Spaces:
Running
Running
File size: 13,017 Bytes
e36dbc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
# ==========================================================
# FILE: ghostpack.py
# ==========================================================
#!/usr/bin/env python3
# ---------------------------------------------------------------------------
# RELEASE – GhostPack Image-to-Video Generator
# ---------------------------------------------------------------------------
import os, sys, argparse, traceback
import numpy as np, torch, einops, gradio as gr
from PIL import Image
from diffusers_helper.hf_login import login
from diffusers import AutoencoderKLHunyuanVideo
from transformers import (
LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer,
SiglipImageProcessor, SiglipVisionModel,
)
from diffusers_helper.hunyuan import (
encode_prompt_conds, vae_encode, vae_decode, vae_decode_fake,
)
from diffusers_helper.utils import (
save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw,
resize_and_center_crop, generate_timestamp,
)
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import (
gpu, get_cuda_free_memory_gb, DynamicSwapInstaller,
unload_complete_models, load_model_as_complete,
fake_diffusers_current_device, move_model_to_device_with_memory_preservation,
offload_model_from_device_for_memory_preservation,
)
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
BASE = os.path.abspath(os.path.dirname(__file__))
CACHE = os.path.join(BASE, "hf_download")
os.makedirs(CACHE, exist_ok=True)
for v in ("HF_HOME", "TRANSFORMERS_CACHE", "HF_DATASETS_CACHE"): os.environ[v] = CACHE
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
p = argparse.ArgumentParser()
p.add_argument("--share", action="store_true")
p.add_argument("--server", default="0.0.0.0")
p.add_argument("--port", type=int, default=7860)
p.add_argument("--inbrowser", action="store_true")
args = p.parse_args()
free_gb = get_cuda_free_memory_gb(gpu)
hi_vram = free_gb > 60
print(f"[GhostPack] Free VRAM: {free_gb:.1f} GB | High-VRAM: {hi_vram}")
def llm(sub): return LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder=sub, torch_dtype=torch.float16).cpu().eval()
def clip(sub): return CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder=sub, torch_dtype=torch.float16).cpu().eval()
text_enc = llm("text_encoder")
text_enc2 = clip("text_encoder_2")
tok = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer")
tok2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer_2")
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="vae", torch_dtype=torch.float16).cpu().eval()
feat_ext = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder="feature_extractor")
img_enc = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder="image_encoder", torch_dtype=torch.float16).cpu().eval()
trans = HunyuanVideoTransformer3DModelPacked.from_pretrained("lllyasviel/FramePackI2V_HY", torch_dtype=torch.bfloat16).cpu().eval()
trans.high_quality_fp32_output_for_inference = True
if not hi_vram:
vae.enable_slicing(); vae.enable_tiling()
else:
for m in (text_enc, text_enc2, img_enc, vae, trans): m.to(gpu)
trans.to(dtype=torch.bfloat16)
for m in (vae, img_enc, text_enc, text_enc2): m.to(dtype=torch.float16)
for m in (vae, img_enc, text_enc, text_enc2, trans): m.requires_grad_(False)
if not hi_vram:
DynamicSwapInstaller.install_model(trans, device=gpu)
DynamicSwapInstaller.install_model(text_enc, device=gpu)
OUT = os.path.join(BASE, "outputs")
os.makedirs(OUT, exist_ok=True)
stream = AsyncStream()
@torch.no_grad()
def worker(img, p, n_p, sd, secs, win, stp, cfg, gsc, rsc, keep, tea, crf):
sections = max(round((secs*30)/(win*4)), 1)
job = generate_timestamp()
stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"Start"))))
try:
if not hi_vram: unload_complete_models(text_enc, text_enc2, img_enc, vae, trans)
stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"Text enc"))))
if not hi_vram:
fake_diffusers_current_device(text_enc, gpu)
load_model_as_complete(text_enc2, gpu)
lv, cp = encode_prompt_conds(p, text_enc, text_enc2, tok, tok2)
lv_n, cp_n = (torch.zeros_like(lv), torch.zeros_like(cp)) if cfg==1 else encode_prompt_conds(n_p, text_enc, text_enc2, tok, tok2)
lv, m = crop_or_pad_yield_mask(lv,512)
lv_n, m_n= crop_or_pad_yield_mask(lv_n,512)
stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"Image"))))
H,W,_ = img.shape; h,w = find_nearest_bucket(H,W,640)
img_np = resize_and_center_crop(img,w,h)
Image.fromarray(img_np).save(os.path.join(OUT,f"{job}.png"))
img_pt = torch.from_numpy(img_np).float()/127.5-1; img_pt = img_pt.permute(2,0,1)[None,:,None]
stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"VAE"))))
if not hi_vram: load_model_as_complete(vae, gpu)
start_lat = vae_encode(img_pt, vae)
stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"Vision"))))
if not hi_vram: load_model_as_complete(img_enc, gpu)
img_hidden = hf_clip_vision_encode(img_np, feat_ext, img_enc).last_hidden_state
to = trans.dtype
lv, lv_n, cp, cp_n, img_hidden = (x.to(to) for x in (lv, lv_n, cp, cp_n, img_hidden))
stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"Sample"))))
gen = torch.Generator("cpu").manual_seed(sd)
frames = win*4-3
hist_lat = torch.zeros((1,16,1+2+16,h//8,w//8), dtype=torch.float32).cpu()
hist_px=None; total=0
pad_seq=[3]+[2]*(sections-3)+[1,0] if sections>4 else list(reversed(range(sections)))
for pad in pad_seq:
last = pad==0
if stream.input_queue.top()=="end": stream.output_queue.push(("end",None)); return
pad_sz=pad*win
idx=torch.arange(0,sum([1,pad_sz,win,1,2,16])).unsqueeze(0)
a,b,c,d,e,f = idx.split([1,pad_sz,win,1,2,16],1)
clean_idx = torch.cat([a,d],1)
pre=start_lat.to(hist_lat); post,two,four=hist_lat[:,:,:1+2+16].split([1,2,16],2)
clean=torch.cat([pre,post],2)
if not hi_vram:
unload_complete_models()
move_model_to_device_with_memory_preservation(trans,gpu,keep)
trans.initialize_teacache(tea,stp)
def cb(d):
pv = vae_decode_fake(d["denoised"])
pv = (pv*255).cpu().numpy().clip(0,255).astype(np.uint8)
pv = einops.rearrange(pv,"b c t h w->(b h)(t w)c")
cur = d["i"]+1
stream.output_queue.push(("progress",(pv,f"{total*4-3}f",make_progress_bar_html(int(100*cur/stp),f"{cur}/{stp}"))))
if stream.input_queue.top()=="end":
stream.output_queue.push(("end",None)); raise KeyboardInterrupt
new_lat = sample_hunyuan(
transformer=trans,sampler="unipc",width=w,height=h,frames=frames,
real_guidance_scale=cfg,distilled_guidance_scale=gsc,guidance_rescale=rsc,
num_inference_steps=stp,generator=gen,
prompt_embeds=lv,prompt_embeds_mask=m,prompt_poolers=cp,
negative_prompt_embeds=lv_n,negative_prompt_embeds_mask=m_n,negative_prompt_poolers=cp_n,
device=gpu,dtype=torch.bfloat16,image_embeddings=img_hidden,
latent_indices=c,clean_latents=clean,clean_latent_indices=clean_idx,
clean_latents_2x=two,clean_latent_2x_indices=e,clean_latents_4x=four,clean_latent_4x_indices=f,
callback=cb,
)
if last: new_lat=torch.cat([start_lat.to(new_lat),new_lat],2)
total+=new_lat.shape[2]; hist_lat=torch.cat([new_lat.to(hist_lat),hist_lat],2)
if not hi_vram:
offload_model_from_device_for_memory_preservation(trans,gpu,8)
load_model_as_complete(vae,gpu)
real=hist_lat[:,:,:total]
if hist_px is None:
hist_px = vae_decode(real,vae).cpu()
else:
sec_lat=win*2+1 if last else win*2
cur_px = vae_decode(real[:,:,:sec_lat],vae).cpu()
hist_px = soft_append_bcthw(cur_px,hist_px,win*4-3)
if not hi_vram: unload_complete_models()
mp4=os.path.join(OUT,f"{job}_{total}.mp4")
save_bcthw_as_mp4(hist_px,mp4,fps=30,crf=crf)
stream.output_queue.push(("file",mp4))
if last: break
except Exception:
traceback.print_exc(); stream.output_queue.push(("end",None))
def ui():
css = make_progress_bar_css()+"""
body,.gradio-container,.gr-block{background:#121212;color:#eee}
.gr-button,.gr-button-primary{background:#006400;border:#006400}
.gr-button:hover,.gr-button-primary:hover{background:#00aa00;border:#00aa00}
input,textarea,.gr-input,.gr-textbox,.gr-slider,.gr-number{background:#1e1e1e;color:#eee;border-color:#006400}
"""
quick=[["The girl dances gracefully, with clear movements, full of charm."],
["A character doing some simple body movements."]]
blk=gr.Blocks(css=css).queue()
with blk:
gr.Markdown("# 👻 GhostPack Demo")
with gr.Row():
with gr.Column():
img=gr.Image(sources="upload",type="numpy",label="Image",height=320)
prm=gr.Textbox(label="Prompt")
ds=gr.Dataset(samples=quick,label="Quick List",components=[prm])
ds.click(lambda x:x[0],inputs=[ds],outputs=prm)
with gr.Row():
b_go=gr.Button("Start"); b_end=gr.Button("End",interactive=False)
with gr.Group():
tea=gr.Checkbox(label="Use TeaCache",value=True)
npr=gr.Textbox(label="Negative Prompt",visible=False)
se=gr.Number(label="Seed",value=31337,precision=0)
sec=gr.Slider(label="Video Length (s)",minimum=1,maximum=120,value=5,step=0.1)
win=gr.Slider(label="Latent Window",minimum=1,maximum=33,value=9,step=1,visible=False)
stp=gr.Slider(label="Steps",minimum=1,maximum=100,value=25,step=1)
cfg=gr.Slider(label="CFG",minimum=1,maximum=32,value=1,step=0.01,visible=False)
gsc=gr.Slider(label="Distilled CFG",minimum=1,maximum=32,value=10,step=0.01)
rsc=gr.Slider(label="CFG Re-Scale",minimum=0,maximum=1,value=0,step=0.01,visible=False)
kee=gr.Slider(label="GPU Keep (GB)",minimum=6,maximum=128,value=6,step=0.1)
crf=gr.Slider(label="MP4 CRF",minimum=0,maximum=100,value=16,step=1)
with gr.Column():
pv=gr.Image(label="Next Latents",height=200,visible=False,interactive=False)
vid=gr.Video(label="Finished",autoplay=True,height=512,loop=True,show_share_button=False)
gr.Markdown("Ending actions appear first; wait for start.")
dsc=gr.Markdown("")
bar=gr.HTML("")
log=gr.Markdown("")
inputs=[img,prm,npr,se,sec,win,stp,cfg,gsc,rsc,kee,tea,crf]
def launch(*xs):
global stream
if xs[0] is None: raise gr.Error("Upload an image.")
yield None,None,"","","",gr.update(interactive=False),gr.update(interactive=True)
stream=AsyncStream()
async_run(worker,*xs)
out=None; log=""
while True:
flag,data=stream.output_queue.next()
if flag=="file":
out=data
yield out,gr.update(),gr.update(),gr.update(),log,gr.update(interactive=False),gr.update(interactive=True)
if flag=="progress":
pv,desc,html=data; log=desc
yield gr.update(),gr.update(visible=True,value=pv),desc,html,log,gr.update(interactive=False),gr.update(interactive=True)
if flag=="end":
yield out,gr.update(visible=False),gr.update(),"",log,gr.update(interactive=True),gr.update(interactive=False); break
b_go.click(launch,inputs,[vid,pv,dsc,bar,log,b_go,b_end])
b_end.click(lambda: stream.input_queue.push("end"))
blk.launch(server_name=args.server,server_port=args.port,share=args.share,inbrowser=args.inbrowser)
if __name__ == "__main__":
ui()
|