,
DynamicSwapInstaller, unload_complete_models, load_model_as_complete
)
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
except ImportError as e:
with open(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'outputs', 'install_logs.txt'), 'a') as f:
f.write(f"[Dependency Error] {str(e)}\n")
print(f"Dependency error: {str(e)}. Check outputs/install_logs.txt.")
sys.exit(1)
try:
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
except ImportError as e:
with open(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'outputs', 'install_logs.txt'), 'a') as f:
f.write(f"[Dependency Error] {str(e)}\n")
print(f"Dependency error: {str(e)}. Install huggingface_hub and safetensors: pip install huggingface_hub safetensors")
sys.exit(1)
# ------------------------- CLI ----------------------------
parser = argparse.ArgumentParser()
parser.add_argument('--share', action='store_true')
parser.add_argument('--server', type=str, default='0.0.0.0')
parser.add_argument('--port', type=int)
parser.add_argument('--inbrowser', action='store_true')
parser.add_argument('--cli', action='store_true')
args = parser.parse_args()
BASE = os.path.abspath(os.path.dirname(__file__))
os.environ['HF_HOME'] = os.path.join(BASE, 'hf_download')
LORA_CACHE = os.path.join(BASE, 'dlora')
os.makedirs(LORA_CACHE, exist_ok=True)
# Set HF token from environment variable
HF_TOKEN = os.getenv('HF_TOKEN', 'XXXXXXXXXXXXXXXXXXXXXXXX')
if args.cli:
print("๐ป GhostPack F1 Pro CLI\n")
print("python ghostpack.py # launch UI")
print("python ghostpack.py --cli # show help\n")
sys.exit(0)
# ---------------------- Paths -----------------------------
OUT_BASE = os.path.join(BASE, 'outputs')
OUT_IMG = os.path.join(OUT_BASE, 'img')
OUT_TMP = os.path.join(OUT_BASE, 'tmp_vid')
OUT_VID = os.path.join(OUT_BASE, 'vid')
PROMPT_LOG = os.path.join(OUT_BASE, 'prompts.txt')
SAVED_PROMPTS = os.path.join(OUT_BASE, 'saved_prompts.json')
INSTALL_LOG = os.path.join(OUT_BASE, 'install_logs.txt')
for d in (OUT_BASE, OUT_IMG, OUT_TMP, OUT_VID):
os.makedirs(d, exist_ok=True)
if not os.path.exists(SAVED_PROMPTS):
json.dump([], open(SAVED_PROMPTS,'w'))
if not os.path.exists(INSTALL_LOG):
open(INSTALL_LOG,'w').close()
# ---------------- Auto-Downloader ------------------------
def auto_download_fastvideo_lora():
repo_id = "Kijai/HunyuanVideo_comfy"
filename = "hyvideo_FastVideo_LoRA-fp8.safetensors"
try:
msg, lora_path = download_lora(repo_id, filename, HF_TOKEN)
return msg
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[Auto-Download Error] {repo_id}/{filename}: {str(e)}\n")
return f"โ Auto-download failed: {str(e)}"
# Run auto-downloader at startup
auto_download_status = auto_download_fastvideo_lora()
# ---------------- Prompt utils ---------------------------
def get_last_prompts():
return json.load(open(SAVED_PROMPTS))[-5:][::-1]
def save_prompt_fn(p, n):
if not p:
return "โ No prompt"
data = json.load(open(SAVED_PROMPTS))
entry = {'prompt': p, 'negative': n}
if entry not in data:
data.append(entry)
json.dump(data, open(SAVED_PROMPTS,'w'))
return "โ
Saved"
def load_prompt_fn(idx):
lst = get_last_prompts()
return lst[idx]['prompt'] if idx < len(lst) else ""
# ---------------- Cleanup utils --------------------------
def clear_temp_videos():
try:
[os.remove(os.path.join(OUT_TMP,f)) for f in os.listdir(OUT_TMP)]
return "โ
Temp cleared"
except Exception as e:
return f"โ Failed to clear temp: {str(e)}"
def clear_old_files():
try:
cutoff = time.time() - 7*24*3600
c = 0
for d in (OUT_TMP, OUT_IMG):
for f in os.listdir(d):
p = os.path.join(d, f)
if os.path.isfile(p) and os.path.getmtime(p) < cutoff:
os.remove(p)
c += 1
return f"โ
{c} old files removed"
except Exception as e:
return f"โ Failed to clear old files: {str(e)}"
def clear_images():
try:
[os.remove(os.path.join(OUT_IMG,f)) for f in os.listdir(OUT_IMG)]
return "โ
Images cleared"
except Exception as e:
return f"โ Failed to clear images: {str(e)}"
def clear_videos():
try:
[os.remove(os.path.join(OUT_VID,f)) for f in os.listdir(OUT_VID)]
return "โ
Videos cleared"
except Exception as e:
return f"โ Failed to clear videos: {str(e)}"
# ---------------- Gallery helpers ------------------------
def list_images():
try:
return sorted(
[os.path.join(OUT_IMG,f) for f in os.listdir(OUT_IMG) if f.lower().endswith(('.png','.jpg'))],
key=os.path.getmtime
)
except Exception:
return []
def list_videos():
try:
return sorted(
[os.path.join(OUT_VID,f) for f in os.listdir(OUT_VID) if f.lower().endswith('.mp4')],
key=os.path.getmtime
)
except Exception:
return []
def list_loras():
try:
return sorted(
[os.path.join(LORA_CACHE,f) for f in os.listdir(LORA_CACHE) if f.lower().endswith('.safetensors')],
key=os.path.getmtime
)
except Exception:
return []
def load_image(sel):
try:
imgs = list_images()
if sel in [os.path.basename(p) for p in imgs]:
pth = imgs[[os.path.basename(p) for p in imgs].index(sel)]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
return gr.update(), gr.update()
except Exception as e:
return gr.update(), gr.update(value=f"โ Error: {str(e)}")
def load_video(sel):
try:
vids = list_videos()
if sel in [os.path.basename(p) for p in vids]:
pth = vids[[os.path.basename(p) for p in vids].index(sel)]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
return gr.update(), gr.update()
except Exception as e:
return gr.update(), gr.update(value=f"โ Error: {str(e)}")
def load_lora_select(sel):
try:
loras = list_loras()
if sel in [os.path.basename(p) for p in loras]:
pth = loras[[os.path.basename(p) for p in loras].index(sel)]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
return gr.update(), gr.update()
except Exception as e:
return gr.update(), gr.update(value=f"โ Error: {str(e)}")
def next_image_and_load(sel):
try:
imgs = list_images()
if not imgs:
return gr.update(), gr.update()
names = [os.path.basename(i) for i in imgs]
idx = (names.index(sel)+1) % len(names) if sel in names else 0
pth = imgs[idx]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
except Exception:
return gr.update(), gr.update()
def next_video_and_load(sel):
try:
vids = list_videos()
if not vids:
return gr.update(), gr.update()
names = [os.path.basename(v) for v in vids]
idx = (names.index(sel)+1) % len(names) if sel in names else 0
pth = vids[idx]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
except Exception:
return gr.update(), gr.update()
def next_lora_and_load(sel):
try:
loras = list_loras()
if not loras:
return gr.update(), gr.update()
names = [os.path.basename(l) for l in loras]
idx = (names.index(sel)+1) % len(names) if sel in names else 0
pth = loras[idx]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
except Exception:
return gr.update(), gr.update()
def gallery_image_select(evt: gr.SelectData):
try:
imgs = list_images()
if evt.index is not None and evt.index < len(imgs):
pth = imgs[evt.index]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
return gr.update(), gr.update()
except Exception:
return gr.update(), gr.update()
def gallery_video_select(evt: gr.SelectData):
try:
vids = list_videos()
if evt.index is not None and evt.index < len(vids):
pth = vids[evt.index]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
return gr.update(), gr.update()
except Exception:
return gr.update(), gr.update()
def gallery_lora_select(evt: gr.SelectData):
try:
loras = list_loras()
if evt.index is not None and evt.index < len(loras):
pth = loras[evt.index]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
return gr.update(), gr.update()
except Exception:
return gr.update(), gr.update()
# ---------------- Install status -------------------------
def check_mod(n):
return importlib.util.find_spec(n) is not None
def status_xformers():
return "โ
xformers" if check_mod("xformers") else "โ xformers"
def status_sage():
return "โ
sage-attn" if check_mod("sageattention") else "โ sage-attn"
def status_flash():
return "โ
flash-attn" if check_mod("flash_attn") else "โ ๏ธ flash-attn"
def install_pkg(pkg, warn=None):
try:
if warn:
print(warn)
time.sleep(1)
out = subprocess.check_output(
[sys.executable, "-m", "pip", "install", pkg],
stderr=subprocess.STDOUT, text=True
)
res = f"โ
{pkg}\n{out}\n"
except subprocess.CalledProcessError as e:
res = f"โ {pkg}\n{e.output}\n"
with open(INSTALL_LOG, 'a') as f:
f.write(f"[{pkg}] {res}")
return res
install_xformers = lambda: install_pkg("xformers")
install_sage_attn = lambda: install_pkg("sage-attn")
install_flash_attn = lambda: install_pkg("flash-attn","โ ๏ธ long compile")
refresh_logs = lambda: open(INSTALL_LOG).read()
clear_logs = lambda: (open(INSTALL_LOG,'w').close() or "โ
Logs cleared")
# ---------------- LoRA Download and Load ------------------
def download_lora(repo_id, filename, hf_token):
try:
lora_path = os.path.join(LORA_CACHE, filename)
if not os.path.exists(lora_path):
if get_cuda_free_memory_gb(gpu) < 2:
return "โ Low VRAM (<2GB). Free up memory.", None
hf_hub_download(
repo_id=repo_id,
filename=filename,
local_dir=LORA_CACHE,
token=hf_token
)
with open(INSTALL_LOG, 'a') as f:
f.write(f"[LoRA Download] {repo_id}/{filename} downloaded to {lora_path}\n")
return "โ
LoRA downloaded", lora_path
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[LoRA Download Error] {repo_id}/{filename}: {str(e)}\n")
return f"โ Download failed: {str(e)}", None
def load_lora(transformer, lora_path, lora_weight):
try:
if lora_path and os.path.exists(lora_path):
if hasattr(transformer, 'load_lora_weights'):
transformer.load_lora_weights(
lora_path,
adapter_name="fastvideo",
weight=lora_weight
)
with open(INSTALL_LOG, 'a') as f:
f.write(f"[LoRA Load] {lora_path} loaded with standard method, weight {lora_weight}\n")
return "โ
LoRA loaded"
else:
# Manual LoRA loading
lora_weights = load_file(lora_path)
state_dict = transformer.state_dict()
for key, value in lora_weights.items():
if key in state_dict:
state_dict[key] = state_dict[key] + lora_weight * value.to(state_dict[key].device)
else:
# Try partial key matching for common transformer layers
for model_key in state_dict:
if key.split('.')[-1] in model_key and ('self_attn' in model_key or 'ffn' in model_key):
state_dict[model_key] = state_dict[model_key] + lora_weight * value.to(state_dict[model_key].device)
break
else:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[LoRA Load Warning] Key {key} not found in model state_dict\n")
transformer.load_state_dict(state_dict)
with open(INSTALL_LOG, 'a') as f:
f.write(f"[LoRA Load] {lora_path} loaded manually, weight {lora_weight}\n")
return "โ
LoRA loaded manually"
return "โ No valid LoRA path"
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[LoRA Load Error] {lora_path}: {str(e)}\n")
return f"โ ๏ธ LoRA not supported, using base model: {str(e)}"
def delete_lora(sel):
try:
loras = list_loras()
if sel in [os.path.basename(p) for p in loras]:
pth = loras[[os.path.basename(p) for p in loras].index(sel)]
os.remove(pth)
with open(INSTALL_LOG, 'a') as f:
f.write(f"[LoRA Delete] {pth} deleted\n")
return "โ
LoRA deleted", gr.update(choices=[os.path.basename(l) for l in list_loras()], value=None)
return "โ No LoRA selected", gr.update()
except Exception as e:
return f"โ Delete failed: {str(e)}", gr.update()
# ---------------- Model load -----------------------------
free_mem = get_cuda_free_memory_gb(gpu)
hv = free_mem > 60
try:
text_encoder = LlamaModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='text_encoder', torch_dtype=torch.float16, token=HF_TOKEN
).cpu().eval()
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[Model Load Error] text_encoder: {str(e)}\n")
raise gr.Error(f"Failed to load text_encoder: {str(e)}")
try:
text_encoder_2 = CLIPTextModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='text_encoder_2', torch_dtype=torch.float16, token=HF_TOKEN
).cpu().eval()
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[Model Load Error] text_encoder_2: {str(e)}\n")
raise gr.Error(f"Failed to load text_encoder_2: {str(e)}")
try:
tokenizer = LlamaTokenizerFast.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='tokenizer', token=HF_TOKEN
)
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[Model Load Error] tokenizer: {str(e)}\n")
raise gr.Error(f"Failed to load tokenizer: {str(e)}")
try:
tokenizer_2 = CLIPTokenizer.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='tokenizer_2', token=HF_TOKEN
)
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[Model Load Error] tokenizer_2: {str(e)}\n")
raise gr.Error(f"Failed to load tokenizer_2: {str(e)}")
try:
vae = AutoencoderKLHunyuanVideo.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='vae', torch_dtype=torch.float16, token=HF_TOKEN
).cpu().eval()
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[Model Load Error] vae: {str(e)}\n")
raise gr.Error(f"Failed to load vae: {str(e)}")
try:
feature_extractor = SiglipImageProcessor.from_pretrained(
"lllyasviel/flux_redux_bfl", subfolder='feature_extractor', token=HF_TOKEN
)
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[Model Load Error] feature_extractor: {str(e)}\n")
raise gr.Error(f"Failed to load feature_extractor: {str(e)}")
try:
image_encoder = SiglipVisionModel.from_pretrained(
"lllyasviel/flux_redux_bfl",
subfolder='image_encoder', torch_dtype=torch.float16, token=HF_TOKEN
).cpu().eval()
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[Model Load Error] image_encoder: {str(e)}\n")
raise gr.Error(f"Failed to load image_encoder: {str(e)}")
try:
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
"lllyasviel/FramePack_F1_I2V_HY_20250503",
torch_dtype=torch.bfloat16, token=HF_TOKEN
).cpu().eval()
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[Model Load Error] transformer: {str(e)}\n")
raise gr.Error(f"Failed to load transformer: {str(e)}")
if not hv:
vae.enable_slicing()
vae.enable_tiling()
transformer.high_quality_fp32_output_for_inference = True
transformer.to(dtype=torch.bfloat16)
for m in (vae, image_encoder, text_encoder, text_encoder_2):
m.to(dtype=torch.float16)
for m in (vae, image_encoder, text_encoder, text_encoder_2, transformer):
m.requires_grad_(False)
if not hv:
DynamicSwapInstaller.install_model(transformer, device=gpu)
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
for m in (text_encoder, text_encoder_2, image_encoder, vae, transformer):
m.to(gpu)
stream = AsyncStream()
# ---------------- Worker -------------------------------
@torch.no_grad()
def worker(img, prompt, n_p, seed, secs, win, stp, cfg, gsc, rsc, keep, tea, crf, lora_path, lora_weight, disable_prompt_mods):
# Download and load LoRA if specified
lora_msg = "No LoRA specified"
if lora_path:
try:
if lora_path.startswith("http") or lora_path.startswith("Kijai/"):
repo_id = "Kijai/HunyuanVideo_comfy"
filename = "hyvideo_FastVideo_LoRA-fp8.safetensors"
lora_msg, lora_path = download_lora(repo_id, filename, HF_TOKEN)
if not lora_path:
raise gr.Error(lora_msg)
lora_msg = load_lora(transformer, lora_path, lora_weight)
if "โ ๏ธ" in lora_msg or "โ" in lora_msg:
print(lora_msg)
else:
stp = 8 # Override steps for FastVideo LoRA
except Exception as e:
with open(INSTALL_LOG, 'a') as f:
f.write(f"[LoRA Error] {lora_path}: {str(e)}\n")
lora_msg = f"โ ๏ธ LoRA failed, using base model: {str(e)}"
# Validate prompt
try:
if not disable_prompt_mods:
if "stop" not in prompt.lower() and secs > 5:
prompt += " The subject stops moving after 5 seconds."
if "smooth" not in prompt.lower():
prompt = f"Smooth animation: {prompt}"
if "silent" not in prompt.lower():
prompt += ", silent"
if len(prompt.split()) > 50:
print("Warning: Complex prompt may slow rendering or cause instability.")
except Exception as e:
raise gr.Error(f"Prompt validation failed: {str(e)}")
# Check VRAM availability
if get_cuda_free_memory_gb(gpu) < 2:
raise gr.Error("Low VRAM (<2GB). Lower 'kee' or 'win'.")
sections = max(round((secs*30)/(win*4)), 1)
jid = generate_timestamp()
try:
with open(PROMPT_LOG, 'a') as f:
f.write(f"{jid}\t{prompt}\t{n_p}\n")
except Exception as e:
print(f"Failed to log prompt: {str(e)}")
stream.output_queue.push(('progress', (None, "", make_progress_bar_html(0, "Start"))))
try:
if not hv:
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
fake_diffusers_current_device(text_encoder, gpu)
load_model_as_complete(text_encoder_2, gpu)
lv, cp = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
if cfg == 1:
lv_n = torch.zeros_like(lv)
cp_n = torch.zeros_like(cp)
else:
lv_n, cp_n = encode_prompt_conds(n_p, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
lv, m = crop_or_pad_yield_mask(lv, 512)
lv_n, m_n = crop_or_pad_yield_mask(lv_n, 512)
lv, cp, lv_n, cp_n = [x.to(torch.bfloat16) for x in (lv, cp, lv_n, cp_n)]
H, W, _ = img.shape
h, w = find_nearest_bucket(H, W, 640)
img_np = resize_and_center_crop(img, w, h)
Image.fromarray(img_np).save(os.path.join(OUT_IMG, f"{jid}.png"))
img_pt = (torch.from_numpy(img_np).float()/127.5-1).permute(2,0,1)[None,:,None]
if not hv:
load_model_as_complete(vae, gpu)
start_lat = vae_encode(img_pt, vae)
if not hv:
load_model_as_complete(image_encoder, gpu)
img_emb = hf_clip_vision_encode(img_np, feature_extractor, image_encoder).last_hidden_state.to(torch.bfloat16)
gen = torch.Generator("cpu").manual_seed(seed)
hist_lat = torch.zeros((1,16,1+2+16,h//8,w//8), dtype=torch.float16).cpu()
hist_px = None
total = 0
pad_seq = [3] + [2]*(sections-3) + [1,0] if sections>4 else list(reversed(range(sections)))
for pad in pad_seq:
last = pad == 0
if stream.input_queue.top() == "end":
stream.output_queue.push(("end", None))
return
pad_sz = pad * win
idx = torch.arange(0, sum([1,pad_sz,win,1,2,16]))[None].to(device=gpu)
a,b,c,d,e,f = idx.split([1,pad_sz,win,1,2,16],1)
clean_idx = torch.cat([a,d],1)
pre = start_lat.to(hist_lat)
post, two, four = hist_lat[:,:,:1+2+16].split([1,2,16],2)
clean = torch.cat([pre, post],2)
if not hv:
unload_complete_models()
move_model_to_device_with_memory_preservation(transformer, gpu, keep)
transformer.initialize_teacache(tea, stp)
def cb(d):
pv = vae_decode_fake(d["denoised"])
pv = (pv*255).cpu().numpy().clip(0,255).astype(np.uint8)
pv = einops.rearrange(pv, "b c t h w -> (b h) (t w) c")
cur = d["i"]+1
stream.output_queue.push(('progress', (pv, f"{cur}/{stp}", make_progress_bar_html(int(100*cur/stp), f"{cur}/{stp}"))))
if stream.input_queue.top()=="end":
stream.output_queue.push(("end", None))
raise KeyboardInterrupt
new_lat = sample_hunyuan(
transformer=transformer, sampler="unipc", width=w, height=h, frames=win*4-3,
real_guidance_scale=cfg, distilled_guidance_scale=gsc, guidance_rescale=rsc,
num_inference_steps=stp, generator=gen,
prompt_embeds=lv, prompt_embeds_mask=m, prompt_poolers=cp,
negative_prompt_embeds=lv_n, negative_prompt_embeds_mask=m_n, negative_prompt_poolers=cp_n,
device=gpu, dtype=torch.bfloat16, image_embeddings=img_emb,
latent_indices=c, clean_latents=clean, clean_latent_indices=clean_idx,
clean_latents_2x=two, clean_latent_2x_indices=e,
clean_latents_4x=four, clean_latent_4x_indices=f, callback=cb
)
if last:
new_lat = torch.cat([start_lat.to(new_lat), new_lat],2)
total += new_lat.shape[2]
hist_lat = torch.cat([new_lat.to(hist_lat), hist_lat],2)
if not hv:
offload_model_from_device_for_memory_preservation(transformer, gpu, 8)
load_model_as_complete(vae, gpu)
real = hist_lat[:,:,:total]
if hist_px is None:
hist_px = vae_decode(real, vae).cpu()
else:
overlap = win*4-3
curr = vae_decode(real[:,:,:win*2], vae).cpu()
hist_px = soft_append_bcthw(curr, hist_px, overlap)
if not hv:
unload_complete_models()
tmp = os.path.join(OUT_TMP, f"{jid}_{total}.mp4")
save_bcthw_as_mp4(hist_px, tmp, fps=30, crf=crf)
stream.output_queue.push(('file', tmp))
if last:
fin = os.path.join(OUT_VID, f"{jid}_{total}.mp4")
os.replace(tmp, fin)
stream.output_queue.push(('complete', fin))
break
except Exception as e:
traceback.print_exc()
with open(INSTALL_LOG, 'a') as f:
f.write(f"[Worker Error] {str(e)}\n")
stream.output_queue.push(("end", None))
return lora_msg
# ---------------- Process Function -----------------------
@torch.no_grad()
def process(img, prm, npr, sd, sec, win, stp, cfg, gsc, rsc, kee, tea, crf, lora_path, lora_weight, disable_prompt_mods):
global stream
if img is None:
raise gr.Error("Upload an image")
yield None, None, "", "", gr.update(interactive=False), gr.update(interactive=True), gr.update()
stream = AsyncStream()
lora_msg = async_run(worker, img, prm, npr, sd, sec, win, stp, cfg, gsc, rsc, kee, tea, crf, lora_path, lora_weight, disable_prompt_mods)
out, log = None, ""
while True:
flag, data = stream.output_queue.next()
if flag == "file":
out = data
yield out, gr.update(), gr.update(), log, gr.update(interactive=False), gr.update(interactive=True), gr.update(value=lora_msg)
if flag == "progress":
pv, desc, html = data
log = desc
yield gr.update(), gr.update(visible=True, value=pv), desc, html, gr.update(interactive=False), gr.update(interactive=True), gr.update(value=lora_msg)
if flag in ("complete", "end"):
yield out, gr.update(visible=False), gr.update(), "", gr.update(interactive=True), gr.update(interactive=False), gr.update(value=lora_msg)
break
def end_process():
stream.input_queue.push("end")
# ------------------- UI ------------------------------
quick_prompts = [
["Smooth animation: A character waves for 3 seconds, then stands still for 2 seconds, static camera, silent."],
["Smooth animation: A character moves for 5 seconds, static camera, silent."]
]
css = make_progress_bar_css() + """
.orange-button{background:#ff6200;color:#fff;border-color:#ff6200;}
.load-button{background:#4CAF50;color:#fff;border-color:#4CAF50;margin-left:10px;}
.big-setting-button{background:#0066cc;color:#fff;border:none;padding:14px 24px;font-size:18px;width:100%;border-radius:6px;margin:8px 0;}
.styled-dropdown{width:250px;padding:5px;border-radius:4px;}
.viewer-column{width:100%;max-width:900px;margin:0 auto;}
.media-preview img,.media-preview video{max-width:100%;height:380px;object-fit:contain;border:1px solid #444;border-radius:6px;}
.media-container{display:flex;gap:20px;align-items:flex-start;}
.control-box{min-width:220px;}
.control-grid{display:grid;grid-template-columns:1fr 1fr;gap:10px;}
.image-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;}
.image-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;}
.image-gallery img{object-fit:contain;height:360px!important;width:300px!important;}
.video-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;}
.video-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;}
.video-gallery video{object-fit:contain;height:360px!important;width:300px!important;}
.lora-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;}
.lora-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;}
.lora-gallery .gallery-item div{text-align:center;font-size:16px;color:#fff;}
"""
blk = gr.Blocks(css=css).queue()
with blk:
gr.Markdown("# ๐ป GhostPack F1 Pro")
with gr.Tabs():
with gr.TabItem("๐ป Generate"):
with gr.Row():
with gr.Column():
img_in = gr.Image(sources="upload", type="numpy", label="Image", height=320)
prm = gr.Textbox(label="Prompt")
npr = gr.Textbox(label="Negative Prompt", value="low quality, blurry, speaking, talking, moaning, vocalizing, lip movement, mouth animation, sound, dialogue, speech, whispering, shouting, lip sync, facial animation, expressive face, verbal expression, animated mouth")
save_msg = gr.Markdown("")
lora_path = gr.Textbox(
label="FastVideo LoRA Path or HF Repo",
value="Kijai/HunyuanVideo_comfy",
placeholder="e.g., Kijai/HunyuanVideo_comfy/hyvideo_FastVideo_LoRA-fp8.safetensors or /path/to/hyvideo_FastVideo_LoRA-fp8.safetensors"
)
lora_weight = gr.Slider(label="LoRA Weight", minimum=0.5, maximum=1.5, value=1.0, step=0.1)
disable_prompt_mods = gr.Checkbox(label="Disable Prompt Modifications", value=False)
lora_status_gen = gr.Markdown(value=auto_download_status)
btn_save = gr.Button("Save Prompt")
btn1, btn2, btn3 = gr.Button("Load Most Recent"), gr.Button("Load 2nd Recent"), gr.Button("Load 3rd Recent")
ds = gr.Dataset(samples=quick_prompts, label="Quick List", components=[prm])
ds.click(lambda x: x[0], [ds], [prm])
btn_save.click(save_prompt_fn, [prm, npr], [save_msg])
btn1.click(lambda: load_prompt_fn(0), [], [prm])
btn2.click(lambda: load_prompt_fn(1), [], [prm])
btn3.click(lambda: load_prompt_fn(2), [], [prm])
with gr.Row():
b_go, b_end = gr.Button("Start"), gr.Button("End", interactive=False)
with gr.Group():
tea = gr.Checkbox(label="Use TeaCache", value=True)
se = gr.Number(label="Seed", value=31337, precision=0)
sec = gr.Slider(label="Video Length (s)", minimum=1, maximum=120, value=5, step=0.1)
win = gr.Slider(label="Latent Window", minimum=1, maximum=33, value=5, step=1)
stp = gr.Slider(label="Steps", minimum=1, maximum=100, value=8, step=1)
cfg = gr.Slider(label="CFG", minimum=1, maximum=32, value=1, step=0.01, visible=False)
gsc = gr.Slider(label="Distilled CFG", minimum=1, maximum=32, value=5, step=0.01)
rsc = gr.Slider(label="CFG Re-Scale", minimum=0, maximum=1, value=0.5, step=0.01)
kee = gr.Slider(label="GPU Keep (GB)", minimum=4, maximum=free_mem, value=6, step=0.1)
crf = gr.Slider(label="MP4 CRF", minimum=0, maximum=100, value=20, step=1)
with gr.Column():
pv = gr.Image(label="Next Latents", height=200, visible=False)
vid = gr.Video(label="Finished", autoplay=True, height=500, loop=True, show_share_button=False)
log_md = gr.Markdown("")
bar = gr.HTML("")
b_go.click(
process,
[img_in, prm, npr, se, sec, win, stp, cfg, gsc, rsc, kee, tea, crf, lora_path, lora_weight, disable_prompt_mods],
[vid, pv, log_md, bar, b_go, b_end, lora_status_gen]
)
b_end.click(end_process)
with gr.TabItem("๐ผ๏ธ Image Gallery"):
with gr.Row(elem_classes="media-container"):
with gr.Column(scale=3):
image_preview = gr.Image(
label="Viewer",
value=(list_images()[0] if list_images() else None),
interactive=False, elem_classes="media-preview"
)
with gr.Column(elem_classes="control-box"):
image_dropdown = gr.Dropdown(
choices=[os.path.basename(i) for i in list_images()],
value=(os.path.basename(list_images()[0]) if list_images() else None),
label="Select", elem_classes="styled-dropdown"
)
with gr.Row(elem_classes="control-grid"):
load_btn = gr.Button("Load", elem_classes="load-button")
next_btn = gr.Button("Next", elem_classes="load-button")
with gr.Row(elem_classes="control-grid"):
refresh_btn = gr.Button("Refresh")
delete_btn = gr.Button("Delete", elem_classes="orange-button")
image_gallery = gr.Gallery(
value=list_images(), label="Thumbnails", columns=6, height=360,
allow_preview=False, type="filepath", elem_classes="image-gallery"
)
load_btn.click(load_image, [image_dropdown], [image_preview, image_dropdown])
next_btn.click(next_image_and_load, [image_dropdown], [image_preview, image_dropdown])
refresh_btn.click(lambda: (
gr.update(choices=[os.path.basename(i) for i in list_images()],
value=os.path.basename(list_images()[0]) if list_images() else None),
gr.update(value=list_images()[0] if list_images() else None),
gr.update(value=list_images())
), [], [image_dropdown, image_preview, image_gallery])
delete_btn.click(lambda sel: (os.remove(os.path.join(OUT_IMG, sel)) if sel else None) or load_image(""),
[image_dropdown], [image_preview, image_dropdown])
image_gallery.select(gallery_image_select, [], [image_preview, image_dropdown])
with gr.TabItem("๐ฌ Video Gallery"):
with gr.Row(elem_classes="media-container"):
with gr.Column(scale=3):
video_preview = gr.Video(
label="Viewer",
value=(list_videos()[0] if list_videos() else None),
autoplay=True, loop=True, interactive=False, elem_classes="media-preview"
)
with gr.Column(elem_classes="control-box"):
video_dropdown = gr.Dropdown(
choices=[os.path.basename(v) for v in list_videos()],
value=(os.path.basename(list_videos()[0]) if list_videos() else None),
label="Select", elem_classes="styled-dropdown"
)
with gr.Row(elem_classes="control-grid"):
load_vbtn = gr.Button("Load", elem_classes="load-button")
next_vbtn = gr.Button("Next", elem_classes="load-button")
with gr.Row(elem_classes="control-grid"):
refresh_v = gr.Button("Refresh")
delete_v = gr.Button("Delete", elem_classes="orange-button")
video_gallery = gr.Gallery(
value=list_videos(), label="Thumbnails", columns=6, height=360,
allow_preview=False, type="filepath", elem_classes="video-gallery"
)
load_vbtn.click(load_video, [video_dropdown], [video_preview, video_dropdown])
next_vbtn.click(next_video_and_load, [video_dropdown], [video_preview, video_dropdown])
refresh_v.click(lambda: (
gr.update(choices=[os.path.basename(v) for v in list_videos()],
value=os.path.basename(list_videos()[0]) if list_videos() else None),
gr.update(value=list_videos()[0] if list_videos() else None),
gr.update(value=list_videos())
), [], [video_dropdown, video_preview, video_gallery])
delete_v.click(lambda sel: (os.remove(os.path.join(OUT_VID, sel)) if sel else None) or load_video(""),
[video_dropdown], [video_preview, video_dropdown])
video_gallery.select(gallery_video_select, [], [video_preview, video_dropdown])
with gr.TabItem("๐ฆ LoRA Management"):
with gr.Row(elem_classes="media-container"):
with gr.Column(scale=3):
lora_status = gr.Markdown("")
with gr.Column(elem_classes="control-box"):
lora_dropdown = gr.Dropdown(
choices=[os.path.basename(l) for l in list_loras()],
value=(os.path.basename(list_loras()[0]) if list_loras() else None),
label="Select LoRA", elem_classes="styled-dropdown"
)
with gr.Row(elem_classes="control-grid"):
load_lora_btn = gr.Button("Load", elem_classes="load-button")
next_lora_btn = gr.Button("Next", elem_classes="load-button")
with gr.Row(elem_classes="control-grid"):
refresh_lora_btn = gr.Button("Refresh")
delete_lora_btn = gr.Button("Delete", elem_classes="orange-button")
download_fastvideo_btn = gr.Button("Download FastVideo LoRA", elem_classes="big-setting-button")
lora_gallery = gr.Gallery(
value=[(l, os.path.basename(l)) for l in list_loras()], label="LoRA Files", columns=6, height=360,
allow_preview=False, elem_classes="lora-gallery"
)
load_lora_btn.click(load_lora_select, [lora_dropdown], [lora_path, lora_dropdown])
next_lora_btn.click(next_lora_and_load, [lora_dropdown], [lora_path, lora_dropdown])
refresh_lora_btn.click(lambda: (
gr.update(choices=[os.path.basename(l) for l in list_loras()],
value=os.path.basename(list_loras()[0]) if list_loras() else None),
gr.update(value=[(l, os.path.basename(l)) for l in list_loras()])
), [], [lora_dropdown, lora_gallery])
delete_lora_btn.click(delete_lora, [lora_dropdown], [lora_status, lora_dropdown])
download_fastvideo_btn.click(
lambda: auto_download_fastvideo_lora(),
[], [lora_status]
)
lora_gallery.select(gallery_lora_select, [], [lora_path, lora_dropdown])
with gr.TabItem("๐ป About"):
gr.Markdown("## GhostPack F1 Pro")
with gr.Row():
with gr.Column():
gr.Markdown("**๐ ๏ธ Description**\nImage-to-Video toolkit powered by HunyuanVideo & FramePack-F1")
with gr.Column():
gr.Markdown("**๐ฆ Version**\n2025-05-03")
with gr.Column():
gr.Markdown("**โ๏ธ Author**\nGhostAI")
with gr.Column():
gr.Markdown("**๐ Repo**\nhttps://huggingface.co/spaces/ghostai1/GhostPack")
with gr.TabItem("โ๏ธ Settings"):
ct = gr.Button("Clear Temp", elem_classes="big-setting-button")
ctmsg = gr.Markdown("")
co = gr.Button("Clear Old", elem_classes="big-setting-button")
comsg= gr.Markdown("")
ci = gr.Button("Clear Images", elem_classes="big-setting-button")
cimg= gr.Markdown("")
cv = gr.Button("Clear Videos", elem_classes="big-setting-button")
cvid= gr.Markdown("")
ct.click(clear_temp_videos, [], ctmsg)
co.click(clear_old_files, [], comsg)
ci.click(clear_images, [], cimg)
cv.click(clear_videos, [], cvid)
with gr.TabItem("๐ ๏ธ Install"):
xs = gr.Textbox(value=status_xformers(), interactive=False, label="xformers")
bx = gr.Button("Install xformers", elem_classes="big-setting-button")
ss = gr.Textbox(value=status_sage(), interactive=False, label="sage-attn")
bs = gr.Button("Install sage-attn", elem_classes="big-setting-button")
fs = gr.Textbox(value=status_flash(),interactive=False, label="flash-attn")
bf = gr.Button("Install flash-attn", elem_classes="big-setting-button")
bx.click(install_xformers, [], xs)
bs.click(install_sage_attn, [], ss)
bf.click(install_flash_attn, [], fs)
with gr.TabItem("๐ Logs"):
logs = gr.Textbox(lines=20, interactive=False, label="Install Logs")
rl = gr.Button("Refresh", elem_classes="big-setting-button")
cl = gr.Button("Clear", elem_classes="big-setting-button")
rl.click(refresh_logs, [], logs)
cl.click(clear_logs, [], logs)
# Force video previews to seek to 2s
gr.HTML("""<script>
document.querySelectorAll('.video-gallery video').forEach(v => {
v.addEventListener('loadedmetadata', () => {
if (v.duration > 2) v.currentTime = 2;
});
});
</script>""")
blk.launch(
server_name=args.server,
server_port=args.port,
share=args.share,
inbrowser=args.inbrowser
) |