File size: 18,391 Bytes
ea174b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
import torch
import torch.nn as nn
from dataclasses import dataclass
from transformers.utils import ModelOutput
from transformers.cache_utils import Cache
from typing import Optional, List, Tuple, Union
from transformers.loss.loss_utils import ForCausalLMLoss
from transformers.generation.streamers import BaseStreamer
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.generation.configuration_utils import GenerationConfig
from transformers.generation.stopping_criteria import StoppingCriteriaList
from transformers import PreTrainedModel, GenerationMixin, Qwen3Config, Qwen3Model
from transformers.generation.logits_process import LogitsProcessorList, RepetitionPenaltyLogitsProcessor, TopKLogitsWarper, TopPLogitsWarper, TemperatureLogitsWarper
class AsteroidTTSConfig(Qwen3Config):
def __init__(self,
channels = 8,
speech_pad_token = 1024,
speech_vocab_size = 1025,
speech_token_range = [],
**kwargs):
super().__init__(**kwargs)
self.channels = channels
self.speech_pad_token = speech_pad_token
self.speech_vocab_size = speech_vocab_size
self.speech_token_range = speech_token_range
@dataclass
class AsteroidTTSOutputWithPast(ModelOutput):
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
loss_all: Optional[Tuple[torch.FloatTensor]] = None
logits_all: Optional[Tuple[torch.FloatTensor]] = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class GenerateDecoderOnlyOutput(ModelOutput):
sequences: torch.LongTensor = None
scores: Optional[Tuple[torch.FloatTensor]] = None
logits: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
class CustomMixin(GenerationMixin):
def _sample(
self,
input_ids: torch.LongTensor,
logits_processor: LogitsProcessorList,
stopping_criteria: StoppingCriteriaList,
generation_config: GenerationConfig,
synced_gpus: bool,
streamer: Optional["BaseStreamer"],
**model_kwargs,
) -> Union[GenerateDecoderOnlyOutput, torch.LongTensor]:
# 提取配置参数
speech_pad_idx = self.config.speech_pad_token
eos_token_id = generation_config.eos_token_id
output_attentions = generation_config.output_attentions
output_hidden_states = generation_config.output_hidden_states
output_scores = generation_config.output_scores
output_logits = generation_config.output_logits
return_dict_in_generate = generation_config.return_dict_in_generate
max_length = generation_config.max_length
has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria)
do_sample = generation_config.do_sample
# 初始化输出元组
scores = () if (return_dict_in_generate and output_scores) else None
raw_logits = () if (return_dict_in_generate and output_logits) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# 初始化跟踪变量
batch_size, cur_len, channels = input_ids.shape # channels = 8
this_peer_finished = False
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
needs_additional_steps = -1 * torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
tf_inputs = input_ids[:]
input_ids = input_ids[:, :-(channels - 1)]
model_kwargs["attention_mask"] = model_kwargs["attention_mask"][:, :-(channels - 1)]
base_length = input_ids.shape[1]
model_kwargs = self._get_initial_cache_position(cur_len, input_ids.device, model_kwargs)
# 定义logits processor
if generation_config.do_samples is not None:
do_samples = generation_config.do_samples
realprocessor = [LogitsProcessorList() for _ in range(channels)]
for i, layer_config in enumerate(generation_config.layers):
if layer_config.get("repetition_penalty") is not None:
realprocessor[i].append(RepetitionPenaltyLogitsProcessor(penalty=layer_config.get("repetition_penalty")))
if layer_config.get("temperature") is not None:
realprocessor[i].append(TemperatureLogitsWarper(temperature=layer_config.get("temperature")))
if layer_config.get("top_k") is not None:
realprocessor[i].append(TopKLogitsWarper(top_k=layer_config.get("top_k")))
if layer_config.get("top_p") is not None:
realprocessor[i].append(TopPLogitsWarper(top_p=layer_config.get("top_p")))
else:
do_samples = [do_sample for _ in range(channels)]
realprocessor = [logits_processor for _ in range(channels)]
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
# 准备模型输入
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
model_inputs.update({"output_attentions": output_attentions} if output_attentions else {})
model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {})
# 前向传递
outputs = self(**model_inputs, return_dict=True)
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
if synced_gpus and this_peer_finished:
continue
# 获取下一个 token 的 logits
next_token_logits = [logits[:, -1, :].clone().float().to(input_ids.device) for logits in outputs.logits_all]
for i, channel_logits in enumerate(next_token_logits):
if i != 0 and input_ids.shape[1] + 1 > tf_inputs.shape[1] - 7 + i:
channel_logits[:, 1024] = - torch.inf
if i == 0 and input_ids.shape[1] + 1 <= tf_inputs.shape[1]:
channel_logits[:, 152694] = - torch.inf
next_token_scores = [realprocessor[i](input_ids[..., i], logits) for i, logits in enumerate(next_token_logits)]
# 生成下一个 token
next_tokens = []
for i, channel_score in enumerate(next_token_scores):
if do_samples[i]:
channel_ntk = torch.multinomial(nn.functional.softmax(channel_score, dim=-1), num_samples=1).squeeze(1)
elif not do_samples[i]:
channel_ntk = torch.argmax(channel_score, dim=-1)
next_tokens.append(channel_ntk)
next_tokens = torch.stack(next_tokens, dim=-1) # [batch_size, channels]
# 额外步骤逻辑
indices = (~self.is_speech_token(next_tokens[:, 0])) & (needs_additional_steps < 0)
needs_additional_steps[indices] = channels - 1 # 对于 8 个通道,需要 6 步
if input_ids.shape[1] + 1 <= tf_inputs.shape[1]:
i = input_ids.shape[1] + 1 - base_length
next_tokens[:, i:] = tf_inputs[:, input_ids.shape[1], i:]
# 在额外步骤中替换 token
mask = (needs_additional_steps > 0) & (needs_additional_steps < 7)
if mask.any().item():
next_tokens[mask, 0] = self.config.eos_token_id
for i in range(1, channels):
mask_i = mask & (needs_additional_steps < channels - i)
next_tokens[mask_i, i] = speech_pad_idx
if has_eos_stopping_criteria:
for i in range(channels):
pddp = self.config.eos_token_id if i == 0 else speech_pad_idx
next_tokens[:, i] = next_tokens[:, i] * unfinished_sequences + pddp * (1 - unfinished_sequences)
input_ids = torch.cat([input_ids, next_tokens[:, None, :]], dim=1)
if streamer is not None:
streamer.put(next_tokens[:, 0].cpu())
# 更新 unfinished_sequences
needs_additional_steps = torch.where(needs_additional_steps > 0, needs_additional_steps - 1, needs_additional_steps)
stopping = stopping_criteria(input_ids[..., 0], scores) | (needs_additional_steps == 0)
unfinished_sequences = unfinished_sequences & ~stopping
unfinished_sequences = unfinished_sequences | (needs_additional_steps > 0)
this_peer_finished = unfinished_sequences.max() == 0
if return_dict_in_generate:
if output_scores:
scores += (next_token_scores,)
if output_logits:
raw_logits += (next_token_logits,)
if output_attentions:
decoder_attentions += (outputs.attentions,)
if output_hidden_states:
decoder_hidden_states += (outputs.hidden_states,)
cur_len += 1
del outputs
if streamer is not None:
streamer.end()
if return_dict_in_generate:
return GenerateDecoderOnlyOutput(
sequences=input_ids,
scores=scores,
logits=raw_logits,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return input_ids
class AsteroidTTSPretrainedModel(PreTrainedModel):
config_class = AsteroidTTSConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Qwen3DecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
class AsteroidTTSModel(AsteroidTTSPretrainedModel):
def __init__(self, config: AsteroidTTSConfig):
super().__init__(config)
self.text_pad_idx = config.pad_token_id
self.speech_pad_idx = config.speech_pad_token
self.embedding_list = nn.ModuleList([])
self.embedding_list.append(nn.Embedding(config.vocab_size, config.hidden_size, self.text_pad_idx))
# Channels 1 to channels-1: Speech tokens only
for _ in range(1, config.channels):
self.embedding_list.append(nn.Embedding(config.speech_vocab_size, config.hidden_size, self.speech_pad_idx))
self.language_model = Qwen3Model(config)
self.post_init()
def get_input_embeddings(self):
return self.embedding_list[0]
def set_input_embeddings(self, value: nn.Embedding):
self.embedding_list[0] = value
def _prepare_multi_modal_inputs(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
"""
Prepares multi-modal embeddings from input_ids of shape (batch_size, channels, sequence_length).
For channel 0: text + speech tokens, for channels 1 to channels-1: speech tokens padded with speech_pad_token.
"""
batch_size, seq_length, channels = input_ids.shape
if channels != self.config.channels:
raise ValueError(f"Expected {self.config.channels} channels, got {channels}")
inputs_embeds = torch.zeros(batch_size, seq_length, self.config.hidden_size, device=input_ids.device, dtype=self.embedding_list[0].weight.dtype)
for i in range(channels):
embed_layer = self.embedding_list[i]
channel_input = input_ids[...,i]
inputs_embeds += embed_layer(channel_input)
return inputs_embeds
def forward(
self,
input_ids: torch.LongTensor = None, # Shape: (batch_size, channels, sequence_length)
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Union[Tuple, BaseModelOutputWithPast]:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if input_ids is not None:
inputs_embeds = self._prepare_multi_modal_inputs(input_ids)
outputs = self.language_model(
input_ids=None,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
return outputs
class AsteroidTTSInstruct(AsteroidTTSPretrainedModel, CustomMixin):
_tied_weights_keys = []
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config: AsteroidTTSConfig):
super().__init__(config)
self.model = AsteroidTTSModel(config)
self.channels = config.channels
self.weights = [1 for _ in range(self.channels)]
self._tied_weights_keys = [f"lm_heads.{i}.weight" for i in range(self.channels)]
self.vocab_size = config.vocab_size
self.lm_heads = nn.ModuleList([])
self.lm_heads.append(nn.Linear(config.hidden_size, config.vocab_size, bias=False))
for _ in range(1, config.channels):
self.lm_heads.append(nn.Linear(config.hidden_size, config.speech_vocab_size, bias=False))
self.post_init()
def get_input_embeddings(self):
return self.model.embedding_list[0]
def can_generate(self):
return True
def is_speech_token(self, tokens):
return (tokens >= self.config.speech_token_range[0]) & (tokens < self.config.speech_token_range[1])
def tie_weights(self):
for i in range(self.config.channels):
self._tie_or_clone_weights(self.lm_heads[i], self.model.embedding_list[i])
def set_input_embeddings(self, value):
self.model.embedding_list[0] = value
def get_output_embeddings(self):
return self.lm_heads[0]
def set_output_embeddings(self, new_embeddings):
self.lm_heads[0] = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def set_weights(self, weights):
self.weights = weights
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Union[Tuple, AsteroidTTSOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs[0]
logits_all = [lm_head(hidden_states) for lm_head in self.lm_heads]
loss_all = torch.empty(self.channels, device=input_ids.device if not input_ids is None else inputs_embeds.device)
if labels is not None:
for i in range(self.config.channels):
vocab_size = self.config.vocab_size if i == 0 else self.config.speech_vocab_size
loss_all[i] = ForCausalLMLoss(logits_all[i], labels[..., i], vocab_size)
# total_weight = sum(self.weights)
# normalized_weights = [w / total_weight for w in self.weights]
normalized_weights = self.weights
total_loss = 0
for w, loss in zip(normalized_weights, loss_all):
total_loss += w * loss
if not return_dict:
output = (logits_all,) + outputs[1:]
return (total_loss, loss_all, ) + output if loss is not None else output
return AsteroidTTSOutputWithPast(
loss=total_loss,
logits=logits_all[0],
loss_all=loss_all,
logits_all=logits_all,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
) |