ghostai1 commited on
Commit
2574d7a
·
verified ·
1 Parent(s): 2fde0c7

Create ghostpacklora.py

Browse files
Files changed (1) hide show
  1. ghostpacklora.py +907 -0
ghostpacklora.py ADDED
@@ -0,0 +1,907 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # ==========================================================
3
+ # FILE: ghostpack.py
4
+ # ==========================================================
5
+ import os, sys, time, json, argparse, importlib.util, subprocess, traceback
6
+ import torch, einops, numpy as np, gradio as gr
7
+ from PIL import Image
8
+ from diffusers import AutoencoderKLHunyuanVideo
9
+ from transformers import (
10
+ LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer,
11
+ SiglipImageProcessor, SiglipVisionModel
12
+ )
13
+ try:
14
+ from diffusers_helper.hf_login import login
15
+ from diffusers_helper.hunyuan import (
16
+ encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
17
+ )
18
+ from diffusers_helper.utils import (
19
+ save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw,
20
+ resize_and_center_crop, generate_timestamp
21
+ )
22
+ from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
23
+ from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
24
+ from diffusers_helper.memory import (
25
+ gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation,
26
+ offload_model_from_device_for_memory_preservation, fake_diffusers_current_device,
27
+ DynamicSwapInstaller, unload_complete_models, load_model_as_complete
28
+ )
29
+ from diffusers_helper.thread_utils import AsyncStream, async_run
30
+ from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
31
+ from diffusers_helper.clip_vision import hf_clip_vision_encode
32
+ from diffusers_helper.bucket_tools import find_nearest_bucket
33
+ except ImportError as e:
34
+ with open(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'outputs', 'install_logs.txt'), 'a') as f:
35
+ f.write(f"[Dependency Error] {str(e)}\n")
36
+ print(f"Dependency error: {str(e)}. Check outputs/install_logs.txt.")
37
+ sys.exit(1)
38
+
39
+ try:
40
+ from huggingface_hub import hf_hub_download
41
+ from safetensors.torch import load_file
42
+ except ImportError as e:
43
+ with open(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'outputs', 'install_logs.txt'), 'a') as f:
44
+ f.write(f"[Dependency Error] {str(e)}\n")
45
+ print(f"Dependency error: {str(e)}. Install huggingface_hub and safetensors: pip install huggingface_hub safetensors")
46
+ sys.exit(1)
47
+
48
+ # ------------------------- CLI ----------------------------
49
+ parser = argparse.ArgumentParser()
50
+ parser.add_argument('--share', action='store_true')
51
+ parser.add_argument('--server', type=str, default='0.0.0.0')
52
+ parser.add_argument('--port', type=int)
53
+ parser.add_argument('--inbrowser', action='store_true')
54
+ parser.add_argument('--cli', action='store_true')
55
+ args = parser.parse_args()
56
+
57
+ BASE = os.path.abspath(os.path.dirname(__file__))
58
+ os.environ['HF_HOME'] = os.path.join(BASE, 'hf_download')
59
+ LORA_CACHE = os.path.join(BASE, 'dlora')
60
+ os.makedirs(LORA_CACHE, exist_ok=True)
61
+
62
+ # Set HF token from environment variable
63
+ HF_TOKEN = os.getenv('HF_TOKEN', 'XXXXXXXXXXXXXXXXXXXXXXXX')
64
+
65
+ if args.cli:
66
+ print("👻 GhostPack F1 Pro CLI\n")
67
+ print("python ghostpack.py # launch UI")
68
+ print("python ghostpack.py --cli # show help\n")
69
+ sys.exit(0)
70
+
71
+ # ---------------------- Paths -----------------------------
72
+ OUT_BASE = os.path.join(BASE, 'outputs')
73
+ OUT_IMG = os.path.join(OUT_BASE, 'img')
74
+ OUT_TMP = os.path.join(OUT_BASE, 'tmp_vid')
75
+ OUT_VID = os.path.join(OUT_BASE, 'vid')
76
+ PROMPT_LOG = os.path.join(OUT_BASE, 'prompts.txt')
77
+ SAVED_PROMPTS = os.path.join(OUT_BASE, 'saved_prompts.json')
78
+ INSTALL_LOG = os.path.join(OUT_BASE, 'install_logs.txt')
79
+ for d in (OUT_BASE, OUT_IMG, OUT_TMP, OUT_VID):
80
+ os.makedirs(d, exist_ok=True)
81
+ if not os.path.exists(SAVED_PROMPTS):
82
+ json.dump([], open(SAVED_PROMPTS,'w'))
83
+ if not os.path.exists(INSTALL_LOG):
84
+ open(INSTALL_LOG,'w').close()
85
+
86
+ # ---------------- Auto-Downloader ------------------------
87
+ def auto_download_fastvideo_lora():
88
+ repo_id = "Kijai/HunyuanVideo_comfy"
89
+ filename = "hyvideo_FastVideo_LoRA-fp8.safetensors"
90
+ try:
91
+ msg, lora_path = download_lora(repo_id, filename, HF_TOKEN)
92
+ return msg
93
+ except Exception as e:
94
+ with open(INSTALL_LOG, 'a') as f:
95
+ f.write(f"[Auto-Download Error] {repo_id}/{filename}: {str(e)}\n")
96
+ return f"❌ Auto-download failed: {str(e)}"
97
+
98
+ # Run auto-downloader at startup
99
+ auto_download_status = auto_download_fastvideo_lora()
100
+
101
+ # ---------------- Prompt utils ---------------------------
102
+ def get_last_prompts():
103
+ return json.load(open(SAVED_PROMPTS))[-5:][::-1]
104
+
105
+ def save_prompt_fn(p, n):
106
+ if not p:
107
+ return "❌ No prompt"
108
+ data = json.load(open(SAVED_PROMPTS))
109
+ entry = {'prompt': p, 'negative': n}
110
+ if entry not in data:
111
+ data.append(entry)
112
+ json.dump(data, open(SAVED_PROMPTS,'w'))
113
+ return "✅ Saved"
114
+
115
+ def load_prompt_fn(idx):
116
+ lst = get_last_prompts()
117
+ return lst[idx]['prompt'] if idx < len(lst) else ""
118
+
119
+ # ---------------- Cleanup utils --------------------------
120
+ def clear_temp_videos():
121
+ try:
122
+ [os.remove(os.path.join(OUT_TMP,f)) for f in os.listdir(OUT_TMP)]
123
+ return "✅ Temp cleared"
124
+ except Exception as e:
125
+ return f"❌ Failed to clear temp: {str(e)}"
126
+
127
+ def clear_old_files():
128
+ try:
129
+ cutoff = time.time() - 7*24*3600
130
+ c = 0
131
+ for d in (OUT_TMP, OUT_IMG):
132
+ for f in os.listdir(d):
133
+ p = os.path.join(d, f)
134
+ if os.path.isfile(p) and os.path.getmtime(p) < cutoff:
135
+ os.remove(p)
136
+ c += 1
137
+ return f"✅ {c} old files removed"
138
+ except Exception as e:
139
+ return f"❌ Failed to clear old files: {str(e)}"
140
+
141
+ def clear_images():
142
+ try:
143
+ [os.remove(os.path.join(OUT_IMG,f)) for f in os.listdir(OUT_IMG)]
144
+ return "✅ Images cleared"
145
+ except Exception as e:
146
+ return f"❌ Failed to clear images: {str(e)}"
147
+
148
+ def clear_videos():
149
+ try:
150
+ [os.remove(os.path.join(OUT_VID,f)) for f in os.listdir(OUT_VID)]
151
+ return "✅ Videos cleared"
152
+ except Exception as e:
153
+ return f"❌ Failed to clear videos: {str(e)}"
154
+
155
+ # ---------------- Gallery helpers ------------------------
156
+ def list_images():
157
+ try:
158
+ return sorted(
159
+ [os.path.join(OUT_IMG,f) for f in os.listdir(OUT_IMG) if f.lower().endswith(('.png','.jpg'))],
160
+ key=os.path.getmtime
161
+ )
162
+ except Exception:
163
+ return []
164
+
165
+ def list_videos():
166
+ try:
167
+ return sorted(
168
+ [os.path.join(OUT_VID,f) for f in os.listdir(OUT_VID) if f.lower().endswith('.mp4')],
169
+ key=os.path.getmtime
170
+ )
171
+ except Exception:
172
+ return []
173
+
174
+ def list_loras():
175
+ try:
176
+ return sorted(
177
+ [os.path.join(LORA_CACHE,f) for f in os.listdir(LORA_CACHE) if f.lower().endswith('.safetensors')],
178
+ key=os.path.getmtime
179
+ )
180
+ except Exception:
181
+ return []
182
+
183
+ def load_image(sel):
184
+ try:
185
+ imgs = list_images()
186
+ if sel in [os.path.basename(p) for p in imgs]:
187
+ pth = imgs[[os.path.basename(p) for p in imgs].index(sel)]
188
+ return gr.update(value=pth), gr.update(value=os.path.basename(pth))
189
+ return gr.update(), gr.update()
190
+ except Exception as e:
191
+ return gr.update(), gr.update(value=f"❌ Error: {str(e)}")
192
+
193
+ def load_video(sel):
194
+ try:
195
+ vids = list_videos()
196
+ if sel in [os.path.basename(p) for p in vids]:
197
+ pth = vids[[os.path.basename(p) for p in vids].index(sel)]
198
+ return gr.update(value=pth), gr.update(value=os.path.basename(pth))
199
+ return gr.update(), gr.update()
200
+ except Exception as e:
201
+ return gr.update(), gr.update(value=f"❌ Error: {str(e)}")
202
+
203
+ def load_lora_select(sel):
204
+ try:
205
+ loras = list_loras()
206
+ if sel in [os.path.basename(p) for p in loras]:
207
+ pth = loras[[os.path.basename(p) for p in loras].index(sel)]
208
+ return gr.update(value=pth), gr.update(value=os.path.basename(pth))
209
+ return gr.update(), gr.update()
210
+ except Exception as e:
211
+ return gr.update(), gr.update(value=f"❌ Error: {str(e)}")
212
+
213
+ def next_image_and_load(sel):
214
+ try:
215
+ imgs = list_images()
216
+ if not imgs:
217
+ return gr.update(), gr.update()
218
+ names = [os.path.basename(i) for i in imgs]
219
+ idx = (names.index(sel)+1) % len(names) if sel in names else 0
220
+ pth = imgs[idx]
221
+ return gr.update(value=pth), gr.update(value=os.path.basename(pth))
222
+ except Exception:
223
+ return gr.update(), gr.update()
224
+
225
+ def next_video_and_load(sel):
226
+ try:
227
+ vids = list_videos()
228
+ if not vids:
229
+ return gr.update(), gr.update()
230
+ names = [os.path.basename(v) for v in vids]
231
+ idx = (names.index(sel)+1) % len(names) if sel in names else 0
232
+ pth = vids[idx]
233
+ return gr.update(value=pth), gr.update(value=os.path.basename(pth))
234
+ except Exception:
235
+ return gr.update(), gr.update()
236
+
237
+ def next_lora_and_load(sel):
238
+ try:
239
+ loras = list_loras()
240
+ if not loras:
241
+ return gr.update(), gr.update()
242
+ names = [os.path.basename(l) for l in loras]
243
+ idx = (names.index(sel)+1) % len(names) if sel in names else 0
244
+ pth = loras[idx]
245
+ return gr.update(value=pth), gr.update(value=os.path.basename(pth))
246
+ except Exception:
247
+ return gr.update(), gr.update()
248
+
249
+ def gallery_image_select(evt: gr.SelectData):
250
+ try:
251
+ imgs = list_images()
252
+ if evt.index is not None and evt.index < len(imgs):
253
+ pth = imgs[evt.index]
254
+ return gr.update(value=pth), gr.update(value=os.path.basename(pth))
255
+ return gr.update(), gr.update()
256
+ except Exception:
257
+ return gr.update(), gr.update()
258
+
259
+ def gallery_video_select(evt: gr.SelectData):
260
+ try:
261
+ vids = list_videos()
262
+ if evt.index is not None and evt.index < len(vids):
263
+ pth = vids[evt.index]
264
+ return gr.update(value=pth), gr.update(value=os.path.basename(pth))
265
+ return gr.update(), gr.update()
266
+ except Exception:
267
+ return gr.update(), gr.update()
268
+
269
+ def gallery_lora_select(evt: gr.SelectData):
270
+ try:
271
+ loras = list_loras()
272
+ if evt.index is not None and evt.index < len(loras):
273
+ pth = loras[evt.index]
274
+ return gr.update(value=pth), gr.update(value=os.path.basename(pth))
275
+ return gr.update(), gr.update()
276
+ except Exception:
277
+ return gr.update(), gr.update()
278
+
279
+ # ---------------- Install status -------------------------
280
+ def check_mod(n):
281
+ return importlib.util.find_spec(n) is not None
282
+
283
+ def status_xformers():
284
+ return "✅ xformers" if check_mod("xformers") else "❌ xformers"
285
+
286
+ def status_sage():
287
+ return "✅ sage-attn" if check_mod("sageattention") else "❌ sage-attn"
288
+
289
+ def status_flash():
290
+ return "✅ flash-attn" if check_mod("flash_attn") else "⚠️ flash-attn"
291
+
292
+ def install_pkg(pkg, warn=None):
293
+ try:
294
+ if warn:
295
+ print(warn)
296
+ time.sleep(1)
297
+ out = subprocess.check_output(
298
+ [sys.executable, "-m", "pip", "install", pkg],
299
+ stderr=subprocess.STDOUT, text=True
300
+ )
301
+ res = f"✅ {pkg}\n{out}\n"
302
+ except subprocess.CalledProcessError as e:
303
+ res = f"❌ {pkg}\n{e.output}\n"
304
+ with open(INSTALL_LOG, 'a') as f:
305
+ f.write(f"[{pkg}] {res}")
306
+ return res
307
+
308
+ install_xformers = lambda: install_pkg("xformers")
309
+ install_sage_attn = lambda: install_pkg("sage-attn")
310
+ install_flash_attn = lambda: install_pkg("flash-attn","⚠️ long compile")
311
+ refresh_logs = lambda: open(INSTALL_LOG).read()
312
+ clear_logs = lambda: (open(INSTALL_LOG,'w').close() or "✅ Logs cleared")
313
+
314
+ # ---------------- LoRA Download and Load ------------------
315
+ def download_lora(repo_id, filename, hf_token):
316
+ try:
317
+ lora_path = os.path.join(LORA_CACHE, filename)
318
+ if not os.path.exists(lora_path):
319
+ if get_cuda_free_memory_gb(gpu) < 2:
320
+ return "❌ Low VRAM (<2GB). Free up memory.", None
321
+ hf_hub_download(
322
+ repo_id=repo_id,
323
+ filename=filename,
324
+ local_dir=LORA_CACHE,
325
+ token=hf_token
326
+ )
327
+ with open(INSTALL_LOG, 'a') as f:
328
+ f.write(f"[LoRA Download] {repo_id}/{filename} downloaded to {lora_path}\n")
329
+ return "✅ LoRA downloaded", lora_path
330
+ except Exception as e:
331
+ with open(INSTALL_LOG, 'a') as f:
332
+ f.write(f"[LoRA Download Error] {repo_id}/{filename}: {str(e)}\n")
333
+ return f"❌ Download failed: {str(e)}", None
334
+
335
+ def load_lora(transformer, lora_path, lora_weight):
336
+ try:
337
+ if lora_path and os.path.exists(lora_path):
338
+ if hasattr(transformer, 'load_lora_weights'):
339
+ transformer.load_lora_weights(
340
+ lora_path,
341
+ adapter_name="fastvideo",
342
+ weight=lora_weight
343
+ )
344
+ with open(INSTALL_LOG, 'a') as f:
345
+ f.write(f"[LoRA Load] {lora_path} loaded with standard method, weight {lora_weight}\n")
346
+ return "✅ LoRA loaded"
347
+ else:
348
+ # Manual LoRA loading
349
+ lora_weights = load_file(lora_path)
350
+ state_dict = transformer.state_dict()
351
+ for key, value in lora_weights.items():
352
+ if key in state_dict:
353
+ state_dict[key] = state_dict[key] + lora_weight * value.to(state_dict[key].device)
354
+ else:
355
+ # Try partial key matching for common transformer layers
356
+ for model_key in state_dict:
357
+ if key.split('.')[-1] in model_key and ('self_attn' in model_key or 'ffn' in model_key):
358
+ state_dict[model_key] = state_dict[model_key] + lora_weight * value.to(state_dict[model_key].device)
359
+ break
360
+ else:
361
+ with open(INSTALL_LOG, 'a') as f:
362
+ f.write(f"[LoRA Load Warning] Key {key} not found in model state_dict\n")
363
+ transformer.load_state_dict(state_dict)
364
+ with open(INSTALL_LOG, 'a') as f:
365
+ f.write(f"[LoRA Load] {lora_path} loaded manually, weight {lora_weight}\n")
366
+ return "✅ LoRA loaded manually"
367
+ return "❌ No valid LoRA path"
368
+ except Exception as e:
369
+ with open(INSTALL_LOG, 'a') as f:
370
+ f.write(f"[LoRA Load Error] {lora_path}: {str(e)}\n")
371
+ return f"⚠️ LoRA not supported, using base model: {str(e)}"
372
+
373
+ def delete_lora(sel):
374
+ try:
375
+ loras = list_loras()
376
+ if sel in [os.path.basename(p) for p in loras]:
377
+ pth = loras[[os.path.basename(p) for p in loras].index(sel)]
378
+ os.remove(pth)
379
+ with open(INSTALL_LOG, 'a') as f:
380
+ f.write(f"[LoRA Delete] {pth} deleted\n")
381
+ return "✅ LoRA deleted", gr.update(choices=[os.path.basename(l) for l in list_loras()], value=None)
382
+ return "❌ No LoRA selected", gr.update()
383
+ except Exception as e:
384
+ return f"❌ Delete failed: {str(e)}", gr.update()
385
+
386
+ # ---------------- Model load -----------------------------
387
+ free_mem = get_cuda_free_memory_gb(gpu)
388
+ hv = free_mem > 60
389
+
390
+ try:
391
+ text_encoder = LlamaModel.from_pretrained(
392
+ "hunyuanvideo-community/HunyuanVideo",
393
+ subfolder='text_encoder', torch_dtype=torch.float16, token=HF_TOKEN
394
+ ).cpu().eval()
395
+ except Exception as e:
396
+ with open(INSTALL_LOG, 'a') as f:
397
+ f.write(f"[Model Load Error] text_encoder: {str(e)}\n")
398
+ raise gr.Error(f"Failed to load text_encoder: {str(e)}")
399
+
400
+ try:
401
+ text_encoder_2 = CLIPTextModel.from_pretrained(
402
+ "hunyuanvideo-community/HunyuanVideo",
403
+ subfolder='text_encoder_2', torch_dtype=torch.float16, token=HF_TOKEN
404
+ ).cpu().eval()
405
+ except Exception as e:
406
+ with open(INSTALL_LOG, 'a') as f:
407
+ f.write(f"[Model Load Error] text_encoder_2: {str(e)}\n")
408
+ raise gr.Error(f"Failed to load text_encoder_2: {str(e)}")
409
+
410
+ try:
411
+ tokenizer = LlamaTokenizerFast.from_pretrained(
412
+ "hunyuanvideo-community/HunyuanVideo",
413
+ subfolder='tokenizer', token=HF_TOKEN
414
+ )
415
+ except Exception as e:
416
+ with open(INSTALL_LOG, 'a') as f:
417
+ f.write(f"[Model Load Error] tokenizer: {str(e)}\n")
418
+ raise gr.Error(f"Failed to load tokenizer: {str(e)}")
419
+
420
+ try:
421
+ tokenizer_2 = CLIPTokenizer.from_pretrained(
422
+ "hunyuanvideo-community/HunyuanVideo",
423
+ subfolder='tokenizer_2', token=HF_TOKEN
424
+ )
425
+ except Exception as e:
426
+ with open(INSTALL_LOG, 'a') as f:
427
+ f.write(f"[Model Load Error] tokenizer_2: {str(e)}\n")
428
+ raise gr.Error(f"Failed to load tokenizer_2: {str(e)}")
429
+
430
+ try:
431
+ vae = AutoencoderKLHunyuanVideo.from_pretrained(
432
+ "hunyuanvideo-community/HunyuanVideo",
433
+ subfolder='vae', torch_dtype=torch.float16, token=HF_TOKEN
434
+ ).cpu().eval()
435
+ except Exception as e:
436
+ with open(INSTALL_LOG, 'a') as f:
437
+ f.write(f"[Model Load Error] vae: {str(e)}\n")
438
+ raise gr.Error(f"Failed to load vae: {str(e)}")
439
+
440
+ try:
441
+ feature_extractor = SiglipImageProcessor.from_pretrained(
442
+ "lllyasviel/flux_redux_bfl", subfolder='feature_extractor', token=HF_TOKEN
443
+ )
444
+ except Exception as e:
445
+ with open(INSTALL_LOG, 'a') as f:
446
+ f.write(f"[Model Load Error] feature_extractor: {str(e)}\n")
447
+ raise gr.Error(f"Failed to load feature_extractor: {str(e)}")
448
+
449
+ try:
450
+ image_encoder = SiglipVisionModel.from_pretrained(
451
+ "lllyasviel/flux_redux_bfl",
452
+ subfolder='image_encoder', torch_dtype=torch.float16, token=HF_TOKEN
453
+ ).cpu().eval()
454
+ except Exception as e:
455
+ with open(INSTALL_LOG, 'a') as f:
456
+ f.write(f"[Model Load Error] image_encoder: {str(e)}\n")
457
+ raise gr.Error(f"Failed to load image_encoder: {str(e)}")
458
+
459
+ try:
460
+ transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
461
+ "lllyasviel/FramePack_F1_I2V_HY_20250503",
462
+ torch_dtype=torch.bfloat16, token=HF_TOKEN
463
+ ).cpu().eval()
464
+ except Exception as e:
465
+ with open(INSTALL_LOG, 'a') as f:
466
+ f.write(f"[Model Load Error] transformer: {str(e)}\n")
467
+ raise gr.Error(f"Failed to load transformer: {str(e)}")
468
+
469
+ if not hv:
470
+ vae.enable_slicing()
471
+ vae.enable_tiling()
472
+
473
+ transformer.high_quality_fp32_output_for_inference = True
474
+ transformer.to(dtype=torch.bfloat16)
475
+
476
+ for m in (vae, image_encoder, text_encoder, text_encoder_2):
477
+ m.to(dtype=torch.float16)
478
+ for m in (vae, image_encoder, text_encoder, text_encoder_2, transformer):
479
+ m.requires_grad_(False)
480
+
481
+ if not hv:
482
+ DynamicSwapInstaller.install_model(transformer, device=gpu)
483
+ DynamicSwapInstaller.install_model(text_encoder, device=gpu)
484
+ else:
485
+ for m in (text_encoder, text_encoder_2, image_encoder, vae, transformer):
486
+ m.to(gpu)
487
+
488
+ stream = AsyncStream()
489
+
490
+ # ---------------- Worker -------------------------------
491
+ @torch.no_grad()
492
+ def worker(img, prompt, n_p, seed, secs, win, stp, cfg, gsc, rsc, keep, tea, crf, lora_path, lora_weight, disable_prompt_mods):
493
+ # Download and load LoRA if specified
494
+ lora_msg = "No LoRA specified"
495
+ if lora_path:
496
+ try:
497
+ if lora_path.startswith("http") or lora_path.startswith("Kijai/"):
498
+ repo_id = "Kijai/HunyuanVideo_comfy"
499
+ filename = "hyvideo_FastVideo_LoRA-fp8.safetensors"
500
+ lora_msg, lora_path = download_lora(repo_id, filename, HF_TOKEN)
501
+ if not lora_path:
502
+ raise gr.Error(lora_msg)
503
+ lora_msg = load_lora(transformer, lora_path, lora_weight)
504
+ if "⚠️" in lora_msg or "❌" in lora_msg:
505
+ print(lora_msg)
506
+ else:
507
+ stp = 8 # Override steps for FastVideo LoRA
508
+ except Exception as e:
509
+ with open(INSTALL_LOG, 'a') as f:
510
+ f.write(f"[LoRA Error] {lora_path}: {str(e)}\n")
511
+ lora_msg = f"⚠️ LoRA failed, using base model: {str(e)}"
512
+
513
+ # Validate prompt
514
+ try:
515
+ if not disable_prompt_mods:
516
+ if "stop" not in prompt.lower() and secs > 5:
517
+ prompt += " The subject stops moving after 5 seconds."
518
+ if "smooth" not in prompt.lower():
519
+ prompt = f"Smooth animation: {prompt}"
520
+ if "silent" not in prompt.lower():
521
+ prompt += ", silent"
522
+ if len(prompt.split()) > 50:
523
+ print("Warning: Complex prompt may slow rendering or cause instability.")
524
+ except Exception as e:
525
+ raise gr.Error(f"Prompt validation failed: {str(e)}")
526
+
527
+ # Check VRAM availability
528
+ if get_cuda_free_memory_gb(gpu) < 2:
529
+ raise gr.Error("Low VRAM (<2GB). Lower 'kee' or 'win'.")
530
+
531
+ sections = max(round((secs*30)/(win*4)), 1)
532
+ jid = generate_timestamp()
533
+ try:
534
+ with open(PROMPT_LOG, 'a') as f:
535
+ f.write(f"{jid}\t{prompt}\t{n_p}\n")
536
+ except Exception as e:
537
+ print(f"Failed to log prompt: {str(e)}")
538
+
539
+ stream.output_queue.push(('progress', (None, "", make_progress_bar_html(0, "Start"))))
540
+ try:
541
+ if not hv:
542
+ unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
543
+ fake_diffusers_current_device(text_encoder, gpu)
544
+ load_model_as_complete(text_encoder_2, gpu)
545
+ lv, cp = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
546
+ if cfg == 1:
547
+ lv_n = torch.zeros_like(lv)
548
+ cp_n = torch.zeros_like(cp)
549
+ else:
550
+ lv_n, cp_n = encode_prompt_conds(n_p, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
551
+ lv, m = crop_or_pad_yield_mask(lv, 512)
552
+ lv_n, m_n = crop_or_pad_yield_mask(lv_n, 512)
553
+ lv, cp, lv_n, cp_n = [x.to(torch.bfloat16) for x in (lv, cp, lv_n, cp_n)]
554
+ H, W, _ = img.shape
555
+ h, w = find_nearest_bucket(H, W, 640)
556
+ img_np = resize_and_center_crop(img, w, h)
557
+ Image.fromarray(img_np).save(os.path.join(OUT_IMG, f"{jid}.png"))
558
+ img_pt = (torch.from_numpy(img_np).float()/127.5-1).permute(2,0,1)[None,:,None]
559
+ if not hv:
560
+ load_model_as_complete(vae, gpu)
561
+ start_lat = vae_encode(img_pt, vae)
562
+ if not hv:
563
+ load_model_as_complete(image_encoder, gpu)
564
+ img_emb = hf_clip_vision_encode(img_np, feature_extractor, image_encoder).last_hidden_state.to(torch.bfloat16)
565
+ gen = torch.Generator("cpu").manual_seed(seed)
566
+ hist_lat = torch.zeros((1,16,1+2+16,h//8,w//8), dtype=torch.float16).cpu()
567
+ hist_px = None
568
+ total = 0
569
+ pad_seq = [3] + [2]*(sections-3) + [1,0] if sections>4 else list(reversed(range(sections)))
570
+ for pad in pad_seq:
571
+ last = pad == 0
572
+ if stream.input_queue.top() == "end":
573
+ stream.output_queue.push(("end", None))
574
+ return
575
+ pad_sz = pad * win
576
+ idx = torch.arange(0, sum([1,pad_sz,win,1,2,16]))[None].to(device=gpu)
577
+ a,b,c,d,e,f = idx.split([1,pad_sz,win,1,2,16],1)
578
+ clean_idx = torch.cat([a,d],1)
579
+ pre = start_lat.to(hist_lat)
580
+ post, two, four = hist_lat[:,:,:1+2+16].split([1,2,16],2)
581
+ clean = torch.cat([pre, post],2)
582
+ if not hv:
583
+ unload_complete_models()
584
+ move_model_to_device_with_memory_preservation(transformer, gpu, keep)
585
+ transformer.initialize_teacache(tea, stp)
586
+ def cb(d):
587
+ pv = vae_decode_fake(d["denoised"])
588
+ pv = (pv*255).cpu().numpy().clip(0,255).astype(np.uint8)
589
+ pv = einops.rearrange(pv, "b c t h w -> (b h) (t w) c")
590
+ cur = d["i"]+1
591
+ stream.output_queue.push(('progress', (pv, f"{cur}/{stp}", make_progress_bar_html(int(100*cur/stp), f"{cur}/{stp}"))))
592
+ if stream.input_queue.top()=="end":
593
+ stream.output_queue.push(("end", None))
594
+ raise KeyboardInterrupt
595
+ new_lat = sample_hunyuan(
596
+ transformer=transformer, sampler="unipc", width=w, height=h, frames=win*4-3,
597
+ real_guidance_scale=cfg, distilled_guidance_scale=gsc, guidance_rescale=rsc,
598
+ num_inference_steps=stp, generator=gen,
599
+ prompt_embeds=lv, prompt_embeds_mask=m, prompt_poolers=cp,
600
+ negative_prompt_embeds=lv_n, negative_prompt_embeds_mask=m_n, negative_prompt_poolers=cp_n,
601
+ device=gpu, dtype=torch.bfloat16, image_embeddings=img_emb,
602
+ latent_indices=c, clean_latents=clean, clean_latent_indices=clean_idx,
603
+ clean_latents_2x=two, clean_latent_2x_indices=e,
604
+ clean_latents_4x=four, clean_latent_4x_indices=f, callback=cb
605
+ )
606
+ if last:
607
+ new_lat = torch.cat([start_lat.to(new_lat), new_lat],2)
608
+ total += new_lat.shape[2]
609
+ hist_lat = torch.cat([new_lat.to(hist_lat), hist_lat],2)
610
+ if not hv:
611
+ offload_model_from_device_for_memory_preservation(transformer, gpu, 8)
612
+ load_model_as_complete(vae, gpu)
613
+ real = hist_lat[:,:,:total]
614
+ if hist_px is None:
615
+ hist_px = vae_decode(real, vae).cpu()
616
+ else:
617
+ overlap = win*4-3
618
+ curr = vae_decode(real[:,:,:win*2], vae).cpu()
619
+ hist_px = soft_append_bcthw(curr, hist_px, overlap)
620
+ if not hv:
621
+ unload_complete_models()
622
+ tmp = os.path.join(OUT_TMP, f"{jid}_{total}.mp4")
623
+ save_bcthw_as_mp4(hist_px, tmp, fps=30, crf=crf)
624
+ stream.output_queue.push(('file', tmp))
625
+ if last:
626
+ fin = os.path.join(OUT_VID, f"{jid}_{total}.mp4")
627
+ os.replace(tmp, fin)
628
+ stream.output_queue.push(('complete', fin))
629
+ break
630
+ except Exception as e:
631
+ traceback.print_exc()
632
+ with open(INSTALL_LOG, 'a') as f:
633
+ f.write(f"[Worker Error] {str(e)}\n")
634
+ stream.output_queue.push(("end", None))
635
+ return lora_msg
636
+
637
+ # ---------------- Process Function -----------------------
638
+ @torch.no_grad()
639
+ def process(img, prm, npr, sd, sec, win, stp, cfg, gsc, rsc, kee, tea, crf, lora_path, lora_weight, disable_prompt_mods):
640
+ global stream
641
+ if img is None:
642
+ raise gr.Error("Upload an image")
643
+ yield None, None, "", "", gr.update(interactive=False), gr.update(interactive=True), gr.update()
644
+ stream = AsyncStream()
645
+ lora_msg = async_run(worker, img, prm, npr, sd, sec, win, stp, cfg, gsc, rsc, kee, tea, crf, lora_path, lora_weight, disable_prompt_mods)
646
+ out, log = None, ""
647
+ while True:
648
+ flag, data = stream.output_queue.next()
649
+ if flag == "file":
650
+ out = data
651
+ yield out, gr.update(), gr.update(), log, gr.update(interactive=False), gr.update(interactive=True), gr.update(value=lora_msg)
652
+ if flag == "progress":
653
+ pv, desc, html = data
654
+ log = desc
655
+ yield gr.update(), gr.update(visible=True, value=pv), desc, html, gr.update(interactive=False), gr.update(interactive=True), gr.update(value=lora_msg)
656
+ if flag in ("complete", "end"):
657
+ yield out, gr.update(visible=False), gr.update(), "", gr.update(interactive=True), gr.update(interactive=False), gr.update(value=lora_msg)
658
+ break
659
+
660
+ def end_process():
661
+ stream.input_queue.push("end")
662
+
663
+ # ------------------- UI ------------------------------
664
+ quick_prompts = [
665
+ ["Smooth animation: A character waves for 3 seconds, then stands still for 2 seconds, static camera, silent."],
666
+ ["Smooth animation: A character moves for 5 seconds, static camera, silent."]
667
+ ]
668
+ css = make_progress_bar_css() + """
669
+ .orange-button{background:#ff6200;color:#fff;border-color:#ff6200;}
670
+ .load-button{background:#4CAF50;color:#fff;border-color:#4CAF50;margin-left:10px;}
671
+ .big-setting-button{background:#0066cc;color:#fff;border:none;padding:14px 24px;font-size:18px;width:100%;border-radius:6px;margin:8px 0;}
672
+ .styled-dropdown{width:250px;padding:5px;border-radius:4px;}
673
+ .viewer-column{width:100%;max-width:900px;margin:0 auto;}
674
+ .media-preview img,.media-preview video{max-width:100%;height:380px;object-fit:contain;border:1px solid #444;border-radius:6px;}
675
+ .media-container{display:flex;gap:20px;align-items:flex-start;}
676
+ .control-box{min-width:220px;}
677
+ .control-grid{display:grid;grid-template-columns:1fr 1fr;gap:10px;}
678
+ .image-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;}
679
+ .image-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;}
680
+ .image-gallery img{object-fit:contain;height:360px!important;width:300px!important;}
681
+ .video-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;}
682
+ .video-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;}
683
+ .video-gallery video{object-fit:contain;height:360px!important;width:300px!important;}
684
+ .lora-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;}
685
+ .lora-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;}
686
+ .lora-gallery .gallery-item div{text-align:center;font-size:16px;color:#fff;}
687
+ """
688
+
689
+ blk = gr.Blocks(css=css).queue()
690
+ with blk:
691
+ gr.Markdown("# 👻 GhostPack F1 Pro")
692
+ with gr.Tabs():
693
+
694
+ with gr.TabItem("👻 Generate"):
695
+ with gr.Row():
696
+ with gr.Column():
697
+ img_in = gr.Image(sources="upload", type="numpy", label="Image", height=320)
698
+ prm = gr.Textbox(label="Prompt")
699
+ npr = gr.Textbox(label="Negative Prompt", value="low quality, blurry, speaking, talking, moaning, vocalizing, lip movement, mouth animation, sound, dialogue, speech, whispering, shouting, lip sync, facial animation, expressive face, verbal expression, animated mouth")
700
+ save_msg = gr.Markdown("")
701
+ lora_path = gr.Textbox(
702
+ label="FastVideo LoRA Path or HF Repo",
703
+ value="Kijai/HunyuanVideo_comfy",
704
+ placeholder="e.g., Kijai/HunyuanVideo_comfy/hyvideo_FastVideo_LoRA-fp8.safetensors or /path/to/hyvideo_FastVideo_LoRA-fp8.safetensors"
705
+ )
706
+ lora_weight = gr.Slider(label="LoRA Weight", minimum=0.5, maximum=1.5, value=1.0, step=0.1)
707
+ disable_prompt_mods = gr.Checkbox(label="Disable Prompt Modifications", value=False)
708
+ lora_status_gen = gr.Markdown(value=auto_download_status)
709
+ btn_save = gr.Button("Save Prompt")
710
+ btn1, btn2, btn3 = gr.Button("Load Most Recent"), gr.Button("Load 2nd Recent"), gr.Button("Load 3rd Recent")
711
+ ds = gr.Dataset(samples=quick_prompts, label="Quick List", components=[prm])
712
+ ds.click(lambda x: x[0], [ds], [prm])
713
+ btn_save.click(save_prompt_fn, [prm, npr], [save_msg])
714
+ btn1.click(lambda: load_prompt_fn(0), [], [prm])
715
+ btn2.click(lambda: load_prompt_fn(1), [], [prm])
716
+ btn3.click(lambda: load_prompt_fn(2), [], [prm])
717
+ with gr.Row():
718
+ b_go, b_end = gr.Button("Start"), gr.Button("End", interactive=False)
719
+ with gr.Group():
720
+ tea = gr.Checkbox(label="Use TeaCache", value=True)
721
+ se = gr.Number(label="Seed", value=31337, precision=0)
722
+ sec = gr.Slider(label="Video Length (s)", minimum=1, maximum=120, value=5, step=0.1)
723
+ win = gr.Slider(label="Latent Window", minimum=1, maximum=33, value=5, step=1)
724
+ stp = gr.Slider(label="Steps", minimum=1, maximum=100, value=8, step=1)
725
+ cfg = gr.Slider(label="CFG", minimum=1, maximum=32, value=1, step=0.01, visible=False)
726
+ gsc = gr.Slider(label="Distilled CFG", minimum=1, maximum=32, value=5, step=0.01)
727
+ rsc = gr.Slider(label="CFG Re-Scale", minimum=0, maximum=1, value=0.5, step=0.01)
728
+ kee = gr.Slider(label="GPU Keep (GB)", minimum=4, maximum=free_mem, value=6, step=0.1)
729
+ crf = gr.Slider(label="MP4 CRF", minimum=0, maximum=100, value=20, step=1)
730
+ with gr.Column():
731
+ pv = gr.Image(label="Next Latents", height=200, visible=False)
732
+ vid = gr.Video(label="Finished", autoplay=True, height=500, loop=True, show_share_button=False)
733
+ log_md = gr.Markdown("")
734
+ bar = gr.HTML("")
735
+ b_go.click(
736
+ process,
737
+ [img_in, prm, npr, se, sec, win, stp, cfg, gsc, rsc, kee, tea, crf, lora_path, lora_weight, disable_prompt_mods],
738
+ [vid, pv, log_md, bar, b_go, b_end, lora_status_gen]
739
+ )
740
+ b_end.click(end_process)
741
+
742
+ with gr.TabItem("🖼️ Image Gallery"):
743
+ with gr.Row(elem_classes="media-container"):
744
+ with gr.Column(scale=3):
745
+ image_preview = gr.Image(
746
+ label="Viewer",
747
+ value=(list_images()[0] if list_images() else None),
748
+ interactive=False, elem_classes="media-preview"
749
+ )
750
+ with gr.Column(elem_classes="control-box"):
751
+ image_dropdown = gr.Dropdown(
752
+ choices=[os.path.basename(i) for i in list_images()],
753
+ value=(os.path.basename(list_images()[0]) if list_images() else None),
754
+ label="Select", elem_classes="styled-dropdown"
755
+ )
756
+ with gr.Row(elem_classes="control-grid"):
757
+ load_btn = gr.Button("Load", elem_classes="load-button")
758
+ next_btn = gr.Button("Next", elem_classes="load-button")
759
+ with gr.Row(elem_classes="control-grid"):
760
+ refresh_btn = gr.Button("Refresh")
761
+ delete_btn = gr.Button("Delete", elem_classes="orange-button")
762
+ image_gallery = gr.Gallery(
763
+ value=list_images(), label="Thumbnails", columns=6, height=360,
764
+ allow_preview=False, type="filepath", elem_classes="image-gallery"
765
+ )
766
+ load_btn.click(load_image, [image_dropdown], [image_preview, image_dropdown])
767
+ next_btn.click(next_image_and_load, [image_dropdown], [image_preview, image_dropdown])
768
+ refresh_btn.click(lambda: (
769
+ gr.update(choices=[os.path.basename(i) for i in list_images()],
770
+ value=os.path.basename(list_images()[0]) if list_images() else None),
771
+ gr.update(value=list_images()[0] if list_images() else None),
772
+ gr.update(value=list_images())
773
+ ), [], [image_dropdown, image_preview, image_gallery])
774
+ delete_btn.click(lambda sel: (os.remove(os.path.join(OUT_IMG, sel)) if sel else None) or load_image(""),
775
+ [image_dropdown], [image_preview, image_dropdown])
776
+ image_gallery.select(gallery_image_select, [], [image_preview, image_dropdown])
777
+
778
+ with gr.TabItem("🎬 Video Gallery"):
779
+ with gr.Row(elem_classes="media-container"):
780
+ with gr.Column(scale=3):
781
+ video_preview = gr.Video(
782
+ label="Viewer",
783
+ value=(list_videos()[0] if list_videos() else None),
784
+ autoplay=True, loop=True, interactive=False, elem_classes="media-preview"
785
+ )
786
+ with gr.Column(elem_classes="control-box"):
787
+ video_dropdown = gr.Dropdown(
788
+ choices=[os.path.basename(v) for v in list_videos()],
789
+ value=(os.path.basename(list_videos()[0]) if list_videos() else None),
790
+ label="Select", elem_classes="styled-dropdown"
791
+ )
792
+ with gr.Row(elem_classes="control-grid"):
793
+ load_vbtn = gr.Button("Load", elem_classes="load-button")
794
+ next_vbtn = gr.Button("Next", elem_classes="load-button")
795
+ with gr.Row(elem_classes="control-grid"):
796
+ refresh_v = gr.Button("Refresh")
797
+ delete_v = gr.Button("Delete", elem_classes="orange-button")
798
+ video_gallery = gr.Gallery(
799
+ value=list_videos(), label="Thumbnails", columns=6, height=360,
800
+ allow_preview=False, type="filepath", elem_classes="video-gallery"
801
+ )
802
+ load_vbtn.click(load_video, [video_dropdown], [video_preview, video_dropdown])
803
+ next_vbtn.click(next_video_and_load, [video_dropdown], [video_preview, video_dropdown])
804
+ refresh_v.click(lambda: (
805
+ gr.update(choices=[os.path.basename(v) for v in list_videos()],
806
+ value=os.path.basename(list_videos()[0]) if list_videos() else None),
807
+ gr.update(value=list_videos()[0] if list_videos() else None),
808
+ gr.update(value=list_videos())
809
+ ), [], [video_dropdown, video_preview, video_gallery])
810
+ delete_v.click(lambda sel: (os.remove(os.path.join(OUT_VID, sel)) if sel else None) or load_video(""),
811
+ [video_dropdown], [video_preview, video_dropdown])
812
+ video_gallery.select(gallery_video_select, [], [video_preview, video_dropdown])
813
+
814
+ with gr.TabItem("📦 LoRA Management"):
815
+ with gr.Row(elem_classes="media-container"):
816
+ with gr.Column(scale=3):
817
+ lora_status = gr.Markdown("")
818
+ with gr.Column(elem_classes="control-box"):
819
+ lora_dropdown = gr.Dropdown(
820
+ choices=[os.path.basename(l) for l in list_loras()],
821
+ value=(os.path.basename(list_loras()[0]) if list_loras() else None),
822
+ label="Select LoRA", elem_classes="styled-dropdown"
823
+ )
824
+ with gr.Row(elem_classes="control-grid"):
825
+ load_lora_btn = gr.Button("Load", elem_classes="load-button")
826
+ next_lora_btn = gr.Button("Next", elem_classes="load-button")
827
+ with gr.Row(elem_classes="control-grid"):
828
+ refresh_lora_btn = gr.Button("Refresh")
829
+ delete_lora_btn = gr.Button("Delete", elem_classes="orange-button")
830
+ download_fastvideo_btn = gr.Button("Download FastVideo LoRA", elem_classes="big-setting-button")
831
+ lora_gallery = gr.Gallery(
832
+ value=[(l, os.path.basename(l)) for l in list_loras()], label="LoRA Files", columns=6, height=360,
833
+ allow_preview=False, elem_classes="lora-gallery"
834
+ )
835
+ load_lora_btn.click(load_lora_select, [lora_dropdown], [lora_path, lora_dropdown])
836
+ next_lora_btn.click(next_lora_and_load, [lora_dropdown], [lora_path, lora_dropdown])
837
+ refresh_lora_btn.click(lambda: (
838
+ gr.update(choices=[os.path.basename(l) for l in list_loras()],
839
+ value=os.path.basename(list_loras()[0]) if list_loras() else None),
840
+ gr.update(value=[(l, os.path.basename(l)) for l in list_loras()])
841
+ ), [], [lora_dropdown, lora_gallery])
842
+ delete_lora_btn.click(delete_lora, [lora_dropdown], [lora_status, lora_dropdown])
843
+ download_fastvideo_btn.click(
844
+ lambda: auto_download_fastvideo_lora(),
845
+ [], [lora_status]
846
+ )
847
+ lora_gallery.select(gallery_lora_select, [], [lora_path, lora_dropdown])
848
+
849
+ with gr.TabItem("👻 About"):
850
+ gr.Markdown("## GhostPack F1 Pro")
851
+ with gr.Row():
852
+ with gr.Column():
853
+ gr.Markdown("**🛠️ Description**\nImage-to-Video toolkit powered by HunyuanVideo & FramePack-F1")
854
+ with gr.Column():
855
+ gr.Markdown("**📦 Version**\n2025-05-03")
856
+ with gr.Column():
857
+ gr.Markdown("**✍️ Author**\nGhostAI")
858
+ with gr.Column():
859
+ gr.Markdown("**🔗 Repo**\nhttps://huggingface.co/spaces/ghostai1/GhostPack")
860
+
861
+ with gr.TabItem("⚙️ Settings"):
862
+ ct = gr.Button("Clear Temp", elem_classes="big-setting-button")
863
+ ctmsg = gr.Markdown("")
864
+ co = gr.Button("Clear Old", elem_classes="big-setting-button")
865
+ comsg= gr.Markdown("")
866
+ ci = gr.Button("Clear Images", elem_classes="big-setting-button")
867
+ cimg= gr.Markdown("")
868
+ cv = gr.Button("Clear Videos", elem_classes="big-setting-button")
869
+ cvid= gr.Markdown("")
870
+ ct.click(clear_temp_videos, [], ctmsg)
871
+ co.click(clear_old_files, [], comsg)
872
+ ci.click(clear_images, [], cimg)
873
+ cv.click(clear_videos, [], cvid)
874
+
875
+ with gr.TabItem("🛠️ Install"):
876
+ xs = gr.Textbox(value=status_xformers(), interactive=False, label="xformers")
877
+ bx = gr.Button("Install xformers", elem_classes="big-setting-button")
878
+ ss = gr.Textbox(value=status_sage(), interactive=False, label="sage-attn")
879
+ bs = gr.Button("Install sage-attn", elem_classes="big-setting-button")
880
+ fs = gr.Textbox(value=status_flash(),interactive=False, label="flash-attn")
881
+ bf = gr.Button("Install flash-attn", elem_classes="big-setting-button")
882
+ bx.click(install_xformers, [], xs)
883
+ bs.click(install_sage_attn, [], ss)
884
+ bf.click(install_flash_attn, [], fs)
885
+
886
+ with gr.TabItem("📜 Logs"):
887
+ logs = gr.Textbox(lines=20, interactive=False, label="Install Logs")
888
+ rl = gr.Button("Refresh", elem_classes="big-setting-button")
889
+ cl = gr.Button("Clear", elem_classes="big-setting-button")
890
+ rl.click(refresh_logs, [], logs)
891
+ cl.click(clear_logs, [], logs)
892
+
893
+ # Force video previews to seek to 2s
894
+ gr.HTML("""<script>
895
+ document.querySelectorAll('.video-gallery video').forEach(v => {
896
+ v.addEventListener('loadedmetadata', () => {
897
+ if (v.duration > 2) v.currentTime = 2;
898
+ });
899
+ });
900
+ </script>""")
901
+
902
+ blk.launch(
903
+ server_name=args.server,
904
+ server_port=args.port,
905
+ share=args.share,
906
+ inbrowser=args.inbrowser
907
+ )