Spaces:
Running
Running
Create ghostpack.py
Browse files- GhostPackDemo/ghostpack.py +232 -0
GhostPackDemo/ghostpack.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ==========================================================
|
2 |
+
# FILE: ghostpack.py
|
3 |
+
# ==========================================================
|
4 |
+
#!/usr/bin/env python3
|
5 |
+
# ---------------------------------------------------------------------------
|
6 |
+
# RELEASE – GhostPack Image-to-Video Generator
|
7 |
+
# ---------------------------------------------------------------------------
|
8 |
+
import os, sys, argparse, traceback
|
9 |
+
import numpy as np, torch, einops, gradio as gr
|
10 |
+
from PIL import Image
|
11 |
+
from diffusers_helper.hf_login import login
|
12 |
+
from diffusers import AutoencoderKLHunyuanVideo
|
13 |
+
from transformers import (
|
14 |
+
LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer,
|
15 |
+
SiglipImageProcessor, SiglipVisionModel,
|
16 |
+
)
|
17 |
+
from diffusers_helper.hunyuan import (
|
18 |
+
encode_prompt_conds, vae_encode, vae_decode, vae_decode_fake,
|
19 |
+
)
|
20 |
+
from diffusers_helper.utils import (
|
21 |
+
save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw,
|
22 |
+
resize_and_center_crop, generate_timestamp,
|
23 |
+
)
|
24 |
+
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
25 |
+
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
26 |
+
from diffusers_helper.memory import (
|
27 |
+
gpu, get_cuda_free_memory_gb, DynamicSwapInstaller,
|
28 |
+
unload_complete_models, load_model_as_complete,
|
29 |
+
fake_diffusers_current_device, move_model_to_device_with_memory_preservation,
|
30 |
+
offload_model_from_device_for_memory_preservation,
|
31 |
+
)
|
32 |
+
from diffusers_helper.thread_utils import AsyncStream, async_run
|
33 |
+
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
34 |
+
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
35 |
+
from diffusers_helper.bucket_tools import find_nearest_bucket
|
36 |
+
|
37 |
+
BASE = os.path.abspath(os.path.dirname(__file__))
|
38 |
+
CACHE = os.path.join(BASE, "hf_download")
|
39 |
+
os.makedirs(CACHE, exist_ok=True)
|
40 |
+
for v in ("HF_HOME", "TRANSFORMERS_CACHE", "HF_DATASETS_CACHE"): os.environ[v] = CACHE
|
41 |
+
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
|
42 |
+
|
43 |
+
p = argparse.ArgumentParser()
|
44 |
+
p.add_argument("--share", action="store_true")
|
45 |
+
p.add_argument("--server", default="0.0.0.0")
|
46 |
+
p.add_argument("--port", type=int, default=7860)
|
47 |
+
p.add_argument("--inbrowser", action="store_true")
|
48 |
+
args = p.parse_args()
|
49 |
+
|
50 |
+
free_gb = get_cuda_free_memory_gb(gpu)
|
51 |
+
hi_vram = free_gb > 60
|
52 |
+
print(f"[GhostPack] Free VRAM: {free_gb:.1f} GB | High-VRAM: {hi_vram}")
|
53 |
+
|
54 |
+
def llm(sub): return LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder=sub, torch_dtype=torch.float16).cpu().eval()
|
55 |
+
def clip(sub): return CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder=sub, torch_dtype=torch.float16).cpu().eval()
|
56 |
+
|
57 |
+
text_enc = llm("text_encoder")
|
58 |
+
text_enc2 = clip("text_encoder_2")
|
59 |
+
tok = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer")
|
60 |
+
tok2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer_2")
|
61 |
+
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="vae", torch_dtype=torch.float16).cpu().eval()
|
62 |
+
feat_ext = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder="feature_extractor")
|
63 |
+
img_enc = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder="image_encoder", torch_dtype=torch.float16).cpu().eval()
|
64 |
+
trans = HunyuanVideoTransformer3DModelPacked.from_pretrained("lllyasviel/FramePackI2V_HY", torch_dtype=torch.bfloat16).cpu().eval()
|
65 |
+
trans.high_quality_fp32_output_for_inference = True
|
66 |
+
|
67 |
+
if not hi_vram:
|
68 |
+
vae.enable_slicing(); vae.enable_tiling()
|
69 |
+
else:
|
70 |
+
for m in (text_enc, text_enc2, img_enc, vae, trans): m.to(gpu)
|
71 |
+
|
72 |
+
trans.to(dtype=torch.bfloat16)
|
73 |
+
for m in (vae, img_enc, text_enc, text_enc2): m.to(dtype=torch.float16)
|
74 |
+
for m in (vae, img_enc, text_enc, text_enc2, trans): m.requires_grad_(False)
|
75 |
+
|
76 |
+
if not hi_vram:
|
77 |
+
DynamicSwapInstaller.install_model(trans, device=gpu)
|
78 |
+
DynamicSwapInstaller.install_model(text_enc, device=gpu)
|
79 |
+
|
80 |
+
OUT = os.path.join(BASE, "outputs")
|
81 |
+
os.makedirs(OUT, exist_ok=True)
|
82 |
+
stream = AsyncStream()
|
83 |
+
|
84 |
+
@torch.no_grad()
|
85 |
+
def worker(img, p, n_p, sd, secs, win, stp, cfg, gsc, rsc, keep, tea, crf):
|
86 |
+
sections = max(round((secs*30)/(win*4)), 1)
|
87 |
+
job = generate_timestamp()
|
88 |
+
stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"Start"))))
|
89 |
+
try:
|
90 |
+
if not hi_vram: unload_complete_models(text_enc, text_enc2, img_enc, vae, trans)
|
91 |
+
stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"Text enc"))))
|
92 |
+
if not hi_vram:
|
93 |
+
fake_diffusers_current_device(text_enc, gpu)
|
94 |
+
load_model_as_complete(text_enc2, gpu)
|
95 |
+
lv, cp = encode_prompt_conds(p, text_enc, text_enc2, tok, tok2)
|
96 |
+
lv_n, cp_n = (torch.zeros_like(lv), torch.zeros_like(cp)) if cfg==1 else encode_prompt_conds(n_p, text_enc, text_enc2, tok, tok2)
|
97 |
+
lv, m = crop_or_pad_yield_mask(lv,512)
|
98 |
+
lv_n, m_n= crop_or_pad_yield_mask(lv_n,512)
|
99 |
+
stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"Image"))))
|
100 |
+
H,W,_ = img.shape; h,w = find_nearest_bucket(H,W,640)
|
101 |
+
img_np = resize_and_center_crop(img,w,h)
|
102 |
+
Image.fromarray(img_np).save(os.path.join(OUT,f"{job}.png"))
|
103 |
+
img_pt = torch.from_numpy(img_np).float()/127.5-1; img_pt = img_pt.permute(2,0,1)[None,:,None]
|
104 |
+
stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"VAE"))))
|
105 |
+
if not hi_vram: load_model_as_complete(vae, gpu)
|
106 |
+
start_lat = vae_encode(img_pt, vae)
|
107 |
+
stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"Vision"))))
|
108 |
+
if not hi_vram: load_model_as_complete(img_enc, gpu)
|
109 |
+
img_hidden = hf_clip_vision_encode(img_np, feat_ext, img_enc).last_hidden_state
|
110 |
+
to = trans.dtype
|
111 |
+
lv, lv_n, cp, cp_n, img_hidden = (x.to(to) for x in (lv, lv_n, cp, cp_n, img_hidden))
|
112 |
+
stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"Sample"))))
|
113 |
+
gen = torch.Generator("cpu").manual_seed(sd)
|
114 |
+
frames = win*4-3
|
115 |
+
hist_lat = torch.zeros((1,16,1+2+16,h//8,w//8), dtype=torch.float32).cpu()
|
116 |
+
hist_px=None; total=0
|
117 |
+
pad_seq=[3]+[2]*(sections-3)+[1,0] if sections>4 else list(reversed(range(sections)))
|
118 |
+
for pad in pad_seq:
|
119 |
+
last = pad==0
|
120 |
+
if stream.input_queue.top()=="end": stream.output_queue.push(("end",None)); return
|
121 |
+
pad_sz=pad*win
|
122 |
+
idx=torch.arange(0,sum([1,pad_sz,win,1,2,16])).unsqueeze(0)
|
123 |
+
a,b,c,d,e,f = idx.split([1,pad_sz,win,1,2,16],1)
|
124 |
+
clean_idx = torch.cat([a,d],1)
|
125 |
+
pre=start_lat.to(hist_lat); post,two,four=hist_lat[:,:,:1+2+16].split([1,2,16],2)
|
126 |
+
clean=torch.cat([pre,post],2)
|
127 |
+
if not hi_vram:
|
128 |
+
unload_complete_models()
|
129 |
+
move_model_to_device_with_memory_preservation(trans,gpu,keep)
|
130 |
+
trans.initialize_teacache(tea,stp)
|
131 |
+
def cb(d):
|
132 |
+
pv = vae_decode_fake(d["denoised"])
|
133 |
+
pv = (pv*255).cpu().numpy().clip(0,255).astype(np.uint8)
|
134 |
+
pv = einops.rearrange(pv,"b c t h w->(b h)(t w)c")
|
135 |
+
cur = d["i"]+1
|
136 |
+
stream.output_queue.push(("progress",(pv,f"{total*4-3}f",make_progress_bar_html(int(100*cur/stp),f"{cur}/{stp}"))))
|
137 |
+
if stream.input_queue.top()=="end":
|
138 |
+
stream.output_queue.push(("end",None)); raise KeyboardInterrupt
|
139 |
+
new_lat = sample_hunyuan(
|
140 |
+
transformer=trans,sampler="unipc",width=w,height=h,frames=frames,
|
141 |
+
real_guidance_scale=cfg,distilled_guidance_scale=gsc,guidance_rescale=rsc,
|
142 |
+
num_inference_steps=stp,generator=gen,
|
143 |
+
prompt_embeds=lv,prompt_embeds_mask=m,prompt_poolers=cp,
|
144 |
+
negative_prompt_embeds=lv_n,negative_prompt_embeds_mask=m_n,negative_prompt_poolers=cp_n,
|
145 |
+
device=gpu,dtype=torch.bfloat16,image_embeddings=img_hidden,
|
146 |
+
latent_indices=c,clean_latents=clean,clean_latent_indices=clean_idx,
|
147 |
+
clean_latents_2x=two,clean_latent_2x_indices=e,clean_latents_4x=four,clean_latent_4x_indices=f,
|
148 |
+
callback=cb,
|
149 |
+
)
|
150 |
+
if last: new_lat=torch.cat([start_lat.to(new_lat),new_lat],2)
|
151 |
+
total+=new_lat.shape[2]; hist_lat=torch.cat([new_lat.to(hist_lat),hist_lat],2)
|
152 |
+
if not hi_vram:
|
153 |
+
offload_model_from_device_for_memory_preservation(trans,gpu,8)
|
154 |
+
load_model_as_complete(vae,gpu)
|
155 |
+
real=hist_lat[:,:,:total]
|
156 |
+
if hist_px is None:
|
157 |
+
hist_px = vae_decode(real,vae).cpu()
|
158 |
+
else:
|
159 |
+
sec_lat=win*2+1 if last else win*2
|
160 |
+
cur_px = vae_decode(real[:,:,:sec_lat],vae).cpu()
|
161 |
+
hist_px = soft_append_bcthw(cur_px,hist_px,win*4-3)
|
162 |
+
if not hi_vram: unload_complete_models()
|
163 |
+
mp4=os.path.join(OUT,f"{job}_{total}.mp4")
|
164 |
+
save_bcthw_as_mp4(hist_px,mp4,fps=30,crf=crf)
|
165 |
+
stream.output_queue.push(("file",mp4))
|
166 |
+
if last: break
|
167 |
+
except Exception:
|
168 |
+
traceback.print_exc(); stream.output_queue.push(("end",None))
|
169 |
+
|
170 |
+
def ui():
|
171 |
+
css = make_progress_bar_css()+"""
|
172 |
+
body,.gradio-container,.gr-block{background:#121212;color:#eee}
|
173 |
+
.gr-button,.gr-button-primary{background:#006400;border:#006400}
|
174 |
+
.gr-button:hover,.gr-button-primary:hover{background:#00aa00;border:#00aa00}
|
175 |
+
input,textarea,.gr-input,.gr-textbox,.gr-slider,.gr-number{background:#1e1e1e;color:#eee;border-color:#006400}
|
176 |
+
"""
|
177 |
+
quick=[["The girl dances gracefully, with clear movements, full of charm."],
|
178 |
+
["A character doing some simple body movements."]]
|
179 |
+
blk=gr.Blocks(css=css).queue()
|
180 |
+
with blk:
|
181 |
+
gr.Markdown("# 👻 GhostPack Demo")
|
182 |
+
with gr.Row():
|
183 |
+
with gr.Column():
|
184 |
+
img=gr.Image(sources="upload",type="numpy",label="Image",height=320)
|
185 |
+
prm=gr.Textbox(label="Prompt")
|
186 |
+
ds=gr.Dataset(samples=quick,label="Quick List",components=[prm])
|
187 |
+
ds.click(lambda x:x[0],inputs=[ds],outputs=prm)
|
188 |
+
with gr.Row():
|
189 |
+
b_go=gr.Button("Start"); b_end=gr.Button("End",interactive=False)
|
190 |
+
with gr.Group():
|
191 |
+
tea=gr.Checkbox(label="Use TeaCache",value=True)
|
192 |
+
npr=gr.Textbox(label="Negative Prompt",visible=False)
|
193 |
+
se=gr.Number(label="Seed",value=31337,precision=0)
|
194 |
+
sec=gr.Slider(label="Video Length (s)",minimum=1,maximum=120,value=5,step=0.1)
|
195 |
+
win=gr.Slider(label="Latent Window",minimum=1,maximum=33,value=9,step=1,visible=False)
|
196 |
+
stp=gr.Slider(label="Steps",minimum=1,maximum=100,value=25,step=1)
|
197 |
+
cfg=gr.Slider(label="CFG",minimum=1,maximum=32,value=1,step=0.01,visible=False)
|
198 |
+
gsc=gr.Slider(label="Distilled CFG",minimum=1,maximum=32,value=10,step=0.01)
|
199 |
+
rsc=gr.Slider(label="CFG Re-Scale",minimum=0,maximum=1,value=0,step=0.01,visible=False)
|
200 |
+
kee=gr.Slider(label="GPU Keep (GB)",minimum=6,maximum=128,value=6,step=0.1)
|
201 |
+
crf=gr.Slider(label="MP4 CRF",minimum=0,maximum=100,value=16,step=1)
|
202 |
+
with gr.Column():
|
203 |
+
pv=gr.Image(label="Next Latents",height=200,visible=False,interactive=False)
|
204 |
+
vid=gr.Video(label="Finished",autoplay=True,height=512,loop=True,show_share_button=False)
|
205 |
+
gr.Markdown("Ending actions appear first; wait for start.")
|
206 |
+
dsc=gr.Markdown("")
|
207 |
+
bar=gr.HTML("")
|
208 |
+
log=gr.Markdown("")
|
209 |
+
inputs=[img,prm,npr,se,sec,win,stp,cfg,gsc,rsc,kee,tea,crf]
|
210 |
+
def launch(*xs):
|
211 |
+
global stream
|
212 |
+
if xs[0] is None: raise gr.Error("Upload an image.")
|
213 |
+
yield None,None,"","","",gr.update(interactive=False),gr.update(interactive=True)
|
214 |
+
stream=AsyncStream()
|
215 |
+
async_run(worker,*xs)
|
216 |
+
out=None; log=""
|
217 |
+
while True:
|
218 |
+
flag,data=stream.output_queue.next()
|
219 |
+
if flag=="file":
|
220 |
+
out=data
|
221 |
+
yield out,gr.update(),gr.update(),gr.update(),log,gr.update(interactive=False),gr.update(interactive=True)
|
222 |
+
if flag=="progress":
|
223 |
+
pv,desc,html=data; log=desc
|
224 |
+
yield gr.update(),gr.update(visible=True,value=pv),desc,html,log,gr.update(interactive=False),gr.update(interactive=True)
|
225 |
+
if flag=="end":
|
226 |
+
yield out,gr.update(visible=False),gr.update(),"",log,gr.update(interactive=True),gr.update(interactive=False); break
|
227 |
+
b_go.click(launch,inputs,[vid,pv,dsc,bar,log,b_go,b_end])
|
228 |
+
b_end.click(lambda: stream.input_queue.push("end"))
|
229 |
+
blk.launch(server_name=args.server,server_port=args.port,share=args.share,inbrowser=args.inbrowser)
|
230 |
+
|
231 |
+
if __name__ == "__main__":
|
232 |
+
ui()
|