File size: 42,978 Bytes
2574d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
#!/usr/bin/env python3
# ==========================================================
# FILE: ghostpack.py
# ==========================================================
import os, sys, time, json, argparse, importlib.util, subprocess, traceback
import torch, einops, numpy as np, gradio as gr
from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import (
    LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer,
    SiglipImageProcessor, SiglipVisionModel
)
try:
    from diffusers_helper.hf_login import login
    from diffusers_helper.hunyuan import (
        encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
    )
    from diffusers_helper.utils import (
        save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw,
        resize_and_center_crop, generate_timestamp
    )
    from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
    from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
    from diffusers_helper.memory import (
        gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation,
        offload_model_from_device_for_memory_preservation, fake_diffusers_current_device,
        DynamicSwapInstaller, unload_complete_models, load_model_as_complete
    )
    from diffusers_helper.thread_utils import AsyncStream, async_run
    from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
    from diffusers_helper.clip_vision import hf_clip_vision_encode
    from diffusers_helper.bucket_tools import find_nearest_bucket
except ImportError as e:
    with open(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'outputs', 'install_logs.txt'), 'a') as f:
        f.write(f"[Dependency Error] {str(e)}\n")
    print(f"Dependency error: {str(e)}. Check outputs/install_logs.txt.")
    sys.exit(1)

try:
    from huggingface_hub import hf_hub_download
    from safetensors.torch import load_file
except ImportError as e:
    with open(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'outputs', 'install_logs.txt'), 'a') as f:
        f.write(f"[Dependency Error] {str(e)}\n")
    print(f"Dependency error: {str(e)}. Install huggingface_hub and safetensors: pip install huggingface_hub safetensors")
    sys.exit(1)

# ------------------------- CLI ----------------------------
parser = argparse.ArgumentParser()
parser.add_argument('--share', action='store_true')
parser.add_argument('--server', type=str, default='0.0.0.0')
parser.add_argument('--port', type=int)
parser.add_argument('--inbrowser', action='store_true')
parser.add_argument('--cli', action='store_true')
args = parser.parse_args()

BASE = os.path.abspath(os.path.dirname(__file__))
os.environ['HF_HOME'] = os.path.join(BASE, 'hf_download')
LORA_CACHE = os.path.join(BASE, 'dlora')
os.makedirs(LORA_CACHE, exist_ok=True)

# Set HF token from environment variable
HF_TOKEN = os.getenv('HF_TOKEN', 'XXXXXXXXXXXXXXXXXXXXXXXX')

if args.cli:
    print("๐Ÿ‘ป GhostPack F1 Pro CLI\n")
    print("python ghostpack.py           # launch UI")
    print("python ghostpack.py --cli     # show help\n")
    sys.exit(0)

# ---------------------- Paths -----------------------------
OUT_BASE    = os.path.join(BASE, 'outputs')
OUT_IMG     = os.path.join(OUT_BASE, 'img')
OUT_TMP     = os.path.join(OUT_BASE, 'tmp_vid')
OUT_VID     = os.path.join(OUT_BASE, 'vid')
PROMPT_LOG  = os.path.join(OUT_BASE, 'prompts.txt')
SAVED_PROMPTS = os.path.join(OUT_BASE, 'saved_prompts.json')
INSTALL_LOG = os.path.join(OUT_BASE, 'install_logs.txt')
for d in (OUT_BASE, OUT_IMG, OUT_TMP, OUT_VID):
    os.makedirs(d, exist_ok=True)
if not os.path.exists(SAVED_PROMPTS):
    json.dump([], open(SAVED_PROMPTS,'w'))
if not os.path.exists(INSTALL_LOG):
    open(INSTALL_LOG,'w').close()

# ---------------- Auto-Downloader ------------------------
def auto_download_fastvideo_lora():
    repo_id = "Kijai/HunyuanVideo_comfy"
    filename = "hyvideo_FastVideo_LoRA-fp8.safetensors"
    try:
        msg, lora_path = download_lora(repo_id, filename, HF_TOKEN)
        return msg
    except Exception as e:
        with open(INSTALL_LOG, 'a') as f:
            f.write(f"[Auto-Download Error] {repo_id}/{filename}: {str(e)}\n")
        return f"โŒ Auto-download failed: {str(e)}"

# Run auto-downloader at startup
auto_download_status = auto_download_fastvideo_lora()

# ---------------- Prompt utils ---------------------------
def get_last_prompts():
    return json.load(open(SAVED_PROMPTS))[-5:][::-1]

def save_prompt_fn(p, n):
    if not p:
        return "โŒ No prompt"
    data = json.load(open(SAVED_PROMPTS))
    entry = {'prompt': p, 'negative': n}
    if entry not in data:
        data.append(entry)
        json.dump(data, open(SAVED_PROMPTS,'w'))
    return "โœ… Saved"

def load_prompt_fn(idx):
    lst = get_last_prompts()
    return lst[idx]['prompt'] if idx < len(lst) else ""

# ---------------- Cleanup utils --------------------------
def clear_temp_videos():
    try:
        [os.remove(os.path.join(OUT_TMP,f)) for f in os.listdir(OUT_TMP)]
        return "โœ… Temp cleared"
    except Exception as e:
        return f"โŒ Failed to clear temp: {str(e)}"

def clear_old_files():
    try:
        cutoff = time.time() - 7*24*3600
        c = 0
        for d in (OUT_TMP, OUT_IMG):
            for f in os.listdir(d):
                p = os.path.join(d, f)
                if os.path.isfile(p) and os.path.getmtime(p) < cutoff:
                    os.remove(p)
                    c += 1
        return f"โœ… {c} old files removed"
    except Exception as e:
        return f"โŒ Failed to clear old files: {str(e)}"

def clear_images():
    try:
        [os.remove(os.path.join(OUT_IMG,f)) for f in os.listdir(OUT_IMG)]
        return "โœ… Images cleared"
    except Exception as e:
        return f"โŒ Failed to clear images: {str(e)}"

def clear_videos():
    try:
        [os.remove(os.path.join(OUT_VID,f)) for f in os.listdir(OUT_VID)]
        return "โœ… Videos cleared"
    except Exception as e:
        return f"โŒ Failed to clear videos: {str(e)}"

# ---------------- Gallery helpers ------------------------
def list_images():
    try:
        return sorted(
            [os.path.join(OUT_IMG,f) for f in os.listdir(OUT_IMG) if f.lower().endswith(('.png','.jpg'))],
            key=os.path.getmtime
        )
    except Exception:
        return []

def list_videos():
    try:
        return sorted(
            [os.path.join(OUT_VID,f) for f in os.listdir(OUT_VID) if f.lower().endswith('.mp4')],
            key=os.path.getmtime
        )
    except Exception:
        return []

def list_loras():
    try:
        return sorted(
            [os.path.join(LORA_CACHE,f) for f in os.listdir(LORA_CACHE) if f.lower().endswith('.safetensors')],
            key=os.path.getmtime
        )
    except Exception:
        return []

def load_image(sel):
    try:
        imgs = list_images()
        if sel in [os.path.basename(p) for p in imgs]:
            pth = imgs[[os.path.basename(p) for p in imgs].index(sel)]
            return gr.update(value=pth), gr.update(value=os.path.basename(pth))
        return gr.update(), gr.update()
    except Exception as e:
        return gr.update(), gr.update(value=f"โŒ Error: {str(e)}")

def load_video(sel):
    try:
        vids = list_videos()
        if sel in [os.path.basename(p) for p in vids]:
            pth = vids[[os.path.basename(p) for p in vids].index(sel)]
            return gr.update(value=pth), gr.update(value=os.path.basename(pth))
        return gr.update(), gr.update()
    except Exception as e:
        return gr.update(), gr.update(value=f"โŒ Error: {str(e)}")

def load_lora_select(sel):
    try:
        loras = list_loras()
        if sel in [os.path.basename(p) for p in loras]:
            pth = loras[[os.path.basename(p) for p in loras].index(sel)]
            return gr.update(value=pth), gr.update(value=os.path.basename(pth))
        return gr.update(), gr.update()
    except Exception as e:
        return gr.update(), gr.update(value=f"โŒ Error: {str(e)}")

def next_image_and_load(sel):
    try:
        imgs = list_images()
        if not imgs:
            return gr.update(), gr.update()
        names = [os.path.basename(i) for i in imgs]
        idx = (names.index(sel)+1) % len(names) if sel in names else 0
        pth = imgs[idx]
        return gr.update(value=pth), gr.update(value=os.path.basename(pth))
    except Exception:
        return gr.update(), gr.update()

def next_video_and_load(sel):
    try:
        vids = list_videos()
        if not vids:
            return gr.update(), gr.update()
        names = [os.path.basename(v) for v in vids]
        idx = (names.index(sel)+1) % len(names) if sel in names else 0
        pth = vids[idx]
        return gr.update(value=pth), gr.update(value=os.path.basename(pth))
    except Exception:
        return gr.update(), gr.update()

def next_lora_and_load(sel):
    try:
        loras = list_loras()
        if not loras:
            return gr.update(), gr.update()
        names = [os.path.basename(l) for l in loras]
        idx = (names.index(sel)+1) % len(names) if sel in names else 0
        pth = loras[idx]
        return gr.update(value=pth), gr.update(value=os.path.basename(pth))
    except Exception:
        return gr.update(), gr.update()

def gallery_image_select(evt: gr.SelectData):
    try:
        imgs = list_images()
        if evt.index is not None and evt.index < len(imgs):
            pth = imgs[evt.index]
            return gr.update(value=pth), gr.update(value=os.path.basename(pth))
        return gr.update(), gr.update()
    except Exception:
        return gr.update(), gr.update()

def gallery_video_select(evt: gr.SelectData):
    try:
        vids = list_videos()
        if evt.index is not None and evt.index < len(vids):
            pth = vids[evt.index]
            return gr.update(value=pth), gr.update(value=os.path.basename(pth))
        return gr.update(), gr.update()
    except Exception:
        return gr.update(), gr.update()

def gallery_lora_select(evt: gr.SelectData):
    try:
        loras = list_loras()
        if evt.index is not None and evt.index < len(loras):
            pth = loras[evt.index]
            return gr.update(value=pth), gr.update(value=os.path.basename(pth))
        return gr.update(), gr.update()
    except Exception:
        return gr.update(), gr.update()

# ---------------- Install status -------------------------
def check_mod(n):
    return importlib.util.find_spec(n) is not None

def status_xformers():
    return "โœ… xformers" if check_mod("xformers") else "โŒ xformers"

def status_sage():
    return "โœ… sage-attn" if check_mod("sageattention") else "โŒ sage-attn"

def status_flash():
    return "โœ… flash-attn" if check_mod("flash_attn") else "โš ๏ธ flash-attn"

def install_pkg(pkg, warn=None):
    try:
        if warn:
            print(warn)
            time.sleep(1)
        out = subprocess.check_output(
            [sys.executable, "-m", "pip", "install", pkg],
            stderr=subprocess.STDOUT, text=True
        )
        res = f"โœ… {pkg}\n{out}\n"
    except subprocess.CalledProcessError as e:
        res = f"โŒ {pkg}\n{e.output}\n"
    with open(INSTALL_LOG, 'a') as f:
        f.write(f"[{pkg}] {res}")
    return res

install_xformers    = lambda: install_pkg("xformers")
install_sage_attn   = lambda: install_pkg("sage-attn")
install_flash_attn  = lambda: install_pkg("flash-attn","โš ๏ธ long compile")
refresh_logs        = lambda: open(INSTALL_LOG).read()
clear_logs          = lambda: (open(INSTALL_LOG,'w').close() or "โœ… Logs cleared")

# ---------------- LoRA Download and Load ------------------
def download_lora(repo_id, filename, hf_token):
    try:
        lora_path = os.path.join(LORA_CACHE, filename)
        if not os.path.exists(lora_path):
            if get_cuda_free_memory_gb(gpu) < 2:
                return "โŒ Low VRAM (<2GB). Free up memory.", None
            hf_hub_download(
                repo_id=repo_id,
                filename=filename,
                local_dir=LORA_CACHE,
                token=hf_token
            )
            with open(INSTALL_LOG, 'a') as f:
                f.write(f"[LoRA Download] {repo_id}/{filename} downloaded to {lora_path}\n")
        return "โœ… LoRA downloaded", lora_path
    except Exception as e:
        with open(INSTALL_LOG, 'a') as f:
            f.write(f"[LoRA Download Error] {repo_id}/{filename}: {str(e)}\n")
        return f"โŒ Download failed: {str(e)}", None

def load_lora(transformer, lora_path, lora_weight):
    try:
        if lora_path and os.path.exists(lora_path):
            if hasattr(transformer, 'load_lora_weights'):
                transformer.load_lora_weights(
                    lora_path,
                    adapter_name="fastvideo",
                    weight=lora_weight
                )
                with open(INSTALL_LOG, 'a') as f:
                    f.write(f"[LoRA Load] {lora_path} loaded with standard method, weight {lora_weight}\n")
                return "โœ… LoRA loaded"
            else:
                # Manual LoRA loading
                lora_weights = load_file(lora_path)
                state_dict = transformer.state_dict()
                for key, value in lora_weights.items():
                    if key in state_dict:
                        state_dict[key] = state_dict[key] + lora_weight * value.to(state_dict[key].device)
                    else:
                        # Try partial key matching for common transformer layers
                        for model_key in state_dict:
                            if key.split('.')[-1] in model_key and ('self_attn' in model_key or 'ffn' in model_key):
                                state_dict[model_key] = state_dict[model_key] + lora_weight * value.to(state_dict[model_key].device)
                                break
                        else:
                            with open(INSTALL_LOG, 'a') as f:
                                f.write(f"[LoRA Load Warning] Key {key} not found in model state_dict\n")
                transformer.load_state_dict(state_dict)
                with open(INSTALL_LOG, 'a') as f:
                    f.write(f"[LoRA Load] {lora_path} loaded manually, weight {lora_weight}\n")
                return "โœ… LoRA loaded manually"
        return "โŒ No valid LoRA path"
    except Exception as e:
        with open(INSTALL_LOG, 'a') as f:
            f.write(f"[LoRA Load Error] {lora_path}: {str(e)}\n")
        return f"โš ๏ธ LoRA not supported, using base model: {str(e)}"

def delete_lora(sel):
    try:
        loras = list_loras()
        if sel in [os.path.basename(p) for p in loras]:
            pth = loras[[os.path.basename(p) for p in loras].index(sel)]
            os.remove(pth)
            with open(INSTALL_LOG, 'a') as f:
                f.write(f"[LoRA Delete] {pth} deleted\n")
            return "โœ… LoRA deleted", gr.update(choices=[os.path.basename(l) for l in list_loras()], value=None)
        return "โŒ No LoRA selected", gr.update()
    except Exception as e:
        return f"โŒ Delete failed: {str(e)}", gr.update()

# ---------------- Model load -----------------------------
free_mem = get_cuda_free_memory_gb(gpu)
hv       = free_mem > 60

try:
    text_encoder = LlamaModel.from_pretrained(
        "hunyuanvideo-community/HunyuanVideo",
        subfolder='text_encoder', torch_dtype=torch.float16, token=HF_TOKEN
    ).cpu().eval()
except Exception as e:
    with open(INSTALL_LOG, 'a') as f:
        f.write(f"[Model Load Error] text_encoder: {str(e)}\n")
    raise gr.Error(f"Failed to load text_encoder: {str(e)}")

try:
    text_encoder_2 = CLIPTextModel.from_pretrained(
        "hunyuanvideo-community/HunyuanVideo",
        subfolder='text_encoder_2', torch_dtype=torch.float16, token=HF_TOKEN
    ).cpu().eval()
except Exception as e:
    with open(INSTALL_LOG, 'a') as f:
        f.write(f"[Model Load Error] text_encoder_2: {str(e)}\n")
    raise gr.Error(f"Failed to load text_encoder_2: {str(e)}")

try:
    tokenizer = LlamaTokenizerFast.from_pretrained(
        "hunyuanvideo-community/HunyuanVideo",
        subfolder='tokenizer', token=HF_TOKEN
    )
except Exception as e:
    with open(INSTALL_LOG, 'a') as f:
        f.write(f"[Model Load Error] tokenizer: {str(e)}\n")
    raise gr.Error(f"Failed to load tokenizer: {str(e)}")

try:
    tokenizer_2 = CLIPTokenizer.from_pretrained(
        "hunyuanvideo-community/HunyuanVideo",
        subfolder='tokenizer_2', token=HF_TOKEN
    )
except Exception as e:
    with open(INSTALL_LOG, 'a') as f:
        f.write(f"[Model Load Error] tokenizer_2: {str(e)}\n")
    raise gr.Error(f"Failed to load tokenizer_2: {str(e)}")

try:
    vae = AutoencoderKLHunyuanVideo.from_pretrained(
        "hunyuanvideo-community/HunyuanVideo",
        subfolder='vae', torch_dtype=torch.float16, token=HF_TOKEN
    ).cpu().eval()
except Exception as e:
    with open(INSTALL_LOG, 'a') as f:
        f.write(f"[Model Load Error] vae: {str(e)}\n")
    raise gr.Error(f"Failed to load vae: {str(e)}")

try:
    feature_extractor = SiglipImageProcessor.from_pretrained(
        "lllyasviel/flux_redux_bfl", subfolder='feature_extractor', token=HF_TOKEN
    )
except Exception as e:
    with open(INSTALL_LOG, 'a') as f:
        f.write(f"[Model Load Error] feature_extractor: {str(e)}\n")
    raise gr.Error(f"Failed to load feature_extractor: {str(e)}")

try:
    image_encoder = SiglipVisionModel.from_pretrained(
        "lllyasviel/flux_redux_bfl",
        subfolder='image_encoder', torch_dtype=torch.float16, token=HF_TOKEN
    ).cpu().eval()
except Exception as e:
    with open(INSTALL_LOG, 'a') as f:
        f.write(f"[Model Load Error] image_encoder: {str(e)}\n")
    raise gr.Error(f"Failed to load image_encoder: {str(e)}")

try:
    transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
        "lllyasviel/FramePack_F1_I2V_HY_20250503",
        torch_dtype=torch.bfloat16, token=HF_TOKEN
    ).cpu().eval()
except Exception as e:
    with open(INSTALL_LOG, 'a') as f:
        f.write(f"[Model Load Error] transformer: {str(e)}\n")
    raise gr.Error(f"Failed to load transformer: {str(e)}")

if not hv:
    vae.enable_slicing()
    vae.enable_tiling()

transformer.high_quality_fp32_output_for_inference = True
transformer.to(dtype=torch.bfloat16)

for m in (vae, image_encoder, text_encoder, text_encoder_2):
    m.to(dtype=torch.float16)
for m in (vae, image_encoder, text_encoder, text_encoder_2, transformer):
    m.requires_grad_(False)

if not hv:
    DynamicSwapInstaller.install_model(transformer, device=gpu)
    DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
    for m in (text_encoder, text_encoder_2, image_encoder, vae, transformer):
        m.to(gpu)

stream = AsyncStream()

# ---------------- Worker -------------------------------
@torch.no_grad()
def worker(img, prompt, n_p, seed, secs, win, stp, cfg, gsc, rsc, keep, tea, crf, lora_path, lora_weight, disable_prompt_mods):
    # Download and load LoRA if specified
    lora_msg = "No LoRA specified"
    if lora_path:
        try:
            if lora_path.startswith("http") or lora_path.startswith("Kijai/"):
                repo_id = "Kijai/HunyuanVideo_comfy"
                filename = "hyvideo_FastVideo_LoRA-fp8.safetensors"
                lora_msg, lora_path = download_lora(repo_id, filename, HF_TOKEN)
                if not lora_path:
                    raise gr.Error(lora_msg)
            lora_msg = load_lora(transformer, lora_path, lora_weight)
            if "โš ๏ธ" in lora_msg or "โŒ" in lora_msg:
                print(lora_msg)
            else:
                stp = 8  # Override steps for FastVideo LoRA
        except Exception as e:
            with open(INSTALL_LOG, 'a') as f:
                f.write(f"[LoRA Error] {lora_path}: {str(e)}\n")
            lora_msg = f"โš ๏ธ LoRA failed, using base model: {str(e)}"

    # Validate prompt
    try:
        if not disable_prompt_mods:
            if "stop" not in prompt.lower() and secs > 5:
                prompt += " The subject stops moving after 5 seconds."
            if "smooth" not in prompt.lower():
                prompt = f"Smooth animation: {prompt}"
            if "silent" not in prompt.lower():
                prompt += ", silent"
        if len(prompt.split()) > 50:
            print("Warning: Complex prompt may slow rendering or cause instability.")
    except Exception as e:
        raise gr.Error(f"Prompt validation failed: {str(e)}")

    # Check VRAM availability
    if get_cuda_free_memory_gb(gpu) < 2:
        raise gr.Error("Low VRAM (<2GB). Lower 'kee' or 'win'.")

    sections = max(round((secs*30)/(win*4)), 1)
    jid = generate_timestamp()
    try:
        with open(PROMPT_LOG, 'a') as f:
            f.write(f"{jid}\t{prompt}\t{n_p}\n")
    except Exception as e:
        print(f"Failed to log prompt: {str(e)}")

    stream.output_queue.push(('progress', (None, "", make_progress_bar_html(0, "Start"))))
    try:
        if not hv:
            unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
            fake_diffusers_current_device(text_encoder, gpu)
            load_model_as_complete(text_encoder_2, gpu)
        lv, cp = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
        if cfg == 1:
            lv_n = torch.zeros_like(lv)
            cp_n = torch.zeros_like(cp)
        else:
            lv_n, cp_n = encode_prompt_conds(n_p, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
        lv, m  = crop_or_pad_yield_mask(lv, 512)
        lv_n, m_n = crop_or_pad_yield_mask(lv_n, 512)
        lv, cp, lv_n, cp_n = [x.to(torch.bfloat16) for x in (lv, cp, lv_n, cp_n)]
        H, W, _ = img.shape
        h, w    = find_nearest_bucket(H, W, 640)
        img_np  = resize_and_center_crop(img, w, h)
        Image.fromarray(img_np).save(os.path.join(OUT_IMG, f"{jid}.png"))
        img_pt  = (torch.from_numpy(img_np).float()/127.5-1).permute(2,0,1)[None,:,None]
        if not hv:
            load_model_as_complete(vae, gpu)
        start_lat = vae_encode(img_pt, vae)
        if not hv:
            load_model_as_complete(image_encoder, gpu)
        img_emb = hf_clip_vision_encode(img_np, feature_extractor, image_encoder).last_hidden_state.to(torch.bfloat16)
        gen = torch.Generator("cpu").manual_seed(seed)
        hist_lat = torch.zeros((1,16,1+2+16,h//8,w//8), dtype=torch.float16).cpu()
        hist_px = None
        total    = 0
        pad_seq = [3] + [2]*(sections-3) + [1,0] if sections>4 else list(reversed(range(sections)))
        for pad in pad_seq:
            last = pad == 0
            if stream.input_queue.top() == "end":
                stream.output_queue.push(("end", None))
                return
            pad_sz = pad * win
            idx = torch.arange(0, sum([1,pad_sz,win,1,2,16]))[None].to(device=gpu)
            a,b,c,d,e,f = idx.split([1,pad_sz,win,1,2,16],1)
            clean_idx = torch.cat([a,d],1)
            pre = start_lat.to(hist_lat)
            post, two, four = hist_lat[:,:,:1+2+16].split([1,2,16],2)
            clean = torch.cat([pre, post],2)
            if not hv:
                unload_complete_models()
                move_model_to_device_with_memory_preservation(transformer, gpu, keep)
            transformer.initialize_teacache(tea, stp)
            def cb(d):
                pv = vae_decode_fake(d["denoised"])
                pv = (pv*255).cpu().numpy().clip(0,255).astype(np.uint8)
                pv = einops.rearrange(pv, "b c t h w -> (b h) (t w) c")
                cur = d["i"]+1
                stream.output_queue.push(('progress', (pv, f"{cur}/{stp}", make_progress_bar_html(int(100*cur/stp), f"{cur}/{stp}"))))
                if stream.input_queue.top()=="end":
                    stream.output_queue.push(("end", None))
                    raise KeyboardInterrupt
            new_lat = sample_hunyuan(
                transformer=transformer, sampler="unipc", width=w, height=h, frames=win*4-3,
                real_guidance_scale=cfg, distilled_guidance_scale=gsc, guidance_rescale=rsc,
                num_inference_steps=stp, generator=gen,
                prompt_embeds=lv, prompt_embeds_mask=m, prompt_poolers=cp,
                negative_prompt_embeds=lv_n, negative_prompt_embeds_mask=m_n, negative_prompt_poolers=cp_n,
                device=gpu, dtype=torch.bfloat16, image_embeddings=img_emb,
                latent_indices=c, clean_latents=clean, clean_latent_indices=clean_idx,
                clean_latents_2x=two, clean_latent_2x_indices=e,
                clean_latents_4x=four, clean_latent_4x_indices=f, callback=cb
            )
            if last:
                new_lat = torch.cat([start_lat.to(new_lat), new_lat],2)
            total += new_lat.shape[2]
            hist_lat = torch.cat([new_lat.to(hist_lat), hist_lat],2)
            if not hv:
                offload_model_from_device_for_memory_preservation(transformer, gpu, 8)
                load_model_as_complete(vae, gpu)
            real = hist_lat[:,:,:total]
            if hist_px is None:
                hist_px = vae_decode(real, vae).cpu()
            else:
                overlap = win*4-3
                curr = vae_decode(real[:,:,:win*2], vae).cpu()
                hist_px = soft_append_bcthw(curr, hist_px, overlap)
            if not hv:
                unload_complete_models()
            tmp = os.path.join(OUT_TMP, f"{jid}_{total}.mp4")
            save_bcthw_as_mp4(hist_px, tmp, fps=30, crf=crf)
            stream.output_queue.push(('file', tmp))
            if last:
                fin = os.path.join(OUT_VID, f"{jid}_{total}.mp4")
                os.replace(tmp, fin)
                stream.output_queue.push(('complete', fin))
                break
    except Exception as e:
        traceback.print_exc()
        with open(INSTALL_LOG, 'a') as f:
            f.write(f"[Worker Error] {str(e)}\n")
        stream.output_queue.push(("end", None))
    return lora_msg

# ---------------- Process Function -----------------------
@torch.no_grad()
def process(img, prm, npr, sd, sec, win, stp, cfg, gsc, rsc, kee, tea, crf, lora_path, lora_weight, disable_prompt_mods):
    global stream
    if img is None:
        raise gr.Error("Upload an image")
    yield None, None, "", "", gr.update(interactive=False), gr.update(interactive=True), gr.update()
    stream = AsyncStream()
    lora_msg = async_run(worker, img, prm, npr, sd, sec, win, stp, cfg, gsc, rsc, kee, tea, crf, lora_path, lora_weight, disable_prompt_mods)
    out, log = None, ""
    while True:
        flag, data = stream.output_queue.next()
        if flag == "file":
            out = data
            yield out, gr.update(), gr.update(), log, gr.update(interactive=False), gr.update(interactive=True), gr.update(value=lora_msg)
        if flag == "progress":
            pv, desc, html = data
            log = desc
            yield gr.update(), gr.update(visible=True, value=pv), desc, html, gr.update(interactive=False), gr.update(interactive=True), gr.update(value=lora_msg)
        if flag in ("complete", "end"):
            yield out, gr.update(visible=False), gr.update(), "", gr.update(interactive=True), gr.update(interactive=False), gr.update(value=lora_msg)
            break

def end_process():
    stream.input_queue.push("end")

# ------------------- UI ------------------------------
quick_prompts = [
    ["Smooth animation: A character waves for 3 seconds, then stands still for 2 seconds, static camera, silent."],
    ["Smooth animation: A character moves for 5 seconds, static camera, silent."]
]
css = make_progress_bar_css() + """
.orange-button{background:#ff6200;color:#fff;border-color:#ff6200;}
.load-button{background:#4CAF50;color:#fff;border-color:#4CAF50;margin-left:10px;}
.big-setting-button{background:#0066cc;color:#fff;border:none;padding:14px 24px;font-size:18px;width:100%;border-radius:6px;margin:8px 0;}
.styled-dropdown{width:250px;padding:5px;border-radius:4px;}
.viewer-column{width:100%;max-width:900px;margin:0 auto;}
.media-preview img,.media-preview video{max-width:100%;height:380px;object-fit:contain;border:1px solid #444;border-radius:6px;}
.media-container{display:flex;gap:20px;align-items:flex-start;}
.control-box{min-width:220px;}
.control-grid{display:grid;grid-template-columns:1fr 1fr;gap:10px;}
.image-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;}
.image-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;}
.image-gallery img{object-fit:contain;height:360px!important;width:300px!important;}
.video-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;}
.video-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;}
.video-gallery video{object-fit:contain;height:360px!important;width:300px!important;}
.lora-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;}
.lora-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;}
.lora-gallery .gallery-item div{text-align:center;font-size:16px;color:#fff;}
"""

blk = gr.Blocks(css=css).queue()
with blk:
    gr.Markdown("# ๐Ÿ‘ป GhostPack F1 Pro")
    with gr.Tabs():

        with gr.TabItem("๐Ÿ‘ป Generate"):
            with gr.Row():
                with gr.Column():
                    img_in = gr.Image(sources="upload", type="numpy", label="Image", height=320)
                    prm    = gr.Textbox(label="Prompt")
                    npr    = gr.Textbox(label="Negative Prompt", value="low quality, blurry, speaking, talking, moaning, vocalizing, lip movement, mouth animation, sound, dialogue, speech, whispering, shouting, lip sync, facial animation, expressive face, verbal expression, animated mouth")
                    save_msg = gr.Markdown("")
                    lora_path = gr.Textbox(
                        label="FastVideo LoRA Path or HF Repo",
                        value="Kijai/HunyuanVideo_comfy",
                        placeholder="e.g., Kijai/HunyuanVideo_comfy/hyvideo_FastVideo_LoRA-fp8.safetensors or /path/to/hyvideo_FastVideo_LoRA-fp8.safetensors"
                    )
                    lora_weight = gr.Slider(label="LoRA Weight", minimum=0.5, maximum=1.5, value=1.0, step=0.1)
                    disable_prompt_mods = gr.Checkbox(label="Disable Prompt Modifications", value=False)
                    lora_status_gen = gr.Markdown(value=auto_download_status)
                    btn_save = gr.Button("Save Prompt")
                    btn1, btn2, btn3 = gr.Button("Load Most Recent"), gr.Button("Load 2nd Recent"), gr.Button("Load 3rd Recent")
                    ds = gr.Dataset(samples=quick_prompts, label="Quick List", components=[prm])
                    ds.click(lambda x: x[0], [ds], [prm])
                    btn_save.click(save_prompt_fn, [prm, npr], [save_msg])
                    btn1.click(lambda: load_prompt_fn(0), [], [prm])
                    btn2.click(lambda: load_prompt_fn(1), [], [prm])
                    btn3.click(lambda: load_prompt_fn(2), [], [prm])
                    with gr.Row():
                        b_go, b_end = gr.Button("Start"), gr.Button("End", interactive=False)
                    with gr.Group():
                        tea = gr.Checkbox(label="Use TeaCache", value=True)
                        se  = gr.Number(label="Seed", value=31337, precision=0)
                        sec = gr.Slider(label="Video Length (s)", minimum=1, maximum=120, value=5, step=0.1)
                        win = gr.Slider(label="Latent Window", minimum=1, maximum=33, value=5, step=1)
                        stp = gr.Slider(label="Steps", minimum=1, maximum=100, value=8, step=1)
                        cfg = gr.Slider(label="CFG", minimum=1, maximum=32, value=1, step=0.01, visible=False)
                        gsc = gr.Slider(label="Distilled CFG", minimum=1, maximum=32, value=5, step=0.01)
                        rsc = gr.Slider(label="CFG Re-Scale", minimum=0, maximum=1, value=0.5, step=0.01)
                        kee = gr.Slider(label="GPU Keep (GB)", minimum=4, maximum=free_mem, value=6, step=0.1)
                        crf = gr.Slider(label="MP4 CRF", minimum=0, maximum=100, value=20, step=1)
                with gr.Column():
                    pv  = gr.Image(label="Next Latents", height=200, visible=False)
                    vid = gr.Video(label="Finished", autoplay=True, height=500, loop=True, show_share_button=False)
                    log_md = gr.Markdown("")
                    bar    = gr.HTML("")
                b_go.click(
                    process,
                    [img_in, prm, npr, se, sec, win, stp, cfg, gsc, rsc, kee, tea, crf, lora_path, lora_weight, disable_prompt_mods],
                    [vid, pv, log_md, bar, b_go, b_end, lora_status_gen]
                )
                b_end.click(end_process)

        with gr.TabItem("๐Ÿ–ผ๏ธ Image Gallery"):
            with gr.Row(elem_classes="media-container"):
                with gr.Column(scale=3):
                    image_preview = gr.Image(
                        label="Viewer",
                        value=(list_images()[0] if list_images() else None),
                        interactive=False, elem_classes="media-preview"
                    )
                with gr.Column(elem_classes="control-box"):
                    image_dropdown = gr.Dropdown(
                        choices=[os.path.basename(i) for i in list_images()],
                        value=(os.path.basename(list_images()[0]) if list_images() else None),
                        label="Select", elem_classes="styled-dropdown"
                    )
                    with gr.Row(elem_classes="control-grid"):
                        load_btn = gr.Button("Load", elem_classes="load-button")
                        next_btn = gr.Button("Next", elem_classes="load-button")
                    with gr.Row(elem_classes="control-grid"):
                        refresh_btn = gr.Button("Refresh")
                        delete_btn  = gr.Button("Delete", elem_classes="orange-button")
            image_gallery = gr.Gallery(
                value=list_images(), label="Thumbnails", columns=6, height=360,
                allow_preview=False, type="filepath", elem_classes="image-gallery"
            )
            load_btn.click(load_image, [image_dropdown], [image_preview, image_dropdown])
            next_btn.click(next_image_and_load, [image_dropdown], [image_preview, image_dropdown])
            refresh_btn.click(lambda: (
                gr.update(choices=[os.path.basename(i) for i in list_images()],
                          value=os.path.basename(list_images()[0]) if list_images() else None),
                gr.update(value=list_images()[0] if list_images() else None),
                gr.update(value=list_images())
            ), [], [image_dropdown, image_preview, image_gallery])
            delete_btn.click(lambda sel: (os.remove(os.path.join(OUT_IMG, sel)) if sel else None) or load_image(""),
                             [image_dropdown], [image_preview, image_dropdown])
            image_gallery.select(gallery_image_select, [], [image_preview, image_dropdown])

        with gr.TabItem("๐ŸŽฌ Video Gallery"):
            with gr.Row(elem_classes="media-container"):
                with gr.Column(scale=3):
                    video_preview = gr.Video(
                        label="Viewer",
                        value=(list_videos()[0] if list_videos() else None),
                        autoplay=True, loop=True, interactive=False, elem_classes="media-preview"
                    )
                with gr.Column(elem_classes="control-box"):
                    video_dropdown = gr.Dropdown(
                        choices=[os.path.basename(v) for v in list_videos()],
                        value=(os.path.basename(list_videos()[0]) if list_videos() else None),
                        label="Select", elem_classes="styled-dropdown"
                    )
                    with gr.Row(elem_classes="control-grid"):
                        load_vbtn = gr.Button("Load", elem_classes="load-button")
                        next_vbtn = gr.Button("Next", elem_classes="load-button")
                    with gr.Row(elem_classes="control-grid"):
                        refresh_v = gr.Button("Refresh")
                        delete_v  = gr.Button("Delete", elem_classes="orange-button")
            video_gallery = gr.Gallery(
                value=list_videos(), label="Thumbnails", columns=6, height=360,
                allow_preview=False, type="filepath", elem_classes="video-gallery"
            )
            load_vbtn.click(load_video, [video_dropdown], [video_preview, video_dropdown])
            next_vbtn.click(next_video_and_load, [video_dropdown], [video_preview, video_dropdown])
            refresh_v.click(lambda: (
                gr.update(choices=[os.path.basename(v) for v in list_videos()],
                          value=os.path.basename(list_videos()[0]) if list_videos() else None),
                gr.update(value=list_videos()[0] if list_videos() else None),
                gr.update(value=list_videos())
            ), [], [video_dropdown, video_preview, video_gallery])
            delete_v.click(lambda sel: (os.remove(os.path.join(OUT_VID, sel)) if sel else None) or load_video(""),
                            [video_dropdown], [video_preview, video_dropdown])
            video_gallery.select(gallery_video_select, [], [video_preview, video_dropdown])

        with gr.TabItem("๐Ÿ“ฆ LoRA Management"):
            with gr.Row(elem_classes="media-container"):
                with gr.Column(scale=3):
                    lora_status = gr.Markdown("")
                with gr.Column(elem_classes="control-box"):
                    lora_dropdown = gr.Dropdown(
                        choices=[os.path.basename(l) for l in list_loras()],
                        value=(os.path.basename(list_loras()[0]) if list_loras() else None),
                        label="Select LoRA", elem_classes="styled-dropdown"
                    )
                    with gr.Row(elem_classes="control-grid"):
                        load_lora_btn = gr.Button("Load", elem_classes="load-button")
                        next_lora_btn = gr.Button("Next", elem_classes="load-button")
                    with gr.Row(elem_classes="control-grid"):
                        refresh_lora_btn = gr.Button("Refresh")
                        delete_lora_btn = gr.Button("Delete", elem_classes="orange-button")
                    download_fastvideo_btn = gr.Button("Download FastVideo LoRA", elem_classes="big-setting-button")
            lora_gallery = gr.Gallery(
                value=[(l, os.path.basename(l)) for l in list_loras()], label="LoRA Files", columns=6, height=360,
                allow_preview=False, elem_classes="lora-gallery"
            )
            load_lora_btn.click(load_lora_select, [lora_dropdown], [lora_path, lora_dropdown])
            next_lora_btn.click(next_lora_and_load, [lora_dropdown], [lora_path, lora_dropdown])
            refresh_lora_btn.click(lambda: (
                gr.update(choices=[os.path.basename(l) for l in list_loras()],
                          value=os.path.basename(list_loras()[0]) if list_loras() else None),
                gr.update(value=[(l, os.path.basename(l)) for l in list_loras()])
            ), [], [lora_dropdown, lora_gallery])
            delete_lora_btn.click(delete_lora, [lora_dropdown], [lora_status, lora_dropdown])
            download_fastvideo_btn.click(
                lambda: auto_download_fastvideo_lora(),
                [], [lora_status]
            )
            lora_gallery.select(gallery_lora_select, [], [lora_path, lora_dropdown])

        with gr.TabItem("๐Ÿ‘ป About"):
            gr.Markdown("## GhostPack F1 Pro")
            with gr.Row():
                with gr.Column():
                    gr.Markdown("**๐Ÿ› ๏ธ Description**\nImage-to-Video toolkit powered by HunyuanVideo & FramePack-F1")
                with gr.Column():
                    gr.Markdown("**๐Ÿ“ฆ Version**\n2025-05-03")
                with gr.Column():
                    gr.Markdown("**โœ๏ธ Author**\nGhostAI")
                with gr.Column():
                    gr.Markdown("**๐Ÿ”— Repo**\nhttps://huggingface.co/spaces/ghostai1/GhostPack")

        with gr.TabItem("โš™๏ธ Settings"):
            ct = gr.Button("Clear Temp", elem_classes="big-setting-button")
            ctmsg = gr.Markdown("")
            co = gr.Button("Clear Old", elem_classes="big-setting-button")
            comsg= gr.Markdown("")
            ci = gr.Button("Clear Images", elem_classes="big-setting-button")
            cimg= gr.Markdown("")
            cv = gr.Button("Clear Videos", elem_classes="big-setting-button")
            cvid= gr.Markdown("")
            ct.click(clear_temp_videos, [], ctmsg)
            co.click(clear_old_files,   [], comsg)
            ci.click(clear_images,      [], cimg)
            cv.click(clear_videos,      [], cvid)

        with gr.TabItem("๐Ÿ› ๏ธ Install"):
            xs = gr.Textbox(value=status_xformers(), interactive=False, label="xformers")
            bx = gr.Button("Install xformers", elem_classes="big-setting-button")
            ss = gr.Textbox(value=status_sage(), interactive=False, label="sage-attn")
            bs = gr.Button("Install sage-attn", elem_classes="big-setting-button")
            fs = gr.Textbox(value=status_flash(),interactive=False, label="flash-attn")
            bf = gr.Button("Install flash-attn", elem_classes="big-setting-button")
            bx.click(install_xformers,   [], xs)
            bs.click(install_sage_attn,  [], ss)
            bf.click(install_flash_attn, [], fs)

        with gr.TabItem("๐Ÿ“œ Logs"):
            logs = gr.Textbox(lines=20, interactive=False, label="Install Logs")
            rl   = gr.Button("Refresh", elem_classes="big-setting-button")
            cl   = gr.Button("Clear",   elem_classes="big-setting-button")
            rl.click(refresh_logs, [], logs)
            cl.click(clear_logs,   [], logs)

    # Force video previews to seek to 2s
    gr.HTML("""<script>
document.querySelectorAll('.video-gallery video').forEach(v => {
  v.addEventListener('loadedmetadata', () => {
    if (v.duration > 2) v.currentTime = 2;
  });
});
</script>""")

blk.launch(
    server_name=args.server,
    server_port=args.port,
    share=args.share,
    inbrowser=args.inbrowser
)