Spaces:
Running
Running
# ========================================================== | |
# FILE: ghostpack.py | |
# ========================================================== | |
#!/usr/bin/env python3 | |
# --------------------------------------------------------------------------- | |
# RELEASE – GhostPack Image-to-Video Generator | |
# --------------------------------------------------------------------------- | |
import os, sys, argparse, traceback | |
import numpy as np, torch, einops, gradio as gr | |
from PIL import Image | |
from diffusers_helper.hf_login import login | |
from diffusers import AutoencoderKLHunyuanVideo | |
from transformers import ( | |
LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer, | |
SiglipImageProcessor, SiglipVisionModel, | |
) | |
from diffusers_helper.hunyuan import ( | |
encode_prompt_conds, vae_encode, vae_decode, vae_decode_fake, | |
) | |
from diffusers_helper.utils import ( | |
save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, | |
resize_and_center_crop, generate_timestamp, | |
) | |
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked | |
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan | |
from diffusers_helper.memory import ( | |
gpu, get_cuda_free_memory_gb, DynamicSwapInstaller, | |
unload_complete_models, load_model_as_complete, | |
fake_diffusers_current_device, move_model_to_device_with_memory_preservation, | |
offload_model_from_device_for_memory_preservation, | |
) | |
from diffusers_helper.thread_utils import AsyncStream, async_run | |
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html | |
from diffusers_helper.clip_vision import hf_clip_vision_encode | |
from diffusers_helper.bucket_tools import find_nearest_bucket | |
BASE = os.path.abspath(os.path.dirname(__file__)) | |
CACHE = os.path.join(BASE, "hf_download") | |
os.makedirs(CACHE, exist_ok=True) | |
for v in ("HF_HOME", "TRANSFORMERS_CACHE", "HF_DATASETS_CACHE"): os.environ[v] = CACHE | |
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1" | |
p = argparse.ArgumentParser() | |
p.add_argument("--share", action="store_true") | |
p.add_argument("--server", default="0.0.0.0") | |
p.add_argument("--port", type=int, default=7860) | |
p.add_argument("--inbrowser", action="store_true") | |
args = p.parse_args() | |
free_gb = get_cuda_free_memory_gb(gpu) | |
hi_vram = free_gb > 60 | |
print(f"[GhostPack] Free VRAM: {free_gb:.1f} GB | High-VRAM: {hi_vram}") | |
def llm(sub): return LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder=sub, torch_dtype=torch.float16).cpu().eval() | |
def clip(sub): return CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder=sub, torch_dtype=torch.float16).cpu().eval() | |
text_enc = llm("text_encoder") | |
text_enc2 = clip("text_encoder_2") | |
tok = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer") | |
tok2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer_2") | |
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="vae", torch_dtype=torch.float16).cpu().eval() | |
feat_ext = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder="feature_extractor") | |
img_enc = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder="image_encoder", torch_dtype=torch.float16).cpu().eval() | |
trans = HunyuanVideoTransformer3DModelPacked.from_pretrained("lllyasviel/FramePackI2V_HY", torch_dtype=torch.bfloat16).cpu().eval() | |
trans.high_quality_fp32_output_for_inference = True | |
if not hi_vram: | |
vae.enable_slicing(); vae.enable_tiling() | |
else: | |
for m in (text_enc, text_enc2, img_enc, vae, trans): m.to(gpu) | |
trans.to(dtype=torch.bfloat16) | |
for m in (vae, img_enc, text_enc, text_enc2): m.to(dtype=torch.float16) | |
for m in (vae, img_enc, text_enc, text_enc2, trans): m.requires_grad_(False) | |
if not hi_vram: | |
DynamicSwapInstaller.install_model(trans, device=gpu) | |
DynamicSwapInstaller.install_model(text_enc, device=gpu) | |
OUT = os.path.join(BASE, "outputs") | |
os.makedirs(OUT, exist_ok=True) | |
stream = AsyncStream() | |
def worker(img, p, n_p, sd, secs, win, stp, cfg, gsc, rsc, keep, tea, crf): | |
sections = max(round((secs*30)/(win*4)), 1) | |
job = generate_timestamp() | |
stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"Start")))) | |
try: | |
if not hi_vram: unload_complete_models(text_enc, text_enc2, img_enc, vae, trans) | |
stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"Text enc")))) | |
if not hi_vram: | |
fake_diffusers_current_device(text_enc, gpu) | |
load_model_as_complete(text_enc2, gpu) | |
lv, cp = encode_prompt_conds(p, text_enc, text_enc2, tok, tok2) | |
lv_n, cp_n = (torch.zeros_like(lv), torch.zeros_like(cp)) if cfg==1 else encode_prompt_conds(n_p, text_enc, text_enc2, tok, tok2) | |
lv, m = crop_or_pad_yield_mask(lv,512) | |
lv_n, m_n= crop_or_pad_yield_mask(lv_n,512) | |
stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"Image")))) | |
H,W,_ = img.shape; h,w = find_nearest_bucket(H,W,640) | |
img_np = resize_and_center_crop(img,w,h) | |
Image.fromarray(img_np).save(os.path.join(OUT,f"{job}.png")) | |
img_pt = torch.from_numpy(img_np).float()/127.5-1; img_pt = img_pt.permute(2,0,1)[None,:,None] | |
stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"VAE")))) | |
if not hi_vram: load_model_as_complete(vae, gpu) | |
start_lat = vae_encode(img_pt, vae) | |
stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"Vision")))) | |
if not hi_vram: load_model_as_complete(img_enc, gpu) | |
img_hidden = hf_clip_vision_encode(img_np, feat_ext, img_enc).last_hidden_state | |
to = trans.dtype | |
lv, lv_n, cp, cp_n, img_hidden = (x.to(to) for x in (lv, lv_n, cp, cp_n, img_hidden)) | |
stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"Sample")))) | |
gen = torch.Generator("cpu").manual_seed(sd) | |
frames = win*4-3 | |
hist_lat = torch.zeros((1,16,1+2+16,h//8,w//8), dtype=torch.float32).cpu() | |
hist_px=None; total=0 | |
pad_seq=[3]+[2]*(sections-3)+[1,0] if sections>4 else list(reversed(range(sections))) | |
for pad in pad_seq: | |
last = pad==0 | |
if stream.input_queue.top()=="end": stream.output_queue.push(("end",None)); return | |
pad_sz=pad*win | |
idx=torch.arange(0,sum([1,pad_sz,win,1,2,16])).unsqueeze(0) | |
a,b,c,d,e,f = idx.split([1,pad_sz,win,1,2,16],1) | |
clean_idx = torch.cat([a,d],1) | |
pre=start_lat.to(hist_lat); post,two,four=hist_lat[:,:,:1+2+16].split([1,2,16],2) | |
clean=torch.cat([pre,post],2) | |
if not hi_vram: | |
unload_complete_models() | |
move_model_to_device_with_memory_preservation(trans,gpu,keep) | |
trans.initialize_teacache(tea,stp) | |
def cb(d): | |
pv = vae_decode_fake(d["denoised"]) | |
pv = (pv*255).cpu().numpy().clip(0,255).astype(np.uint8) | |
pv = einops.rearrange(pv,"b c t h w->(b h)(t w)c") | |
cur = d["i"]+1 | |
stream.output_queue.push(("progress",(pv,f"{total*4-3}f",make_progress_bar_html(int(100*cur/stp),f"{cur}/{stp}")))) | |
if stream.input_queue.top()=="end": | |
stream.output_queue.push(("end",None)); raise KeyboardInterrupt | |
new_lat = sample_hunyuan( | |
transformer=trans,sampler="unipc",width=w,height=h,frames=frames, | |
real_guidance_scale=cfg,distilled_guidance_scale=gsc,guidance_rescale=rsc, | |
num_inference_steps=stp,generator=gen, | |
prompt_embeds=lv,prompt_embeds_mask=m,prompt_poolers=cp, | |
negative_prompt_embeds=lv_n,negative_prompt_embeds_mask=m_n,negative_prompt_poolers=cp_n, | |
device=gpu,dtype=torch.bfloat16,image_embeddings=img_hidden, | |
latent_indices=c,clean_latents=clean,clean_latent_indices=clean_idx, | |
clean_latents_2x=two,clean_latent_2x_indices=e,clean_latents_4x=four,clean_latent_4x_indices=f, | |
callback=cb, | |
) | |
if last: new_lat=torch.cat([start_lat.to(new_lat),new_lat],2) | |
total+=new_lat.shape[2]; hist_lat=torch.cat([new_lat.to(hist_lat),hist_lat],2) | |
if not hi_vram: | |
offload_model_from_device_for_memory_preservation(trans,gpu,8) | |
load_model_as_complete(vae,gpu) | |
real=hist_lat[:,:,:total] | |
if hist_px is None: | |
hist_px = vae_decode(real,vae).cpu() | |
else: | |
sec_lat=win*2+1 if last else win*2 | |
cur_px = vae_decode(real[:,:,:sec_lat],vae).cpu() | |
hist_px = soft_append_bcthw(cur_px,hist_px,win*4-3) | |
if not hi_vram: unload_complete_models() | |
mp4=os.path.join(OUT,f"{job}_{total}.mp4") | |
save_bcthw_as_mp4(hist_px,mp4,fps=30,crf=crf) | |
stream.output_queue.push(("file",mp4)) | |
if last: break | |
except Exception: | |
traceback.print_exc(); stream.output_queue.push(("end",None)) | |
def ui(): | |
css = make_progress_bar_css()+""" | |
body,.gradio-container,.gr-block{background:#121212;color:#eee} | |
.gr-button,.gr-button-primary{background:#006400;border:#006400} | |
.gr-button:hover,.gr-button-primary:hover{background:#00aa00;border:#00aa00} | |
input,textarea,.gr-input,.gr-textbox,.gr-slider,.gr-number{background:#1e1e1e;color:#eee;border-color:#006400} | |
""" | |
quick=[["The girl dances gracefully, with clear movements, full of charm."], | |
["A character doing some simple body movements."]] | |
blk=gr.Blocks(css=css).queue() | |
with blk: | |
gr.Markdown("# 👻 GhostPack Demo") | |
with gr.Row(): | |
with gr.Column(): | |
img=gr.Image(sources="upload",type="numpy",label="Image",height=320) | |
prm=gr.Textbox(label="Prompt") | |
ds=gr.Dataset(samples=quick,label="Quick List",components=[prm]) | |
ds.click(lambda x:x[0],inputs=[ds],outputs=prm) | |
with gr.Row(): | |
b_go=gr.Button("Start"); b_end=gr.Button("End",interactive=False) | |
with gr.Group(): | |
tea=gr.Checkbox(label="Use TeaCache",value=True) | |
npr=gr.Textbox(label="Negative Prompt",visible=False) | |
se=gr.Number(label="Seed",value=31337,precision=0) | |
sec=gr.Slider(label="Video Length (s)",minimum=1,maximum=120,value=5,step=0.1) | |
win=gr.Slider(label="Latent Window",minimum=1,maximum=33,value=9,step=1,visible=False) | |
stp=gr.Slider(label="Steps",minimum=1,maximum=100,value=25,step=1) | |
cfg=gr.Slider(label="CFG",minimum=1,maximum=32,value=1,step=0.01,visible=False) | |
gsc=gr.Slider(label="Distilled CFG",minimum=1,maximum=32,value=10,step=0.01) | |
rsc=gr.Slider(label="CFG Re-Scale",minimum=0,maximum=1,value=0,step=0.01,visible=False) | |
kee=gr.Slider(label="GPU Keep (GB)",minimum=6,maximum=128,value=6,step=0.1) | |
crf=gr.Slider(label="MP4 CRF",minimum=0,maximum=100,value=16,step=1) | |
with gr.Column(): | |
pv=gr.Image(label="Next Latents",height=200,visible=False,interactive=False) | |
vid=gr.Video(label="Finished",autoplay=True,height=512,loop=True,show_share_button=False) | |
gr.Markdown("Ending actions appear first; wait for start.") | |
dsc=gr.Markdown("") | |
bar=gr.HTML("") | |
log=gr.Markdown("") | |
inputs=[img,prm,npr,se,sec,win,stp,cfg,gsc,rsc,kee,tea,crf] | |
def launch(*xs): | |
global stream | |
if xs[0] is None: raise gr.Error("Upload an image.") | |
yield None,None,"","","",gr.update(interactive=False),gr.update(interactive=True) | |
stream=AsyncStream() | |
async_run(worker,*xs) | |
out=None; log="" | |
while True: | |
flag,data=stream.output_queue.next() | |
if flag=="file": | |
out=data | |
yield out,gr.update(),gr.update(),gr.update(),log,gr.update(interactive=False),gr.update(interactive=True) | |
if flag=="progress": | |
pv,desc,html=data; log=desc | |
yield gr.update(),gr.update(visible=True,value=pv),desc,html,log,gr.update(interactive=False),gr.update(interactive=True) | |
if flag=="end": | |
yield out,gr.update(visible=False),gr.update(),"",log,gr.update(interactive=True),gr.update(interactive=False); break | |
b_go.click(launch,inputs,[vid,pv,dsc,bar,log,b_go,b_end]) | |
b_end.click(lambda: stream.input_queue.push("end")) | |
blk.launch(server_name=args.server,server_port=args.port,share=args.share,inbrowser=args.inbrowser) | |
if __name__ == "__main__": | |
ui() | |