MOSS-TTSD / modeling_asteroid.py
yhzx233's picture
feat: app.py
ea174b0
import torch
import torch.nn as nn
from dataclasses import dataclass
from transformers.utils import ModelOutput
from transformers.cache_utils import Cache
from typing import Optional, List, Tuple, Union
from transformers.loss.loss_utils import ForCausalLMLoss
from transformers.generation.streamers import BaseStreamer
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.generation.configuration_utils import GenerationConfig
from transformers.generation.stopping_criteria import StoppingCriteriaList
from transformers import PreTrainedModel, GenerationMixin, Qwen3Config, Qwen3Model
from transformers.generation.logits_process import LogitsProcessorList, RepetitionPenaltyLogitsProcessor, TopKLogitsWarper, TopPLogitsWarper, TemperatureLogitsWarper
class AsteroidTTSConfig(Qwen3Config):
def __init__(self,
channels = 8,
speech_pad_token = 1024,
speech_vocab_size = 1025,
speech_token_range = [],
**kwargs):
super().__init__(**kwargs)
self.channels = channels
self.speech_pad_token = speech_pad_token
self.speech_vocab_size = speech_vocab_size
self.speech_token_range = speech_token_range
@dataclass
class AsteroidTTSOutputWithPast(ModelOutput):
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
loss_all: Optional[Tuple[torch.FloatTensor]] = None
logits_all: Optional[Tuple[torch.FloatTensor]] = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class GenerateDecoderOnlyOutput(ModelOutput):
sequences: torch.LongTensor = None
scores: Optional[Tuple[torch.FloatTensor]] = None
logits: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
class CustomMixin(GenerationMixin):
def _sample(
self,
input_ids: torch.LongTensor,
logits_processor: LogitsProcessorList,
stopping_criteria: StoppingCriteriaList,
generation_config: GenerationConfig,
synced_gpus: bool,
streamer: Optional["BaseStreamer"],
**model_kwargs,
) -> Union[GenerateDecoderOnlyOutput, torch.LongTensor]:
# 提取配置参数
speech_pad_idx = self.config.speech_pad_token
eos_token_id = generation_config.eos_token_id
output_attentions = generation_config.output_attentions
output_hidden_states = generation_config.output_hidden_states
output_scores = generation_config.output_scores
output_logits = generation_config.output_logits
return_dict_in_generate = generation_config.return_dict_in_generate
max_length = generation_config.max_length
has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria)
do_sample = generation_config.do_sample
# 初始化输出元组
scores = () if (return_dict_in_generate and output_scores) else None
raw_logits = () if (return_dict_in_generate and output_logits) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# 初始化跟踪变量
batch_size, cur_len, channels = input_ids.shape # channels = 8
this_peer_finished = False
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
needs_additional_steps = -1 * torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
tf_inputs = input_ids[:]
input_ids = input_ids[:, :-(channels - 1)]
model_kwargs["attention_mask"] = model_kwargs["attention_mask"][:, :-(channels - 1)]
base_length = input_ids.shape[1]
model_kwargs = self._get_initial_cache_position(cur_len, input_ids.device, model_kwargs)
# 定义logits processor
if generation_config.do_samples is not None:
do_samples = generation_config.do_samples
realprocessor = [LogitsProcessorList() for _ in range(channels)]
for i, layer_config in enumerate(generation_config.layers):
if layer_config.get("repetition_penalty") is not None:
realprocessor[i].append(RepetitionPenaltyLogitsProcessor(penalty=layer_config.get("repetition_penalty")))
if layer_config.get("temperature") is not None:
realprocessor[i].append(TemperatureLogitsWarper(temperature=layer_config.get("temperature")))
if layer_config.get("top_k") is not None:
realprocessor[i].append(TopKLogitsWarper(top_k=layer_config.get("top_k")))
if layer_config.get("top_p") is not None:
realprocessor[i].append(TopPLogitsWarper(top_p=layer_config.get("top_p")))
else:
do_samples = [do_sample for _ in range(channels)]
realprocessor = [logits_processor for _ in range(channels)]
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
# 准备模型输入
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
model_inputs.update({"output_attentions": output_attentions} if output_attentions else {})
model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {})
# 前向传递
outputs = self(**model_inputs, return_dict=True)
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
if synced_gpus and this_peer_finished:
continue
# 获取下一个 token 的 logits
next_token_logits = [logits[:, -1, :].clone().float().to(input_ids.device) for logits in outputs.logits_all]
for i, channel_logits in enumerate(next_token_logits):
if i != 0 and input_ids.shape[1] + 1 > tf_inputs.shape[1] - 7 + i:
channel_logits[:, 1024] = - torch.inf
if i == 0 and input_ids.shape[1] + 1 <= tf_inputs.shape[1]:
channel_logits[:, 152694] = - torch.inf
next_token_scores = [realprocessor[i](input_ids[..., i], logits) for i, logits in enumerate(next_token_logits)]
# 生成下一个 token
next_tokens = []
for i, channel_score in enumerate(next_token_scores):
if do_samples[i]:
channel_ntk = torch.multinomial(nn.functional.softmax(channel_score, dim=-1), num_samples=1).squeeze(1)
elif not do_samples[i]:
channel_ntk = torch.argmax(channel_score, dim=-1)
next_tokens.append(channel_ntk)
next_tokens = torch.stack(next_tokens, dim=-1) # [batch_size, channels]
# 额外步骤逻辑
indices = (~self.is_speech_token(next_tokens[:, 0])) & (needs_additional_steps < 0)
needs_additional_steps[indices] = channels - 1 # 对于 8 个通道,需要 6 步
if input_ids.shape[1] + 1 <= tf_inputs.shape[1]:
i = input_ids.shape[1] + 1 - base_length
next_tokens[:, i:] = tf_inputs[:, input_ids.shape[1], i:]
# 在额外步骤中替换 token
mask = (needs_additional_steps > 0) & (needs_additional_steps < 7)
if mask.any().item():
next_tokens[mask, 0] = self.config.eos_token_id
for i in range(1, channels):
mask_i = mask & (needs_additional_steps < channels - i)
next_tokens[mask_i, i] = speech_pad_idx
if has_eos_stopping_criteria:
for i in range(channels):
pddp = self.config.eos_token_id if i == 0 else speech_pad_idx
next_tokens[:, i] = next_tokens[:, i] * unfinished_sequences + pddp * (1 - unfinished_sequences)
input_ids = torch.cat([input_ids, next_tokens[:, None, :]], dim=1)
if streamer is not None:
streamer.put(next_tokens[:, 0].cpu())
# 更新 unfinished_sequences
needs_additional_steps = torch.where(needs_additional_steps > 0, needs_additional_steps - 1, needs_additional_steps)
stopping = stopping_criteria(input_ids[..., 0], scores) | (needs_additional_steps == 0)
unfinished_sequences = unfinished_sequences & ~stopping
unfinished_sequences = unfinished_sequences | (needs_additional_steps > 0)
this_peer_finished = unfinished_sequences.max() == 0
if return_dict_in_generate:
if output_scores:
scores += (next_token_scores,)
if output_logits:
raw_logits += (next_token_logits,)
if output_attentions:
decoder_attentions += (outputs.attentions,)
if output_hidden_states:
decoder_hidden_states += (outputs.hidden_states,)
cur_len += 1
del outputs
if streamer is not None:
streamer.end()
if return_dict_in_generate:
return GenerateDecoderOnlyOutput(
sequences=input_ids,
scores=scores,
logits=raw_logits,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return input_ids
class AsteroidTTSPretrainedModel(PreTrainedModel):
config_class = AsteroidTTSConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Qwen3DecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
class AsteroidTTSModel(AsteroidTTSPretrainedModel):
def __init__(self, config: AsteroidTTSConfig):
super().__init__(config)
self.text_pad_idx = config.pad_token_id
self.speech_pad_idx = config.speech_pad_token
self.embedding_list = nn.ModuleList([])
self.embedding_list.append(nn.Embedding(config.vocab_size, config.hidden_size, self.text_pad_idx))
# Channels 1 to channels-1: Speech tokens only
for _ in range(1, config.channels):
self.embedding_list.append(nn.Embedding(config.speech_vocab_size, config.hidden_size, self.speech_pad_idx))
self.language_model = Qwen3Model(config)
self.post_init()
def get_input_embeddings(self):
return self.embedding_list[0]
def set_input_embeddings(self, value: nn.Embedding):
self.embedding_list[0] = value
def _prepare_multi_modal_inputs(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
"""
Prepares multi-modal embeddings from input_ids of shape (batch_size, channels, sequence_length).
For channel 0: text + speech tokens, for channels 1 to channels-1: speech tokens padded with speech_pad_token.
"""
batch_size, seq_length, channels = input_ids.shape
if channels != self.config.channels:
raise ValueError(f"Expected {self.config.channels} channels, got {channels}")
inputs_embeds = torch.zeros(batch_size, seq_length, self.config.hidden_size, device=input_ids.device, dtype=self.embedding_list[0].weight.dtype)
for i in range(channels):
embed_layer = self.embedding_list[i]
channel_input = input_ids[...,i]
inputs_embeds += embed_layer(channel_input)
return inputs_embeds
def forward(
self,
input_ids: torch.LongTensor = None, # Shape: (batch_size, channels, sequence_length)
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Union[Tuple, BaseModelOutputWithPast]:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if input_ids is not None:
inputs_embeds = self._prepare_multi_modal_inputs(input_ids)
outputs = self.language_model(
input_ids=None,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
return outputs
class AsteroidTTSInstruct(AsteroidTTSPretrainedModel, CustomMixin):
_tied_weights_keys = []
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config: AsteroidTTSConfig):
super().__init__(config)
self.model = AsteroidTTSModel(config)
self.channels = config.channels
self.weights = [1 for _ in range(self.channels)]
self._tied_weights_keys = [f"lm_heads.{i}.weight" for i in range(self.channels)]
self.vocab_size = config.vocab_size
self.lm_heads = nn.ModuleList([])
self.lm_heads.append(nn.Linear(config.hidden_size, config.vocab_size, bias=False))
for _ in range(1, config.channels):
self.lm_heads.append(nn.Linear(config.hidden_size, config.speech_vocab_size, bias=False))
self.post_init()
def get_input_embeddings(self):
return self.model.embedding_list[0]
def can_generate(self):
return True
def is_speech_token(self, tokens):
return (tokens >= self.config.speech_token_range[0]) & (tokens < self.config.speech_token_range[1])
def tie_weights(self):
for i in range(self.config.channels):
self._tie_or_clone_weights(self.lm_heads[i], self.model.embedding_list[i])
def set_input_embeddings(self, value):
self.model.embedding_list[0] = value
def get_output_embeddings(self):
return self.lm_heads[0]
def set_output_embeddings(self, new_embeddings):
self.lm_heads[0] = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def set_weights(self, weights):
self.weights = weights
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Union[Tuple, AsteroidTTSOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs[0]
logits_all = [lm_head(hidden_states) for lm_head in self.lm_heads]
loss_all = torch.empty(self.channels, device=input_ids.device if not input_ids is None else inputs_embeds.device)
if labels is not None:
for i in range(self.config.channels):
vocab_size = self.config.vocab_size if i == 0 else self.config.speech_vocab_size
loss_all[i] = ForCausalLMLoss(logits_all[i], labels[..., i], vocab_size)
# total_weight = sum(self.weights)
# normalized_weights = [w / total_weight for w in self.weights]
normalized_weights = self.weights
total_loss = 0
for w, loss in zip(normalized_weights, loss_all):
total_loss += w * loss
if not return_dict:
output = (logits_all,) + outputs[1:]
return (total_loss, loss_all, ) + output if loss is not None else output
return AsteroidTTSOutputWithPast(
loss=total_loss,
logits=logits_all[0],
loss_all=loss_all,
logits_all=logits_all,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)