feat: app.py
Browse files- XY_Tokenizer/.gitignore +193 -0
- XY_Tokenizer/README.md +72 -0
- XY_Tokenizer/config/xy_tokenizer_config.yaml +122 -0
- XY_Tokenizer/inference.py +71 -0
- XY_Tokenizer/requirements.txt +23 -0
- XY_Tokenizer/utils/helpers.py +117 -0
- XY_Tokenizer/xy_tokenizer/model.py +279 -0
- XY_Tokenizer/xy_tokenizer/nn/feature_extractor.py +237 -0
- XY_Tokenizer/xy_tokenizer/nn/modules.py +1480 -0
- XY_Tokenizer/xy_tokenizer/nn/quantizer.py +370 -0
- app.py +492 -4
- generation_utils.py +452 -0
- modeling_asteroid.py +399 -0
- requirements.txt +16 -0
XY_Tokenizer/.gitignore
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
pip-wheel-metadata/
|
24 |
+
share/python-wheels/
|
25 |
+
*.egg-info/
|
26 |
+
.installed.cfg
|
27 |
+
*.egg
|
28 |
+
MANIFEST
|
29 |
+
|
30 |
+
# PyInstaller
|
31 |
+
# Usually these files are written by a python script from a template
|
32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
33 |
+
*.manifest
|
34 |
+
*.spec
|
35 |
+
|
36 |
+
# Installer logs
|
37 |
+
pip-log.txt
|
38 |
+
pip-delete-this-directory.txt
|
39 |
+
|
40 |
+
# Unit test / coverage reports
|
41 |
+
htmlcov/
|
42 |
+
.tox/
|
43 |
+
.nox/
|
44 |
+
.coverage
|
45 |
+
.coverage.*
|
46 |
+
.cache
|
47 |
+
nosetests.xml
|
48 |
+
coverage.xml
|
49 |
+
*.cover
|
50 |
+
*.py,cover
|
51 |
+
.hypothesis/
|
52 |
+
.pytest_cache/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
target/
|
76 |
+
|
77 |
+
# Jupyter Notebook
|
78 |
+
.ipynb_checkpoints
|
79 |
+
|
80 |
+
# IPython
|
81 |
+
profile_default/
|
82 |
+
ipython_config.py
|
83 |
+
|
84 |
+
# pyenv
|
85 |
+
.python-version
|
86 |
+
|
87 |
+
# pipenv
|
88 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
89 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
90 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
91 |
+
# install all needed dependencies.
|
92 |
+
#Pipfile.lock
|
93 |
+
|
94 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
95 |
+
__pypackages__/
|
96 |
+
|
97 |
+
# Celery stuff
|
98 |
+
celerybeat-schedule
|
99 |
+
celerybeat.pid
|
100 |
+
|
101 |
+
# SageMath parsed files
|
102 |
+
*.sage.py
|
103 |
+
|
104 |
+
# Environments
|
105 |
+
.env
|
106 |
+
.venv
|
107 |
+
env/
|
108 |
+
venv/
|
109 |
+
ENV/
|
110 |
+
env.bak/
|
111 |
+
venv.bak/
|
112 |
+
|
113 |
+
# Spyder project settings
|
114 |
+
.spyderproject
|
115 |
+
.spyproject
|
116 |
+
|
117 |
+
# Rope project settings
|
118 |
+
.ropeproject
|
119 |
+
|
120 |
+
# mkdocs documentation
|
121 |
+
/site
|
122 |
+
|
123 |
+
# mypy
|
124 |
+
.mypy_cache/
|
125 |
+
.dmypy.json
|
126 |
+
dmypy.json
|
127 |
+
__pycache__/
|
128 |
+
|
129 |
+
# Pyre type checker
|
130 |
+
.pyre/
|
131 |
+
|
132 |
+
# windows folder
|
133 |
+
*.ini
|
134 |
+
|
135 |
+
# models
|
136 |
+
*.pkl
|
137 |
+
|
138 |
+
*.wav
|
139 |
+
*.flac
|
140 |
+
*.mp3
|
141 |
+
|
142 |
+
# others
|
143 |
+
temp/
|
144 |
+
|
145 |
+
exp/
|
146 |
+
|
147 |
+
slurmlogs/
|
148 |
+
slurmlogs_*/
|
149 |
+
|
150 |
+
dev/
|
151 |
+
.vscode/
|
152 |
+
|
153 |
+
config/debug
|
154 |
+
.vscode/
|
155 |
+
|
156 |
+
|
157 |
+
submit_debug*
|
158 |
+
|
159 |
+
random_rep_for_v2.13
|
160 |
+
|
161 |
+
exp_eval
|
162 |
+
|
163 |
+
data/**/*.txt
|
164 |
+
|
165 |
+
tokenize_data/tokenize_result/
|
166 |
+
|
167 |
+
|
168 |
+
*.png
|
169 |
+
|
170 |
+
reconstruct_evaluation_backup/
|
171 |
+
|
172 |
+
semantic_evaluation/scripts/en
|
173 |
+
|
174 |
+
reconstruct_evaluation/scripts
|
175 |
+
|
176 |
+
*.jsonl
|
177 |
+
*.json
|
178 |
+
scripts/debug
|
179 |
+
|
180 |
+
*.hostfile
|
181 |
+
.deepspeed_env
|
182 |
+
|
183 |
+
*.idx
|
184 |
+
|
185 |
+
backup*
|
186 |
+
|
187 |
+
*.ckpt
|
188 |
+
|
189 |
+
# Project specific
|
190 |
+
output_wavs/
|
191 |
+
*.pt
|
192 |
+
*.pth
|
193 |
+
output.log
|
XY_Tokenizer/README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# XY Tokenizer
|
2 |
+
|
3 |
+
XY Tokenizer is a speech codec that simultaneously models both semantic and acoustic aspects of speech, converting audio into discrete tokens and decoding them back to high-quality audio. It achieves efficient speech representation at only 1kbps with RVQ8 quantization at 12.5Hz frame rate.
|
4 |
+
|
5 |
+
## Features
|
6 |
+
|
7 |
+
- **Dual-channel modeling**: Simultaneously captures semantic meaning and acoustic details
|
8 |
+
- **Efficient representation**: 1kbps bitrate with RVQ8 quantization at 12.5Hz
|
9 |
+
- **High-quality audio tokenization**: Convert speech to discrete tokens and back with minimal quality loss
|
10 |
+
- **Long audio support**: Process audio files longer than 30 seconds using chunking with overlap
|
11 |
+
- **Batch processing**: Efficiently process multiple audio files in batches
|
12 |
+
- **24kHz output**: Generate high-quality 24kHz audio output
|
13 |
+
|
14 |
+
## Installation
|
15 |
+
|
16 |
+
```bash
|
17 |
+
# Create and activate conda environment
|
18 |
+
conda create -n xy_tokenizer python=3.10 -y && conda activate xy_tokenizer
|
19 |
+
|
20 |
+
# Install dependencies
|
21 |
+
pip install -r requirements.txt
|
22 |
+
```
|
23 |
+
|
24 |
+
## Usage
|
25 |
+
|
26 |
+
### Basic Inference
|
27 |
+
|
28 |
+
To tokenize audio files and reconstruct them:
|
29 |
+
|
30 |
+
```bash
|
31 |
+
python inference.py \
|
32 |
+
--config_path ./config/xy_tokenizer_config.yaml \
|
33 |
+
--checkpoint_path ./weights/xy_tokenizer.ckpt \
|
34 |
+
--input_dir ./input_wavs/ \
|
35 |
+
--output_dir ./output_wavs/
|
36 |
+
```
|
37 |
+
|
38 |
+
### Parameters
|
39 |
+
|
40 |
+
- `--config_path`: Path to the model configuration file
|
41 |
+
- `--checkpoint_path`: Path to the pre-trained model checkpoint
|
42 |
+
- `--input_dir`: Directory containing input WAV files
|
43 |
+
- `--output_dir`: Directory to save reconstructed audio files
|
44 |
+
- `--device`: Device to run inference on (default: "cuda")
|
45 |
+
- `--debug`, `--debug_ip`, `--debug_port`: Debugging options (disabled by default)
|
46 |
+
|
47 |
+
## Project Structure
|
48 |
+
|
49 |
+
- `xy_tokenizer/`: Core model implementation
|
50 |
+
- `model.py`: Main XY_Tokenizer model class
|
51 |
+
- `nn/`: Neural network components
|
52 |
+
- `config/`: Configuration files
|
53 |
+
- `utils/`: Utility functions
|
54 |
+
- `weights/`: Pre-trained model weights
|
55 |
+
- `input_wavs/`: Directory for input audio files
|
56 |
+
- `output_wavs/`: Directory for output audio files
|
57 |
+
|
58 |
+
## Model Architecture
|
59 |
+
|
60 |
+
XY Tokenizer uses a dual-channel architecture that simultaneously models:
|
61 |
+
1. **Semantic Channel**: Captures high-level semantic information and linguistic content
|
62 |
+
2. **Acoustic Channel**: Preserves detailed acoustic features including speaker characteristics and prosody
|
63 |
+
|
64 |
+
The model processes audio through several stages:
|
65 |
+
1. Feature extraction (mel-spectrogram)
|
66 |
+
2. Parallel semantic and acoustic encoding
|
67 |
+
3. Residual Vector Quantization (RVQ8) at 12.5Hz frame rate (1kbps)
|
68 |
+
4. Decoding and waveform generation
|
69 |
+
|
70 |
+
## License
|
71 |
+
|
72 |
+
[Specify your license here]
|
XY_Tokenizer/config/xy_tokenizer_config.yaml
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
input_sample_rate: &input_sample_rate 16000
|
2 |
+
output_sample_rate: &output_sample_rate 24000
|
3 |
+
|
4 |
+
generator_params:
|
5 |
+
input_sample_rate: *input_sample_rate
|
6 |
+
output_sample_rate: *output_sample_rate
|
7 |
+
|
8 |
+
feature_extractor_kwargs:
|
9 |
+
chunk_length: 30
|
10 |
+
feature_size: 80
|
11 |
+
hop_length: 160
|
12 |
+
n_fft: 400
|
13 |
+
n_samples: 480000
|
14 |
+
nb_max_frames: 3000
|
15 |
+
padding_side: right
|
16 |
+
padding_value: 0.0
|
17 |
+
return_attention_mask: false
|
18 |
+
sampling_rate: *input_sample_rate
|
19 |
+
|
20 |
+
## Codec Args
|
21 |
+
|
22 |
+
## semantic channel
|
23 |
+
semantic_encoder_kwargs: # 100hz -> 50hz
|
24 |
+
num_mel_bins: 80
|
25 |
+
sampling_rate: *input_sample_rate
|
26 |
+
hop_length: 160
|
27 |
+
stride_size: 2
|
28 |
+
kernel_size: 3
|
29 |
+
d_model: 768
|
30 |
+
scale_embedding: false
|
31 |
+
max_audio_seconds: 30
|
32 |
+
encoder_layers: 12
|
33 |
+
encoder_attention_heads: 12
|
34 |
+
encoder_ffn_dim: 3072
|
35 |
+
activation_function: "gelu"
|
36 |
+
|
37 |
+
semantic_encoder_adapter_kwargs: # 50hz
|
38 |
+
input_dim: 768
|
39 |
+
output_dim: 768
|
40 |
+
d_model: 768
|
41 |
+
max_source_positions: 1500
|
42 |
+
encoder_layers: 4
|
43 |
+
encoder_attention_heads: 12
|
44 |
+
encoder_ffn_dim: 3072
|
45 |
+
|
46 |
+
|
47 |
+
## acoustic channel
|
48 |
+
acoustic_encoder_kwargs: # 100hz -> 50hz
|
49 |
+
num_mel_bins: 80
|
50 |
+
sampling_rate: *input_sample_rate
|
51 |
+
hop_length: 160
|
52 |
+
stride_size: 2
|
53 |
+
kernel_size: 3
|
54 |
+
d_model: 768
|
55 |
+
scale_embedding: false
|
56 |
+
max_audio_seconds: 30
|
57 |
+
encoder_layers: 12
|
58 |
+
encoder_attention_heads: 12
|
59 |
+
encoder_ffn_dim: 3072
|
60 |
+
activation_function: "gelu"
|
61 |
+
|
62 |
+
|
63 |
+
## semantic & acoustic shared parameters
|
64 |
+
pre_rvq_adapter_kwargs: # 50hz
|
65 |
+
input_dim: 1536
|
66 |
+
output_dim: 768
|
67 |
+
d_model: 768
|
68 |
+
max_source_positions: 1500
|
69 |
+
encoder_layers: 4
|
70 |
+
encoder_attention_heads: 12
|
71 |
+
encoder_ffn_dim: 3072
|
72 |
+
|
73 |
+
downsample_kwargs: # 50hz -> 12.5hz
|
74 |
+
d_model: 768
|
75 |
+
avg_pooler: 4
|
76 |
+
|
77 |
+
quantizer_kwargs: # 12.5hz
|
78 |
+
input_dim: 3072
|
79 |
+
rvq_dim: 512
|
80 |
+
output_dim: 3072
|
81 |
+
num_quantizers: 8
|
82 |
+
codebook_size: 1024
|
83 |
+
codebook_dim: 512
|
84 |
+
quantizer_dropout: 0.0
|
85 |
+
commitment: 1
|
86 |
+
|
87 |
+
post_rvq_adapter_kwargs: # 12.5hz
|
88 |
+
input_dim: 3072
|
89 |
+
output_dim: 3072
|
90 |
+
d_model: 768
|
91 |
+
max_source_positions: 375
|
92 |
+
encoder_layers: 4
|
93 |
+
encoder_attention_heads: 12
|
94 |
+
encoder_ffn_dim: 3072
|
95 |
+
|
96 |
+
upsample_kwargs: # 12.5hz -> 50hz
|
97 |
+
d_model: 768
|
98 |
+
stride: 4
|
99 |
+
|
100 |
+
## acoustic channel
|
101 |
+
acoustic_decoder_kwargs: # 50hz -> 100hz
|
102 |
+
num_mel_bins: 80
|
103 |
+
sampling_rate: *input_sample_rate
|
104 |
+
hop_length: 160
|
105 |
+
stride_size: 2
|
106 |
+
kernel_size: 3
|
107 |
+
d_model: 768
|
108 |
+
scale_embedding: false
|
109 |
+
max_audio_seconds: 30
|
110 |
+
decoder_layers: 12
|
111 |
+
decoder_attention_heads: 12
|
112 |
+
decoder_ffn_dim: 3072
|
113 |
+
activation_function: "gelu"
|
114 |
+
|
115 |
+
vocos_kwargs: # 100hz -> 24khz
|
116 |
+
input_channels: 80
|
117 |
+
dim: 512
|
118 |
+
intermediate_dim: 4096
|
119 |
+
num_layers: 30
|
120 |
+
n_fft: 960
|
121 |
+
hop_size: 240
|
122 |
+
padding: "same"
|
XY_Tokenizer/inference.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import logging
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from utils.helpers import set_logging, waiting_for_debug, load_audio, save_audio, find_audio_files
|
7 |
+
from xy_tokenizer.model import XY_Tokenizer
|
8 |
+
|
9 |
+
if __name__ == "__main__":
|
10 |
+
set_logging()
|
11 |
+
|
12 |
+
parser = argparse.ArgumentParser()
|
13 |
+
parser.add_argument("--config_path", type=str, default="./config/xy_tokenizer_config.yaml")
|
14 |
+
parser.add_argument("--checkpoint_path", type=str, default="./weights/xy_tokenizer.ckpt")
|
15 |
+
parser.add_argument("--device", type=str, default="cuda")
|
16 |
+
|
17 |
+
parser.add_argument("--input_dir", type=str, required=True)
|
18 |
+
parser.add_argument("--output_dir", type=str, required=True)
|
19 |
+
|
20 |
+
|
21 |
+
parser.add_argument("--debug_ip", type=str)
|
22 |
+
parser.add_argument("--debug_port", type=int)
|
23 |
+
parser.add_argument("--debug", default=0, type=int, nargs="?",
|
24 |
+
help='whether debug or not',
|
25 |
+
)
|
26 |
+
args = parser.parse_args()
|
27 |
+
if args.debug == 1:
|
28 |
+
waiting_for_debug(args.debug_ip, args.debug_port)
|
29 |
+
|
30 |
+
device = torch.device(args.device)
|
31 |
+
|
32 |
+
## Load codec model
|
33 |
+
generator = XY_Tokenizer.load_from_checkpoint(config_path=args.config_path, ckpt_path=args.checkpoint_path).to(device).eval()
|
34 |
+
|
35 |
+
## Find audios
|
36 |
+
audio_paths = find_audio_files(input_dir=args.input_dir)
|
37 |
+
|
38 |
+
## Create output directory if not exists
|
39 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
40 |
+
logging.info(f"Processing {len(audio_paths)} audio files, output will be saved to {args.output_dir}")
|
41 |
+
|
42 |
+
with torch.no_grad():
|
43 |
+
## Process audios in batches
|
44 |
+
batch_size = 8
|
45 |
+
for i in range(0, len(audio_paths), batch_size):
|
46 |
+
batch_paths = audio_paths[i:i + batch_size]
|
47 |
+
logging.info(f"Processing batch {i // batch_size + 1}/{len(audio_paths) // batch_size + 1}, files: {batch_paths}")
|
48 |
+
|
49 |
+
# Load audio files
|
50 |
+
wav_list = [load_audio(path, target_sample_rate=generator.input_sample_rate).squeeze().to(device) for path in batch_paths]
|
51 |
+
logging.info(f"Successfully loaded {len(wav_list)} audio files with lengths {[len(wav) for wav in wav_list]} samples")
|
52 |
+
|
53 |
+
# Encode
|
54 |
+
encode_result = generator.encode(wav_list, overlap_seconds=10)
|
55 |
+
codes_list = encode_result["codes_list"] # B * (nq, T)
|
56 |
+
logging.info(f"Encoding completed, code lengths: {[codes.shape[-1] for codes in codes_list]}")
|
57 |
+
logging.info(f"{codes_list = }")
|
58 |
+
|
59 |
+
# Decode
|
60 |
+
decode_result = generator.decode(codes_list, overlap_seconds=10)
|
61 |
+
syn_wav_list = decode_result["syn_wav_list"] # B * (T,)
|
62 |
+
logging.info(f"Decoding completed, generated waveform lengths: {[len(wav) for wav in syn_wav_list]} samples")
|
63 |
+
|
64 |
+
# Save generated audios
|
65 |
+
for path, syn_wav in zip(batch_paths, syn_wav_list):
|
66 |
+
output_path = os.path.join(args.output_dir, os.path.basename(path))
|
67 |
+
save_audio(output_path, syn_wav.cpu().reshape(1, -1), sample_rate=generator.output_sample_rate)
|
68 |
+
logging.info(f"Saved generated audio to {output_path}")
|
69 |
+
|
70 |
+
|
71 |
+
logging.info("All audio processing completed")
|
XY_Tokenizer/requirements.txt
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
beartype
|
2 |
+
tensorboard
|
3 |
+
numpy
|
4 |
+
torch
|
5 |
+
torchaudio
|
6 |
+
einops
|
7 |
+
scipy
|
8 |
+
huggingface-hub
|
9 |
+
soundfile
|
10 |
+
matplotlib
|
11 |
+
lion_pytorch
|
12 |
+
accelerate
|
13 |
+
debugpy
|
14 |
+
tensorboardX
|
15 |
+
librosa
|
16 |
+
pesq
|
17 |
+
tqdm
|
18 |
+
mir_eval
|
19 |
+
stopes
|
20 |
+
s3prl
|
21 |
+
onnxscript
|
22 |
+
jiwer
|
23 |
+
orjson
|
XY_Tokenizer/utils/helpers.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import torchaudio
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
import glob
|
6 |
+
import debugpy
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
import re
|
10 |
+
|
11 |
+
def count_params_by_module(model_name, model):
|
12 |
+
logging.info(f"Counting num_parameters of {model_name}:")
|
13 |
+
|
14 |
+
param_stats = {}
|
15 |
+
total_params = 0 # Count total parameters
|
16 |
+
total_requires_grad_params = 0 # Count parameters with requires_grad=True
|
17 |
+
total_no_grad_params = 0 # Count parameters with requires_grad=False
|
18 |
+
|
19 |
+
for name, param in model.named_parameters():
|
20 |
+
module_name = name.split('.')[0]
|
21 |
+
if module_name not in param_stats:
|
22 |
+
param_stats[module_name] = {'total': 0, 'requires_grad': 0, 'no_grad': 0}
|
23 |
+
|
24 |
+
param_num = param.numel()
|
25 |
+
param_stats[module_name]['total'] += param_num
|
26 |
+
total_params += param_num
|
27 |
+
|
28 |
+
if param.requires_grad:
|
29 |
+
param_stats[module_name]['requires_grad'] += param_num
|
30 |
+
total_requires_grad_params += param_num
|
31 |
+
else:
|
32 |
+
param_stats[module_name]['no_grad'] += param_num
|
33 |
+
total_no_grad_params += param_num
|
34 |
+
|
35 |
+
# Calculate maximum width for each column
|
36 |
+
max_module_name_length = max(len(module) for module in param_stats)
|
37 |
+
max_param_length = max(len(f"{stats['total'] / 1e6:.2f}M") for stats in param_stats.values())
|
38 |
+
|
39 |
+
# Output parameter statistics for each module
|
40 |
+
for module, stats in param_stats.items():
|
41 |
+
logging.info(f"\t{module:<{max_module_name_length}}: "
|
42 |
+
f"Total: {stats['total'] / 1e6:<{max_param_length}.2f}M, "
|
43 |
+
f"Requires Grad: {stats['requires_grad'] / 1e6:<{max_param_length}.2f}M, "
|
44 |
+
f"No Grad: {stats['no_grad'] / 1e6:<{max_param_length}.2f}M")
|
45 |
+
|
46 |
+
# Output total parameter statistics
|
47 |
+
logging.info(f"\tTotal parameters: {total_params / 1e6:.2f}M parameters")
|
48 |
+
logging.info(f"\tRequires Grad parameters: {total_requires_grad_params / 1e6:.2f}M parameters")
|
49 |
+
logging.info(f"\tNo Grad parameters: {total_no_grad_params / 1e6:.2f}M parameters")
|
50 |
+
logging.info(f"################################################################")
|
51 |
+
|
52 |
+
|
53 |
+
def load_and_resample_audio(audio_path, target_sample_rate):
|
54 |
+
wav, raw_sample_rate = torchaudio.load(audio_path) # (1, T) tensor
|
55 |
+
if raw_sample_rate != target_sample_rate:
|
56 |
+
wav = torchaudio.functional.resample(wav, raw_sample_rate, target_sample_rate) # tensor
|
57 |
+
return wav.squeeze()
|
58 |
+
|
59 |
+
def set_logging():
|
60 |
+
rank = os.environ.get("RANK", 0)
|
61 |
+
logging.basicConfig(
|
62 |
+
level=logging.INFO,
|
63 |
+
stream=sys.stdout,
|
64 |
+
format=f"%(asctime)s [RANK {rank}] (%(module)s:%(lineno)d) %(levelname)s : %(message)s",
|
65 |
+
)
|
66 |
+
|
67 |
+
def waiting_for_debug(ip, port):
|
68 |
+
rank = os.environ.get("RANK", "0")
|
69 |
+
debugpy.listen((ip, port)) # Replace localhost with cluster node IP
|
70 |
+
logging.info(f"[rank = {rank}] Waiting for debugger attach...")
|
71 |
+
debugpy.wait_for_client()
|
72 |
+
logging.info(f"[rank = {rank}] Debugger attached")
|
73 |
+
|
74 |
+
def load_audio(audio_path, target_sample_rate):
|
75 |
+
# Load audio file, wav shape: (channels, time)
|
76 |
+
wav, raw_sample_rate = torchaudio.load(audio_path)
|
77 |
+
|
78 |
+
# If multi-channel, convert to mono by averaging across channels
|
79 |
+
if wav.shape[0] > 1:
|
80 |
+
wav = torch.mean(wav, dim=0, keepdim=True) # Average across channels, keep channel dim
|
81 |
+
|
82 |
+
# Resample if necessary
|
83 |
+
if raw_sample_rate != target_sample_rate:
|
84 |
+
wav = torchaudio.functional.resample(wav, raw_sample_rate, target_sample_rate)
|
85 |
+
|
86 |
+
# Convert to numpy, add channel dimension, then back to tensor with desired shape
|
87 |
+
wav = np.expand_dims(wav.squeeze(0).numpy(), axis=1) # Shape: (time, 1)
|
88 |
+
wav = torch.tensor(wav).reshape(1, 1, -1) # Shape: (1, 1, time)
|
89 |
+
|
90 |
+
return wav
|
91 |
+
|
92 |
+
def save_audio(audio_outpath, audio_out, sample_rate):
|
93 |
+
torchaudio.save(
|
94 |
+
audio_outpath,
|
95 |
+
audio_out,
|
96 |
+
sample_rate=sample_rate,
|
97 |
+
encoding='PCM_S',
|
98 |
+
bits_per_sample=16
|
99 |
+
)
|
100 |
+
logging.info(f"Successfully saved audio at {audio_outpath}")
|
101 |
+
|
102 |
+
def find_audio_files(input_dir):
|
103 |
+
audio_extensions = ['*.flac', '*.mp3', '*.wav']
|
104 |
+
audios_input = []
|
105 |
+
for ext in audio_extensions:
|
106 |
+
audios_input.extend(glob.glob(os.path.join(input_dir, '**', ext), recursive=True))
|
107 |
+
logging.info(f"Found {len(audios_input)} audio files in {input_dir}")
|
108 |
+
return sorted(audios_input)
|
109 |
+
|
110 |
+
def normalize_text(text):
|
111 |
+
# Remove all punctuation (including English and Chinese punctuation)
|
112 |
+
text = re.sub(r'[^\w\s\u4e00-\u9fff]', '', text)
|
113 |
+
# Convert to lowercase (effective for English, no effect on Chinese)
|
114 |
+
text = text.lower()
|
115 |
+
# Remove extra spaces
|
116 |
+
text = ' '.join(text.split())
|
117 |
+
return text
|
XY_Tokenizer/xy_tokenizer/model.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import yaml
|
3 |
+
import logging
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
|
9 |
+
from .nn.feature_extractor import MelFeatureExtractor
|
10 |
+
from .nn.modules import OmniAudioEncoder, OmniAudioDecoder, ResidualDownConv, UpConv, Transformer, Vocos
|
11 |
+
from .nn.quantizer import ResidualVQ
|
12 |
+
|
13 |
+
class XY_Tokenizer(nn.Module):
|
14 |
+
def __init__(self, generator_params):
|
15 |
+
super().__init__()
|
16 |
+
# Basic parameters
|
17 |
+
self.input_sample_rate = generator_params['input_sample_rate']
|
18 |
+
self.output_sample_rate = generator_params['output_sample_rate']
|
19 |
+
|
20 |
+
self.encoder_downsample_rate = 1280
|
21 |
+
self.decoder_upsample_rate = 1920
|
22 |
+
self.code_dim = generator_params['quantizer_kwargs']['input_dim']
|
23 |
+
|
24 |
+
## Codec part
|
25 |
+
|
26 |
+
## Semantic channel
|
27 |
+
self.semantic_encoder = OmniAudioEncoder(**generator_params['semantic_encoder_kwargs'])
|
28 |
+
|
29 |
+
self.semantic_encoder_adapter = Transformer(**generator_params['semantic_encoder_adapter_kwargs'])
|
30 |
+
|
31 |
+
## Acoustic channel
|
32 |
+
self.acoustic_encoder = OmniAudioEncoder(**generator_params['acoustic_encoder_kwargs'])
|
33 |
+
|
34 |
+
## Semantic & acoustic shared parameters
|
35 |
+
self.pre_rvq_adapter = Transformer(**generator_params['pre_rvq_adapter_kwargs'])
|
36 |
+
|
37 |
+
self.downsample = ResidualDownConv(**generator_params['downsample_kwargs'])
|
38 |
+
|
39 |
+
self.quantizer = ResidualVQ(**generator_params['quantizer_kwargs'])
|
40 |
+
self.nq = generator_params['quantizer_kwargs']['num_quantizers']
|
41 |
+
|
42 |
+
self.post_rvq_adapter = Transformer(**generator_params['post_rvq_adapter_kwargs'])
|
43 |
+
|
44 |
+
## Acoustic channel
|
45 |
+
self.upsample = UpConv(**generator_params['upsample_kwargs'])
|
46 |
+
|
47 |
+
self.acoustic_decoder = OmniAudioDecoder(**generator_params['acoustic_decoder_kwargs'])
|
48 |
+
|
49 |
+
self.enhanced_vocos = Vocos(**generator_params['vocos_kwargs'])
|
50 |
+
|
51 |
+
## Feature extractor
|
52 |
+
self.feature_extractor = MelFeatureExtractor(**generator_params['feature_extractor_kwargs'])
|
53 |
+
|
54 |
+
@torch.inference_mode()
|
55 |
+
def inference_tokenize(self, x, input_lengths):
|
56 |
+
"""
|
57 |
+
Input:
|
58 |
+
x: Waveform tensor # (B, 1, T), T <= 30s * sample_rate
|
59 |
+
input_lengths: Valid length for each sample # (B,)
|
60 |
+
Output:
|
61 |
+
dict: Contains the following key-value pairs
|
62 |
+
"zq": Quantized embeddings # (B, D, T)
|
63 |
+
"codes": Quantization codes # (nq, B, T)
|
64 |
+
"codes_lengths": Quantization code lengths # (B,)
|
65 |
+
"""
|
66 |
+
list_x = [xi[:, :x_len].reshape(-1).cpu().numpy() for xi, x_len in zip(x, input_lengths)]
|
67 |
+
features = self.feature_extractor(
|
68 |
+
list_x,
|
69 |
+
sampling_rate=self.input_sample_rate,
|
70 |
+
return_tensors="pt",
|
71 |
+
return_attention_mask=True
|
72 |
+
)
|
73 |
+
input_mel = features['input_features'].to(x.device).to(x.dtype) # (B, D, 3000)
|
74 |
+
audio_attention_mask = features['attention_mask'].to(x.device) # (B, 3000)
|
75 |
+
|
76 |
+
# Get batch size and sequence length of the input
|
77 |
+
mel_output_length = torch.sum(audio_attention_mask, dim=-1).long() # (B,)
|
78 |
+
|
79 |
+
# Semantic channel
|
80 |
+
semantic_encoder_output, semantic_encoder_output_length = self.semantic_encoder(input_mel, mel_output_length) # (B, D, T), 100hz -> 50hz
|
81 |
+
|
82 |
+
semantic_encoder_adapter_output, semantic_encoder_adapter_output_length = self.semantic_encoder_adapter(semantic_encoder_output, semantic_encoder_output_length) # (B, D, T), 50hz
|
83 |
+
|
84 |
+
# Acoustic channel
|
85 |
+
acoustic_encoder_output, acoustic_encoder_output_length = self.acoustic_encoder(input_mel, mel_output_length) # (B, D, T), 100hz -> 50hz
|
86 |
+
|
87 |
+
# Semantic & acoustic mixing
|
88 |
+
concated_semantic_acoustic_channel = torch.concat([semantic_encoder_adapter_output, acoustic_encoder_output], dim=1) # (B, D, T)
|
89 |
+
concated_semantic_acoustic_channel_length = acoustic_encoder_output_length
|
90 |
+
|
91 |
+
pre_rvq_adapter_output, pre_rvq_adapter_output_length = self.pre_rvq_adapter(concated_semantic_acoustic_channel, concated_semantic_acoustic_channel_length) # (B, D, T), 50hz
|
92 |
+
|
93 |
+
downsample_output, downsample_output_length = self.downsample(pre_rvq_adapter_output, pre_rvq_adapter_output_length) # (B, D, T), 50hz -> 12.5hz
|
94 |
+
|
95 |
+
zq, codes, vq_loss, _, quantizer_output_length = self.quantizer(downsample_output, downsample_output_length) # (B, D, T), (nq, B, T), (nq,), (nq, B, D, T), (B,)
|
96 |
+
|
97 |
+
return {
|
98 |
+
"zq": zq, # (B, D, T)
|
99 |
+
"codes": codes, # (nq, B, T)
|
100 |
+
"codes_lengths": quantizer_output_length # (B,)
|
101 |
+
}
|
102 |
+
|
103 |
+
@torch.inference_mode()
|
104 |
+
def inference_detokenize(self, codes, codes_lengths):
|
105 |
+
"""
|
106 |
+
Input:
|
107 |
+
codes: Quantization codes # (nq, B, T)
|
108 |
+
codes_lengths: Quantization code lengths for each sample # (B,)
|
109 |
+
Output:
|
110 |
+
dict: Contains the following key-value pairs
|
111 |
+
"y": Synthesized audio waveform # (B, 1, T)
|
112 |
+
"output_length": Output lengths # (B,)
|
113 |
+
"""
|
114 |
+
zq = self.quantizer.decode_codes(codes) # (B, D, T)
|
115 |
+
|
116 |
+
post_rvq_adapter_output, post_rvq_adapter_output_length = self.post_rvq_adapter(zq, codes_lengths) # (B, D, T), 12.5hz
|
117 |
+
|
118 |
+
# Acoustic channel
|
119 |
+
upsample_output, upsample_output_length = self.upsample(post_rvq_adapter_output, post_rvq_adapter_output_length) # (B, D, T), 12.5hz -> 50hz
|
120 |
+
|
121 |
+
acoustic_decoder_output, acoustic_decoder_output_length = self.acoustic_decoder(upsample_output, upsample_output_length) # (B, D, T), 50hz -> 100hz
|
122 |
+
|
123 |
+
y, vocos_output_length = self.enhanced_vocos(acoustic_decoder_output, acoustic_decoder_output_length) # (B, 1, T), 100hz -> 16khz
|
124 |
+
|
125 |
+
return {
|
126 |
+
"y": y, # (B, 1, T)
|
127 |
+
"output_length": vocos_output_length, # (B,)
|
128 |
+
}
|
129 |
+
|
130 |
+
@torch.inference_mode()
|
131 |
+
def encode(self, wav_list, overlap_seconds=10, device=torch.device("cuda")):
|
132 |
+
"""
|
133 |
+
Input:
|
134 |
+
wav_list: List of audio waveforms, each with potentially different length, may exceed 30 seconds # B * (T,)
|
135 |
+
overlap_seconds: Overlap in seconds, process 30 seconds at a time, keeping (30 - overlap_seconds) seconds of valid output
|
136 |
+
Output:
|
137 |
+
dict: Contains the following key-value pairs
|
138 |
+
"codes_list": List of quantization codes # B * (nq, T)
|
139 |
+
"""
|
140 |
+
duration_seconds = 30 - overlap_seconds
|
141 |
+
chunk_size = int(30 * self.input_sample_rate) # Maximum samples per chunk
|
142 |
+
duration_size = int(duration_seconds * self.input_sample_rate) # Valid output samples per chunk
|
143 |
+
code_duration_length = duration_size // self.encoder_downsample_rate # Valid code length per chunk
|
144 |
+
|
145 |
+
# Get maximum waveform length
|
146 |
+
max_length = max(len(wav) for wav in wav_list)
|
147 |
+
batch_size = len(wav_list)
|
148 |
+
wav_tensor = torch.zeros(batch_size, 1, max_length, device=device)
|
149 |
+
input_lengths = torch.zeros(batch_size, dtype=torch.long, device=device)
|
150 |
+
for i, wav in enumerate(wav_list):
|
151 |
+
wav_tensor[i, 0, :len(wav)] = wav
|
152 |
+
input_lengths[i] = len(wav) # (B,)
|
153 |
+
|
154 |
+
# Calculate number of chunks needed
|
155 |
+
max_chunks = (max_length + duration_size - 1) // duration_size
|
156 |
+
codes_list = []
|
157 |
+
|
158 |
+
# Process the entire batch in chunks
|
159 |
+
for chunk_idx in range(max_chunks):
|
160 |
+
start = chunk_idx * duration_size
|
161 |
+
end = min(start + chunk_size, max_length)
|
162 |
+
chunk = wav_tensor[:, :, start:end] # (B, 1, T')
|
163 |
+
chunk_lengths = torch.clamp(input_lengths - start, 0, end - start) # (B,)
|
164 |
+
|
165 |
+
# Skip empty chunks
|
166 |
+
if chunk_lengths.max() == 0:
|
167 |
+
continue
|
168 |
+
|
169 |
+
# Encode
|
170 |
+
result = self.inference_tokenize(chunk, chunk_lengths) # {"zq": (B, D, T'), "codes": (nq, B, T'), "codes_lengths": (B,)}
|
171 |
+
chunk_codes = result["codes"] # (nq, B, T')
|
172 |
+
chunk_code_lengths = result["codes_lengths"] # (B,)
|
173 |
+
|
174 |
+
# Extract valid portion
|
175 |
+
valid_code_lengths = torch.clamp(chunk_code_lengths, 0, code_duration_length) # (B,)
|
176 |
+
valid_chunk_codes = torch.zeros(self.nq, batch_size, code_duration_length, device=device, dtype=chunk_codes.dtype)
|
177 |
+
for b in range(batch_size):
|
178 |
+
if valid_code_lengths[b] > 0:
|
179 |
+
valid_chunk_codes[:, b, :valid_code_lengths[b]] = chunk_codes[:, b, :valid_code_lengths[b]] # (nq, B, valid_code_length)
|
180 |
+
|
181 |
+
codes_list.append(valid_chunk_codes) # (nq, B, valid_code_length)
|
182 |
+
|
183 |
+
# Concatenate all chunks
|
184 |
+
if codes_list:
|
185 |
+
codes_tensor = torch.cat(codes_list, dim=-1) # (nq, B, T_total)
|
186 |
+
codes_list = [codes_tensor[:, i, :input_lengths[i] // self.encoder_downsample_rate] for i in range(batch_size)] # B * (nq, T)
|
187 |
+
else:
|
188 |
+
codes_list = [torch.zeros(self.nq, 0, device=device, dtype=torch.long) for _ in range(batch_size)] # B * (nq, 0)
|
189 |
+
|
190 |
+
return {
|
191 |
+
"codes_list": codes_list # B * (nq, T)
|
192 |
+
}
|
193 |
+
|
194 |
+
@torch.inference_mode()
|
195 |
+
def decode(self, codes_list, overlap_seconds=10, device=torch.device("cuda")):
|
196 |
+
"""
|
197 |
+
Input:
|
198 |
+
codes_list: List of quantization codes # B * (nq, T)
|
199 |
+
overlap_seconds: Overlap in seconds, process 30 seconds at a time, keeping (30 - overlap_seconds) seconds of valid output
|
200 |
+
Output:
|
201 |
+
dict: Contains the following key-value pairs
|
202 |
+
"syn_wav_list": List of synthesized audio waveforms # B * (T,)
|
203 |
+
"""
|
204 |
+
duration_seconds = 30 - overlap_seconds
|
205 |
+
chunk_code_length = int(30 * self.input_sample_rate // self.encoder_downsample_rate) # Maximum code length per chunk
|
206 |
+
duration_code_length = int(duration_seconds * self.input_sample_rate // self.encoder_downsample_rate) # Valid code length per chunk
|
207 |
+
duration_wav_length = duration_code_length * self.decoder_upsample_rate # Valid waveform length per chunk
|
208 |
+
|
209 |
+
# Get maximum code length
|
210 |
+
max_code_length = max(codes.shape[-1] for codes in codes_list)
|
211 |
+
batch_size = len(codes_list)
|
212 |
+
codes_tensor = torch.zeros(self.nq, batch_size, max_code_length, device=device, dtype=torch.long)
|
213 |
+
code_lengths = torch.zeros(batch_size, dtype=torch.long, device=device)
|
214 |
+
for i, codes in enumerate(codes_list):
|
215 |
+
codes_tensor[:, i, :codes.shape[-1]] = codes.to(device)
|
216 |
+
code_lengths[i] = codes.shape[-1] # (B,)
|
217 |
+
|
218 |
+
# Calculate number of chunks needed
|
219 |
+
max_chunks = (max_code_length + duration_code_length - 1) // duration_code_length
|
220 |
+
wav_list = []
|
221 |
+
|
222 |
+
# Process the entire batch in chunks
|
223 |
+
for chunk_idx in range(max_chunks):
|
224 |
+
start = chunk_idx * duration_code_length
|
225 |
+
end = min(start + chunk_code_length, max_code_length)
|
226 |
+
chunk_codes = codes_tensor[:, :, start:end] # (nq, B, T')
|
227 |
+
chunk_code_lengths = torch.clamp(code_lengths - start, 0, end - start) # (B,)
|
228 |
+
|
229 |
+
# Skip empty chunks
|
230 |
+
if chunk_code_lengths.max() == 0:
|
231 |
+
continue
|
232 |
+
|
233 |
+
# Decode
|
234 |
+
result = self.inference_detokenize(chunk_codes, chunk_code_lengths) # {"y": (B, 1, T'), "output_length": (B,)}
|
235 |
+
chunk_wav = result["y"] # (B, 1, T')
|
236 |
+
chunk_wav_lengths = result["output_length"] # (B,)
|
237 |
+
|
238 |
+
# Extract valid portion
|
239 |
+
valid_wav_lengths = torch.clamp(chunk_wav_lengths, 0, duration_wav_length) # (B,)
|
240 |
+
valid_chunk_wav = torch.zeros(batch_size, 1, duration_wav_length, device=device)
|
241 |
+
for b in range(batch_size):
|
242 |
+
if valid_wav_lengths[b] > 0:
|
243 |
+
valid_chunk_wav[b, :, :valid_wav_lengths[b]] = chunk_wav[b, :, :valid_wav_lengths[b]] # (B, 1, valid_wav_length)
|
244 |
+
|
245 |
+
wav_list.append(valid_chunk_wav) # (B, 1, valid_wav_length)
|
246 |
+
|
247 |
+
# Concatenate all chunks
|
248 |
+
if wav_list:
|
249 |
+
wav_tensor = torch.cat(wav_list, dim=-1) # (B, 1, T_total)
|
250 |
+
syn_wav_list = [wav_tensor[i, 0, :code_lengths[i] * self.decoder_upsample_rate] for i in range(batch_size)] # B * (T,)
|
251 |
+
else:
|
252 |
+
syn_wav_list = [torch.zeros(0, device=device) for _ in range(batch_size)] # B * (0,)
|
253 |
+
|
254 |
+
return {
|
255 |
+
"syn_wav_list": syn_wav_list # B * (T,)
|
256 |
+
}
|
257 |
+
|
258 |
+
@classmethod
|
259 |
+
def load_from_checkpoint(cls, config_path: str, ckpt_path: str):
|
260 |
+
# Load model from configuration file and checkpoint
|
261 |
+
logging.info(f"Loading model from {config_path} and {ckpt_path}")
|
262 |
+
|
263 |
+
# Load configuration
|
264 |
+
with open(config_path, 'r') as f:
|
265 |
+
config = yaml.safe_load(f)
|
266 |
+
|
267 |
+
# Create model instance
|
268 |
+
model = cls(config['generator_params'])
|
269 |
+
|
270 |
+
# Load checkpoint
|
271 |
+
checkpoint = torch.load(ckpt_path, map_location='cpu')
|
272 |
+
|
273 |
+
# Check if checkpoint contains 'generator' key
|
274 |
+
if 'generator' in checkpoint:
|
275 |
+
model.load_state_dict(checkpoint['generator'])
|
276 |
+
else:
|
277 |
+
model.load_state_dict(checkpoint)
|
278 |
+
|
279 |
+
return model
|
XY_Tokenizer/xy_tokenizer/nn/feature_extractor.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from typing import Union, List, Optional
|
5 |
+
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
|
6 |
+
from transformers.feature_extraction_utils import BatchFeature
|
7 |
+
from transformers.utils import TensorType, logging
|
8 |
+
from transformers.utils.import_utils import is_torch_available
|
9 |
+
from transformers.audio_utils import mel_filter_bank, spectrogram, window_function
|
10 |
+
|
11 |
+
class MelFeatureExtractor(SequenceFeatureExtractor):
|
12 |
+
model_input_names = ["input_features"]
|
13 |
+
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
feature_size=80,
|
17 |
+
sampling_rate=16000,
|
18 |
+
hop_length=160,
|
19 |
+
chunk_length=30,
|
20 |
+
n_fft=400,
|
21 |
+
padding_value=0.0,
|
22 |
+
dither=0.0,
|
23 |
+
return_attention_mask=False,
|
24 |
+
max_frequency=None,
|
25 |
+
**kwargs,
|
26 |
+
):
|
27 |
+
super().__init__(
|
28 |
+
feature_size=feature_size,
|
29 |
+
sampling_rate=sampling_rate,
|
30 |
+
padding_value=padding_value,
|
31 |
+
return_attention_mask=return_attention_mask,
|
32 |
+
**kwargs,
|
33 |
+
)
|
34 |
+
self.n_fft = n_fft
|
35 |
+
self.hop_length = hop_length
|
36 |
+
self.chunk_length = chunk_length
|
37 |
+
self.n_samples = chunk_length * sampling_rate
|
38 |
+
self.nb_max_frames = self.n_samples // hop_length
|
39 |
+
self.sampling_rate = sampling_rate
|
40 |
+
self.dither = dither
|
41 |
+
self.max_frequency = max_frequency if max_frequency is not None else sampling_rate / 2
|
42 |
+
self.mel_filters = mel_filter_bank(
|
43 |
+
num_frequency_bins=1 + n_fft // 2,
|
44 |
+
num_mel_filters=feature_size,
|
45 |
+
min_frequency=0.0,
|
46 |
+
max_frequency=self.max_frequency,
|
47 |
+
sampling_rate=sampling_rate,
|
48 |
+
norm="slaney",
|
49 |
+
mel_scale="slaney",
|
50 |
+
)
|
51 |
+
|
52 |
+
def _np_extract_fbank_features(self, waveform_batch: np.array, device: str) -> np.ndarray:
|
53 |
+
if device != "cpu":
|
54 |
+
raise ValueError(
|
55 |
+
f"Got device `{device}` for feature extraction, but feature extraction on CUDA accelerator "
|
56 |
+
"devices requires torch, which is not installed. Either set `device='cpu'`, or "
|
57 |
+
"install torch according to the official instructions: https://pytorch.org/get-started/locally/"
|
58 |
+
)
|
59 |
+
log_spec_batch = []
|
60 |
+
for waveform in waveform_batch:
|
61 |
+
log_spec = spectrogram(
|
62 |
+
waveform,
|
63 |
+
window_function(self.n_fft, "hann"),
|
64 |
+
frame_length=self.n_fft,
|
65 |
+
hop_length=self.hop_length,
|
66 |
+
power=2.0,
|
67 |
+
dither=self.dither,
|
68 |
+
mel_filters=self.mel_filters,
|
69 |
+
log_mel="log10",
|
70 |
+
)
|
71 |
+
log_spec = log_spec[:, :-1]
|
72 |
+
log_spec = np.maximum(log_spec, log_spec.max() - 8.0)
|
73 |
+
log_spec = (log_spec + 4.0) / 4.0
|
74 |
+
log_spec_batch.append(log_spec)
|
75 |
+
log_spec_batch = np.array(log_spec_batch)
|
76 |
+
return log_spec_batch
|
77 |
+
|
78 |
+
def _torch_extract_fbank_features(self, waveform: np.array, device: str = "cpu") -> np.ndarray:
|
79 |
+
"""
|
80 |
+
Compute the log-mel spectrogram of the audio using PyTorch's GPU-accelerated STFT implementation with batching,
|
81 |
+
yielding results similar to cpu computing with 1e-5 tolerance.
|
82 |
+
"""
|
83 |
+
waveform = torch.from_numpy(waveform).to(device, torch.float32)
|
84 |
+
window = torch.hann_window(self.n_fft, device=device)
|
85 |
+
|
86 |
+
if self.dither != 0.0:
|
87 |
+
waveform += self.dither * torch.randn(waveform.shape, dtype=waveform.dtype, device=waveform.device)
|
88 |
+
|
89 |
+
stft = torch.stft(waveform, self.n_fft, self.hop_length, window=window, return_complex=True)
|
90 |
+
magnitudes = stft[..., :-1].abs() ** 2
|
91 |
+
|
92 |
+
mel_filters = torch.from_numpy(self.mel_filters).to(device, torch.float32)
|
93 |
+
mel_spec = mel_filters.T @ magnitudes
|
94 |
+
|
95 |
+
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
|
96 |
+
if waveform.dim() == 2:
|
97 |
+
max_val = log_spec.max(dim=2, keepdim=True)[0].max(dim=1, keepdim=True)[0]
|
98 |
+
log_spec = torch.maximum(log_spec, max_val - 8.0)
|
99 |
+
else:
|
100 |
+
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
|
101 |
+
log_spec = (log_spec + 4.0) / 4.0
|
102 |
+
if device != "cpu":
|
103 |
+
log_spec = log_spec.detach().cpu()
|
104 |
+
return log_spec.numpy()
|
105 |
+
|
106 |
+
@staticmethod
|
107 |
+
def zero_mean_unit_var_norm(
|
108 |
+
input_values: List[np.ndarray], attention_mask: List[np.ndarray], padding_value: float = 0.0
|
109 |
+
) -> List[np.ndarray]:
|
110 |
+
"""
|
111 |
+
Every array in the list is normalized to have zero mean and unit variance
|
112 |
+
"""
|
113 |
+
if attention_mask is not None:
|
114 |
+
attention_mask = np.array(attention_mask, np.int32)
|
115 |
+
normed_input_values = []
|
116 |
+
|
117 |
+
for vector, length in zip(input_values, attention_mask.sum(-1)):
|
118 |
+
normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7)
|
119 |
+
if length < normed_slice.shape[0]:
|
120 |
+
normed_slice[length:] = padding_value
|
121 |
+
|
122 |
+
normed_input_values.append(normed_slice)
|
123 |
+
else:
|
124 |
+
normed_input_values = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values]
|
125 |
+
|
126 |
+
return normed_input_values
|
127 |
+
|
128 |
+
def __call__(
|
129 |
+
self,
|
130 |
+
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
|
131 |
+
truncation: bool = True,
|
132 |
+
pad_to_multiple_of: Optional[int] = None,
|
133 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
134 |
+
return_attention_mask: Optional[bool] = None,
|
135 |
+
padding: Optional[str] = "max_length",
|
136 |
+
max_length: Optional[int] = None,
|
137 |
+
sampling_rate: Optional[int] = None,
|
138 |
+
do_normalize: Optional[bool] = None,
|
139 |
+
device: Optional[str] = "cpu",
|
140 |
+
return_token_timestamps: Optional[bool] = None,
|
141 |
+
**kwargs,
|
142 |
+
) -> BatchFeature:
|
143 |
+
"""
|
144 |
+
Main method to featurize and prepare for the model one or several sequence(s). Implementation uses PyTorch for
|
145 |
+
the STFT computation if available, otherwise a slower NumPy based one.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
|
149 |
+
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
|
150 |
+
values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
|
151 |
+
stereo, i.e. single float per timestep.
|
152 |
+
truncation (`bool`, *optional*, default to `True`):
|
153 |
+
Activates truncation to cut input sequences longer than *max_length* to *max_length*.
|
154 |
+
pad_to_multiple_of (`int`, *optional*, defaults to None):
|
155 |
+
If set will pad the sequence to a multiple of the provided value.
|
156 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
157 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
158 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
159 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
160 |
+
- `'np'`: Return Numpy `np.ndarray` objects.
|
161 |
+
sampling_rate (`int`, *optional*):
|
162 |
+
The sampling rate at which the `raw_speech` input was sampled. If provided, it is checked against
|
163 |
+
the extractor's sampling rate.
|
164 |
+
padding_value (`float`, *optional*, defaults to 0.0):
|
165 |
+
The value that is used to fill the padding values / vectors.
|
166 |
+
do_normalize (`bool`, *optional*, defaults to `False`):
|
167 |
+
Whether or not to zero-mean unit-variance normalize the input.
|
168 |
+
device (`str`, *optional*, defaults to `'cpu'`):
|
169 |
+
Specifies the device for computation of the log-mel spectrogram.
|
170 |
+
return_token_timestamps (`bool`, *optional*, defaults to `None`):
|
171 |
+
Whether or not to return the number of frames of the input raw_speech.
|
172 |
+
"""
|
173 |
+
if sampling_rate is not None and sampling_rate != self.sampling_rate:
|
174 |
+
logger.warning(
|
175 |
+
f"The provided `raw_speech` input was sampled at {sampling_rate}Hz, but the feature extractor "
|
176 |
+
f"is configured for {self.sampling_rate}Hz. You should resample the audio to match the "
|
177 |
+
f"extractor's sampling rate to ensure correct feature extraction."
|
178 |
+
)
|
179 |
+
|
180 |
+
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
|
181 |
+
if is_batched_numpy and len(raw_speech.shape) > 2:
|
182 |
+
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
|
183 |
+
is_batched = is_batched_numpy or (
|
184 |
+
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
|
185 |
+
)
|
186 |
+
|
187 |
+
if is_batched:
|
188 |
+
raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech]
|
189 |
+
elif not is_batched and not isinstance(raw_speech, np.ndarray):
|
190 |
+
raw_speech = np.asarray(raw_speech, dtype=np.float32)
|
191 |
+
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
|
192 |
+
raw_speech = raw_speech.astype(np.float32)
|
193 |
+
|
194 |
+
if not is_batched:
|
195 |
+
raw_speech = [np.asarray([raw_speech]).T]
|
196 |
+
|
197 |
+
batched_speech = BatchFeature({"input_features": raw_speech})
|
198 |
+
|
199 |
+
padded_inputs = self.pad(
|
200 |
+
batched_speech,
|
201 |
+
padding=padding,
|
202 |
+
max_length=max_length if max_length else self.n_samples,
|
203 |
+
truncation=truncation,
|
204 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
205 |
+
return_attention_mask=return_attention_mask or do_normalize,
|
206 |
+
)
|
207 |
+
|
208 |
+
if do_normalize:
|
209 |
+
padded_inputs["input_features"] = self.zero_mean_unit_var_norm(
|
210 |
+
padded_inputs["input_features"],
|
211 |
+
attention_mask=padded_inputs["attention_mask"],
|
212 |
+
padding_value=self.padding_value,
|
213 |
+
)
|
214 |
+
padded_inputs["input_features"] = np.stack(padded_inputs["input_features"], axis=0)
|
215 |
+
|
216 |
+
input_features = padded_inputs.get("input_features").transpose(2, 0, 1)
|
217 |
+
|
218 |
+
extract_fbank_features = (
|
219 |
+
self._torch_extract_fbank_features if is_torch_available() else self._np_extract_fbank_features
|
220 |
+
)
|
221 |
+
input_features = extract_fbank_features(input_features[0], device)
|
222 |
+
|
223 |
+
if isinstance(input_features[0], List):
|
224 |
+
padded_inputs["input_features"] = [np.asarray(feature, dtype=np.float32) for feature in input_features]
|
225 |
+
else:
|
226 |
+
padded_inputs["input_features"] = input_features
|
227 |
+
|
228 |
+
if return_attention_mask:
|
229 |
+
padded_inputs["attention_mask"] = padded_inputs["attention_mask"][:, :: self.hop_length]
|
230 |
+
|
231 |
+
if return_token_timestamps is not None:
|
232 |
+
padded_inputs["num_frames"] = [len(raw_speech_i) // self.hop_length for raw_speech_i in raw_speech]
|
233 |
+
|
234 |
+
if return_tensors is not None:
|
235 |
+
padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
|
236 |
+
|
237 |
+
return padded_inputs
|
XY_Tokenizer/xy_tokenizer/nn/modules.py
ADDED
@@ -0,0 +1,1480 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.distributed
|
3 |
+
import numpy as np
|
4 |
+
import logging
|
5 |
+
import math
|
6 |
+
import copy
|
7 |
+
import numpy as np
|
8 |
+
import scipy
|
9 |
+
import torch
|
10 |
+
import librosa
|
11 |
+
|
12 |
+
from typing import Optional, Tuple
|
13 |
+
from torch import nn, view_as_real, view_as_complex
|
14 |
+
from torch import nn
|
15 |
+
from torch.nn import functional as F
|
16 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
17 |
+
from torchaudio.functional.functional import _hz_to_mel, _mel_to_hz
|
18 |
+
from transformers.activations import ACT2FN
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from transformers.modeling_outputs import ModelOutput
|
21 |
+
from transformers import WhisperModel
|
22 |
+
|
23 |
+
|
24 |
+
# Define function to generate positional embeddings using sine and cosine functions to represent sequence position information
|
25 |
+
def sinusoids(length, channels, max_timescale=10000):
|
26 |
+
"""Returns sinusoidal waves for positional embedding"""
|
27 |
+
assert channels % 2 == 0
|
28 |
+
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
|
29 |
+
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
|
30 |
+
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
|
31 |
+
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
|
32 |
+
|
33 |
+
# Generate sequence mask to distinguish valid sequence and padding parts
|
34 |
+
def get_sequence_mask(inputs, inputs_length):
|
35 |
+
if inputs.dim() == 3:
|
36 |
+
bsz, tgt_len, _ = inputs.size()
|
37 |
+
else:
|
38 |
+
bsz, tgt_len = inputs_length.shape[0], torch.max(inputs_length)
|
39 |
+
sequence_mask = torch.arange(0, tgt_len).to(inputs.device)
|
40 |
+
sequence_mask = torch.lt(sequence_mask, inputs_length.reshape(bsz, 1)).view(bsz, tgt_len, 1)
|
41 |
+
return sequence_mask
|
42 |
+
|
43 |
+
# Define RMSNorm layer for normalizing hidden states and stabilizing training process
|
44 |
+
class RMSNorm(nn.Module):
|
45 |
+
def __init__(self, hidden_size, eps=1e-6):
|
46 |
+
super().__init__()
|
47 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
48 |
+
self.variance_epsilon = eps
|
49 |
+
|
50 |
+
def forward(self, hidden_states):
|
51 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
52 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
53 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
54 |
+
hidden_states = hidden_states.to(self.weight.dtype)
|
55 |
+
return self.weight * hidden_states
|
56 |
+
|
57 |
+
# Modified variable-length attention mechanism, supporting FP32 with unified interface
|
58 |
+
class VarLenAttention(nn.Module):
|
59 |
+
def __init__(self, embed_dim, num_heads, causal=False, dropout=0.0):
|
60 |
+
"""
|
61 |
+
Initialize variable-length attention module.
|
62 |
+
|
63 |
+
Parameters:
|
64 |
+
embed_dim (int): Embedding dimension (model's hidden dimension)
|
65 |
+
num_heads (int): Number of attention heads
|
66 |
+
causal (bool): Whether to enable causal attention (only attend to current and previous positions)
|
67 |
+
dropout (float): Attention dropout probability
|
68 |
+
"""
|
69 |
+
super().__init__()
|
70 |
+
self.embed_dim = embed_dim
|
71 |
+
self.num_heads = num_heads
|
72 |
+
self.head_dim = embed_dim // num_heads
|
73 |
+
assert embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads"
|
74 |
+
self.causal = causal
|
75 |
+
self.dropout = nn.Dropout(dropout)
|
76 |
+
self.scaling = self.head_dim ** -0.5 # Scaling factor
|
77 |
+
|
78 |
+
# Linear projection layers for Q, K, V and output
|
79 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False)
|
80 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=True)
|
81 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=True)
|
82 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)
|
83 |
+
|
84 |
+
def _create_attention_mask(self, seq_len, max_len, device, dtype):
|
85 |
+
"""
|
86 |
+
Create attention mask supporting variable-length sequences and causality.
|
87 |
+
|
88 |
+
Parameters:
|
89 |
+
seq_len (torch.Tensor): Sequence length for each sample, shape [bsz]
|
90 |
+
max_len (int): Maximum sequence length in the batch
|
91 |
+
device: Device for tensor creation
|
92 |
+
dtype: Data type for mask values
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
mask (torch.Tensor): Attention mask, shape [bsz, 1, max_len, max_len], invalid positions set to minimum value
|
96 |
+
"""
|
97 |
+
bsz = seq_len.size(0)
|
98 |
+
# Initialize mask as 1 (valid positions)
|
99 |
+
mask = torch.ones(bsz, 1, max_len, max_len, device=device, dtype=dtype)
|
100 |
+
|
101 |
+
# Generate sequence indices
|
102 |
+
seq_indices = torch.arange(max_len, device=device).unsqueeze(0) # [1, max_len]
|
103 |
+
seq_len_expanded = seq_len.unsqueeze(1) # [bsz, 1]
|
104 |
+
|
105 |
+
# Mark valid positions (less than seq_len)
|
106 |
+
valid_mask = seq_indices < seq_len_expanded.unsqueeze(-1) # [bsz, 1, max_len]
|
107 |
+
mask = mask * (valid_mask.unsqueeze(2) & valid_mask.unsqueeze(3)).to(dtype) # [bsz, 1, max_len, max_len]
|
108 |
+
|
109 |
+
# If causal attention, add upper triangular mask
|
110 |
+
if self.causal:
|
111 |
+
causal_mask = torch.triu(torch.ones(max_len, max_len, device=device, dtype=torch.bool), diagonal=1)
|
112 |
+
mask = mask * (~causal_mask.unsqueeze(0).unsqueeze(1)).to(dtype) # Keep only lower triangular part
|
113 |
+
|
114 |
+
# Set invalid positions (0) to dtype's minimum value
|
115 |
+
mask = mask + (1.0 - mask) * torch.finfo(dtype).min # Valid positions unchanged, invalid positions to minimum value
|
116 |
+
return mask
|
117 |
+
|
118 |
+
def forward(self, hidden_states: torch.Tensor, seq_len: torch.Tensor) -> torch.Tensor:
|
119 |
+
"""
|
120 |
+
Forward propagation, input and output are [bsz, max_len, embed_dim].
|
121 |
+
|
122 |
+
Parameters:
|
123 |
+
hidden_states (torch.Tensor): Input hidden states, shape [bsz, max_len, embed_dim]
|
124 |
+
seq_len (torch.Tensor): Sequence length for each sample, shape [bsz]
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
attn_output (torch.Tensor): Attention output, shape [bsz, max_len, embed_dim]
|
128 |
+
"""
|
129 |
+
bsz, max_len, _ = hidden_states.size()
|
130 |
+
|
131 |
+
# Project to Q, K, V
|
132 |
+
query = self.q_proj(hidden_states) * self.scaling # [bsz, max_len, embed_dim]
|
133 |
+
key = self.k_proj(hidden_states) # [bsz, max_len, embed_dim]
|
134 |
+
value = self.v_proj(hidden_states) # [bsz, max_len, embed_dim]
|
135 |
+
|
136 |
+
# Reshape to multi-head form
|
137 |
+
query = query.view(bsz, max_len, self.num_heads, self.head_dim).transpose(1, 2) # [bsz, num_heads, max_len, head_dim]
|
138 |
+
key = key.view(bsz, max_len, self.num_heads, self.head_dim).transpose(1, 2) # [bsz, num_heads, max_len, head_dim]
|
139 |
+
value = value.view(bsz, max_len, self.num_heads, self.head_dim).transpose(1, 2) # [bsz, num_heads, max_len, head_dim]
|
140 |
+
|
141 |
+
# Calculate attention scores
|
142 |
+
attn_scores = torch.matmul(query, key.transpose(-1, -2)) # [bsz, num_heads, max_len, max_len]
|
143 |
+
|
144 |
+
# Generate attention mask
|
145 |
+
attn_mask = self._create_attention_mask(seq_len, max_len, hidden_states.device, attn_scores.dtype) # [bsz, 1, max_len, max_len]
|
146 |
+
# Apply mask (additive form, consistent with HubertEncoder)
|
147 |
+
attn_scores = attn_scores + attn_mask # Invalid positions set to very small value
|
148 |
+
|
149 |
+
# Softmax calculate attention weights
|
150 |
+
attn_weights = F.softmax(attn_scores, dim=-1) # [bsz, num_heads, max_len, max_len]
|
151 |
+
attn_weights = self.dropout(attn_weights)
|
152 |
+
|
153 |
+
# Calculate attention output
|
154 |
+
attn_output = torch.matmul(attn_weights, value) # [bsz, num_heads, max_len, head_dim]
|
155 |
+
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, max_len, self.embed_dim) # [bsz, max_len, embed_dim]
|
156 |
+
|
157 |
+
# Output projection
|
158 |
+
attn_output = self.out_proj(attn_output) # [bsz, max_len, embed_dim]
|
159 |
+
|
160 |
+
return attn_output
|
161 |
+
|
162 |
+
# Define Transformer layer containing attention mechanism and feedforward network for feature extraction and transformation
|
163 |
+
class OmniWhisperTransformerLayer(nn.Module):
|
164 |
+
def __init__(self, activation_function="gelu", d_model=1280, attention_heads=20, ffn_dim=5120, causal=False, ln_type="LayerNorm", attn_type="varlen"):
|
165 |
+
super().__init__()
|
166 |
+
self.embed_dim = d_model
|
167 |
+
# Only keep varlen attention mechanism
|
168 |
+
if attn_type != "varlen":
|
169 |
+
raise ValueError(f"Unknown attn_type: {attn_type}. Only 'varlen' is supported.")
|
170 |
+
self.self_attn = VarLenAttention(self.embed_dim, attention_heads, causal)
|
171 |
+
if ln_type == "LayerNorm":
|
172 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
173 |
+
elif ln_type == "RMSNorm":
|
174 |
+
self.self_attn_layer_norm = RMSNorm(self.embed_dim)
|
175 |
+
else:
|
176 |
+
raise ValueError(f"Unknown ln_type: {ln_type}")
|
177 |
+
self.activation_fn = ACT2FN[activation_function]
|
178 |
+
self.fc1 = nn.Linear(self.embed_dim, ffn_dim)
|
179 |
+
self.fc2 = nn.Linear(ffn_dim, self.embed_dim)
|
180 |
+
if ln_type == "LayerNorm":
|
181 |
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
182 |
+
elif ln_type == "RMSNorm":
|
183 |
+
self.final_layer_norm = RMSNorm(self.embed_dim)
|
184 |
+
else:
|
185 |
+
raise ValueError(f"Unknown ln_type: {ln_type}")
|
186 |
+
|
187 |
+
def forward(self, hidden_states: torch.Tensor, seq_len: torch.Tensor) -> torch.Tensor:
|
188 |
+
residual = hidden_states # [bsz, max_len, embed_dim]
|
189 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
190 |
+
# from torch.cuda.amp import autocast
|
191 |
+
# print(f"{residual.dtype = }")
|
192 |
+
# print(f"Autocast enabled: {torch.is_autocast_enabled():}")
|
193 |
+
# print(f"after layernorm {hidden_states.dtype = }")
|
194 |
+
hidden_states = self.self_attn(hidden_states, seq_len) # [bsz, max_len, embed_dim]
|
195 |
+
hidden_states = residual + hidden_states
|
196 |
+
residual = hidden_states
|
197 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
198 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
199 |
+
hidden_states = self.fc2(hidden_states)
|
200 |
+
hidden_states = residual + hidden_states
|
201 |
+
if (hidden_states.dtype == torch.float16 or hidden_states.dtype == torch.bfloat16) and \
|
202 |
+
(torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()):
|
203 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
204 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
205 |
+
return hidden_states
|
206 |
+
|
207 |
+
# Define audio encoder to convert input audio features to hidden state representation
|
208 |
+
class OmniAudioEncoder(nn.Module):
|
209 |
+
def __init__(
|
210 |
+
self,
|
211 |
+
num_mel_bins=128, # Input feature Mel band number, usually the dimension of Mel spectrogram
|
212 |
+
sampling_rate=16000, # Audio sampling rate, unit Hz
|
213 |
+
hop_length=160, # Frame shift length (sample number) when calculating Mel spectrogram
|
214 |
+
stride_size=2, # Convolution layer step, used for downsampling
|
215 |
+
kernel_size=3, # Convolution kernel size, controlling receptive field
|
216 |
+
d_model=1280, # Model's hidden state dimension (embedding dimension)
|
217 |
+
scale_embedding=True, # Whether to scale embedding (usually used for stabilizing training)
|
218 |
+
max_audio_seconds=30, # Maximum audio duration supported (seconds)
|
219 |
+
encoder_layers=32, # Transformer encoder layer number
|
220 |
+
encoder_attention_heads=20, # Attention head number for each Transformer layer
|
221 |
+
encoder_ffn_dim=5120, # Intermediate dimension for feedforward network
|
222 |
+
activation_function="gelu", # Activation function type, default GELU
|
223 |
+
attn_type="varlen" # New parameter, select attention mechanism type
|
224 |
+
):
|
225 |
+
super().__init__()
|
226 |
+
# Calculate maximum sequence length: Convert sampling rate to frame number after considering downsampling step
|
227 |
+
self.max_source_positions = (max_audio_seconds * sampling_rate // hop_length) // stride_size
|
228 |
+
# Embedding scaling factor, if enabled sqrt(d_model), otherwise 1.0
|
229 |
+
self.embed_scale = math.sqrt(d_model) if scale_embedding else 1.0
|
230 |
+
self.num_mel_bins = num_mel_bins # Save Mel band number
|
231 |
+
self.d_model = d_model # Save hidden state dimension
|
232 |
+
self.stride_size = stride_size
|
233 |
+
|
234 |
+
# First convolution layer: Convert Mel spectrogram features (num_mel_bins) to hidden dimension (d_model)
|
235 |
+
self.conv1 = nn.Conv1d(num_mel_bins, d_model, kernel_size=kernel_size, padding=1)
|
236 |
+
# Second convolution layer: Apply downsampling with stride_size
|
237 |
+
self.conv2 = nn.Conv1d(d_model, d_model, kernel_size=kernel_size, stride=stride_size, padding=1)
|
238 |
+
|
239 |
+
# Register positional embedding buffer, using sine function to generate, shape (max_source_positions, d_model)
|
240 |
+
self.register_buffer("positional_embedding", sinusoids(self.max_source_positions, d_model))
|
241 |
+
|
242 |
+
# Create Transformer encoder layer list, each layer contains attention mechanism and feedforward network
|
243 |
+
self.layers = nn.ModuleList([
|
244 |
+
OmniWhisperTransformerLayer(
|
245 |
+
activation_function=activation_function,
|
246 |
+
d_model=d_model,
|
247 |
+
attention_heads=encoder_attention_heads,
|
248 |
+
ffn_dim=encoder_ffn_dim,
|
249 |
+
causal=False, # Encoder does not need causal attention
|
250 |
+
attn_type=attn_type # Pass attention type
|
251 |
+
) for _ in range(encoder_layers)
|
252 |
+
])
|
253 |
+
|
254 |
+
# Last layer normalization for stable output
|
255 |
+
self.layer_norm = nn.LayerNorm(d_model)
|
256 |
+
|
257 |
+
def forward(self, input_features, input_length, output_hidden_states=False):
|
258 |
+
"""
|
259 |
+
Forward propagation function to convert input audio features to hidden state representation
|
260 |
+
|
261 |
+
Parameters:
|
262 |
+
input_features (torch.Tensor): Input Mel spectrogram features, shape [bsz, num_mel_bins, seq_len]
|
263 |
+
input_length (torch.Tensor): Input sequence length for each sample, shape [bsz]
|
264 |
+
output_hidden_states (bool, optional): Whether to return hidden states for each layer, default False
|
265 |
+
|
266 |
+
Returns:
|
267 |
+
if output_hidden_states is False:
|
268 |
+
hidden_states (torch.Tensor): Encoded hidden states, shape [bsz, d_model, tgt_len]
|
269 |
+
output_length (torch.Tensor): Output sequence length for each sample, shape [bsz]
|
270 |
+
else:
|
271 |
+
hidden_states (torch.Tensor): Encoded hidden states, shape [bsz, d_model, tgt_len]
|
272 |
+
output_length (torch.Tensor): Output sequence length for each sample, shape [bsz]
|
273 |
+
hidden_states_all_layers (tuple): Tuple containing hidden states for each layer, including initial input
|
274 |
+
"""
|
275 |
+
# Ensure input feature data type consistent with convolution layer weights
|
276 |
+
input_features = input_features.to(self.conv1.weight.dtype) # (B, D, T)
|
277 |
+
|
278 |
+
# First layer convolution + GELU activation, Convert Mel spectrogram to hidden states
|
279 |
+
inputs_embeds = nn.functional.gelu(self.conv1(input_features)) # (B, D, T)
|
280 |
+
|
281 |
+
# Second layer convolution + GELU activation, Apply downsampling with stride_size
|
282 |
+
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds)) # (B, D, T)
|
283 |
+
|
284 |
+
# Calculate output length: Result after downsampling with stride_size
|
285 |
+
output_length = (input_length // self.stride_size).long() # (B,)
|
286 |
+
|
287 |
+
# Adjust dimension order to [bsz, seq_len, d_model] for Transformer input
|
288 |
+
hidden_states = inputs_embeds.permute(0, 2, 1) # (B, T, D)
|
289 |
+
|
290 |
+
# Get batch size and target sequence length
|
291 |
+
bsz, tgt_len, _ = hidden_states.size()
|
292 |
+
|
293 |
+
# According to current sequence length, take or use complete positional embedding
|
294 |
+
if tgt_len < self.positional_embedding.shape[0]:
|
295 |
+
current_positional_embedding = self.positional_embedding[:tgt_len]
|
296 |
+
else:
|
297 |
+
current_positional_embedding = self.positional_embedding
|
298 |
+
|
299 |
+
# Add input embedding to positional embedding, convert to float to avoid precision issues
|
300 |
+
hidden_states = (hidden_states.to(torch.float32) + current_positional_embedding).to(hidden_states.dtype)
|
301 |
+
|
302 |
+
# Generate sequence mask for processing variable-length sequence
|
303 |
+
attention_mask = get_sequence_mask(hidden_states, output_length) # [bsz, tgt_len, 1]
|
304 |
+
|
305 |
+
# Initialize hidden states list for storing output for each layer (if needed)
|
306 |
+
hidden_states_all_layers = () if output_hidden_states else None
|
307 |
+
|
308 |
+
# Process hidden states through Transformer encoder layer by layer
|
309 |
+
for encoder_layer in self.layers:
|
310 |
+
if output_hidden_states:
|
311 |
+
hidden_states_all_layers = hidden_states_all_layers + (hidden_states,)
|
312 |
+
hidden_states = encoder_layer(hidden_states, output_length) # [bsz, tgt_len, d_model]
|
313 |
+
|
314 |
+
# Normalize hidden states
|
315 |
+
hidden_states = self.layer_norm(hidden_states) # [bsz, tgt_len, d_model]
|
316 |
+
if output_hidden_states:
|
317 |
+
hidden_states_all_layers = hidden_states_all_layers + (hidden_states,)
|
318 |
+
|
319 |
+
# Use mask to zero out padding parts and ensure output only retains valid data
|
320 |
+
hidden_states = torch.where(attention_mask, hidden_states, 0) # [bsz, tgt_len, d_model]
|
321 |
+
hidden_states = hidden_states.transpose(1, 2) # [bsz, d_model, tgt_len]
|
322 |
+
|
323 |
+
if not output_hidden_states:
|
324 |
+
return hidden_states, output_length
|
325 |
+
else:
|
326 |
+
return hidden_states, output_length, hidden_states_all_layers
|
327 |
+
|
328 |
+
# Define audio decoder to convert hidden states to Mel spectrogram
|
329 |
+
class OmniAudioDecoder(nn.Module):
|
330 |
+
def __init__(
|
331 |
+
self,
|
332 |
+
num_mel_bins=128,
|
333 |
+
sampling_rate=16000,
|
334 |
+
hop_length=160,
|
335 |
+
stride_size=2,
|
336 |
+
kernel_size=3,
|
337 |
+
d_model=1280,
|
338 |
+
scale_embedding=True,
|
339 |
+
max_audio_seconds=30,
|
340 |
+
decoder_layers=32,
|
341 |
+
decoder_attention_heads=20,
|
342 |
+
decoder_ffn_dim=5120,
|
343 |
+
activation_function="gelu",
|
344 |
+
attn_type="varlen" # New parameter, select attention mechanism type
|
345 |
+
):
|
346 |
+
super().__init__()
|
347 |
+
self.max_source_positions = (max_audio_seconds * sampling_rate // hop_length) // stride_size
|
348 |
+
self.embed_scale = math.sqrt(d_model) if scale_embedding else 1.0
|
349 |
+
self.num_mel_bins = num_mel_bins
|
350 |
+
self.d_model = d_model
|
351 |
+
self.stride_size = stride_size
|
352 |
+
|
353 |
+
# Correct transpose convolution layer to ensure output length close to stride_size times
|
354 |
+
self.deconv1 = nn.ConvTranspose1d(
|
355 |
+
d_model,
|
356 |
+
d_model,
|
357 |
+
kernel_size=kernel_size,
|
358 |
+
stride=stride_size,
|
359 |
+
padding=0, # Do not fill input side
|
360 |
+
output_padding=0 # Can be adjusted to precisely control length
|
361 |
+
)
|
362 |
+
self.deconv2 = nn.ConvTranspose1d(
|
363 |
+
d_model,
|
364 |
+
num_mel_bins,
|
365 |
+
kernel_size=kernel_size,
|
366 |
+
stride=1, # Only convert channels, do not change length
|
367 |
+
padding=0
|
368 |
+
)
|
369 |
+
|
370 |
+
# Positional embedding remains consistent
|
371 |
+
self.register_buffer("positional_embedding", sinusoids(self.max_source_positions, d_model)) # (T, D)
|
372 |
+
|
373 |
+
# Transformer decoder layer
|
374 |
+
self.layers = nn.ModuleList([
|
375 |
+
OmniWhisperTransformerLayer(
|
376 |
+
activation_function=activation_function,
|
377 |
+
d_model=d_model,
|
378 |
+
attention_heads=decoder_attention_heads,
|
379 |
+
ffn_dim=decoder_ffn_dim,
|
380 |
+
causal=False, # Decoder uses causal attention
|
381 |
+
attn_type=attn_type # Pass attention type
|
382 |
+
) for _ in range(decoder_layers)
|
383 |
+
])
|
384 |
+
self.layer_norm = nn.LayerNorm(d_model)
|
385 |
+
|
386 |
+
def forward(self, hidden_states, input_length): # (B, D, T)
|
387 |
+
# Input is hidden state output from encoder
|
388 |
+
hidden_states = hidden_states.transpose(1, 2) # (B, T, D)
|
389 |
+
bsz, tgt_len, _ = hidden_states.size()
|
390 |
+
|
391 |
+
# Add positional embedding
|
392 |
+
if tgt_len < self.positional_embedding.shape[0]:
|
393 |
+
current_positional_embedding = self.positional_embedding[:tgt_len] # (T, D)
|
394 |
+
else:
|
395 |
+
current_positional_embedding = self.positional_embedding
|
396 |
+
hidden_states = (hidden_states.to(torch.float32) + current_positional_embedding).to(hidden_states.dtype) # (B, T, D)
|
397 |
+
|
398 |
+
# Generate sequence mask
|
399 |
+
attention_mask = get_sequence_mask(hidden_states, input_length) # [bsz, tgt_len, 1]
|
400 |
+
|
401 |
+
# Process through decoder layer
|
402 |
+
for decoder_layer in self.layers:
|
403 |
+
hidden_states = decoder_layer(hidden_states, input_length) # [bsz, tgt_len, d_model]
|
404 |
+
|
405 |
+
# Final layer normalization
|
406 |
+
hidden_states = self.layer_norm(hidden_states) # [bsz, tgt_len, d_model]
|
407 |
+
|
408 |
+
# Use mask to zero out padding parts
|
409 |
+
hidden_states = torch.where(attention_mask, hidden_states, 0) # [bsz, tgt_len, d_model]
|
410 |
+
|
411 |
+
# Process through transpose convolution layer to reconstruct audio features
|
412 |
+
hidden_states = hidden_states.permute(0, 2, 1) # (B, D, T)
|
413 |
+
output_features = nn.functional.gelu(self.deconv1(hidden_states)) # (B, D, T)
|
414 |
+
output_features = nn.functional.gelu(self.deconv2(output_features)) # (B, D, T)
|
415 |
+
|
416 |
+
# If strictly stride_size times length is needed, can trim extra parts
|
417 |
+
expected_length = tgt_len * self.stride_size
|
418 |
+
if output_features.size(2) > expected_length:
|
419 |
+
output_features = output_features[:, :, :expected_length]
|
420 |
+
|
421 |
+
output_length = input_length * self.stride_size
|
422 |
+
# Output shape: [bsz, num_mel_bins, seq_len]
|
423 |
+
return output_features, output_length
|
424 |
+
|
425 |
+
# The following part remains unchanged
|
426 |
+
class ResidualDownConv(nn.Module):
|
427 |
+
def __init__(self, d_model=1280, avg_pooler=4):
|
428 |
+
"""
|
429 |
+
Downsampling module containing residual connection and convolution operation
|
430 |
+
|
431 |
+
Parameters:
|
432 |
+
d_model (int): Input and output hidden dimension
|
433 |
+
avg_pooler (int): Downsampling factor (convolution step)
|
434 |
+
"""
|
435 |
+
super().__init__()
|
436 |
+
self.d_model = d_model
|
437 |
+
self.avg_pooler = avg_pooler
|
438 |
+
self.intermediate_dim = d_model * avg_pooler
|
439 |
+
|
440 |
+
# Convolution layer for downsampling
|
441 |
+
self.gate_proj = nn.Conv1d(d_model, self.intermediate_dim, avg_pooler, avg_pooler, bias=False)
|
442 |
+
self.up_proj = nn.Conv1d(d_model, self.intermediate_dim, avg_pooler, avg_pooler, bias=False)
|
443 |
+
|
444 |
+
# Downsampled linear projection
|
445 |
+
self.down_proj = nn.Linear(self.intermediate_dim, self.intermediate_dim, bias=False)
|
446 |
+
|
447 |
+
# Activation function and layer normalization
|
448 |
+
self.act_fn = ACT2FN['silu']
|
449 |
+
self.layer_norm = nn.LayerNorm(self.intermediate_dim)
|
450 |
+
|
451 |
+
def forward(self, x, input_length):
|
452 |
+
"""
|
453 |
+
Forward propagation, execute downsampling and residual processing
|
454 |
+
|
455 |
+
Parameters:
|
456 |
+
x (torch.Tensor): Input tensor, shape [B, D, T]
|
457 |
+
|
458 |
+
Returns:
|
459 |
+
res (torch.Tensor): Downsampled feature, shape [B, intermediate_dim, seq_len // avg_pooler]
|
460 |
+
valid_mask (torch.Tensor): Valid sequence mask
|
461 |
+
"""
|
462 |
+
output_length = input_length // self.avg_pooler
|
463 |
+
x = x.transpose(1, 2) # (B, T, D)
|
464 |
+
batch_size, seq_len, _ = x.shape # (B, T, D)
|
465 |
+
if seq_len % self.avg_pooler != 0:
|
466 |
+
pad_size = self.avg_pooler - seq_len % self.avg_pooler
|
467 |
+
x = F.pad(x, (0, pad_size), "constant", 0)
|
468 |
+
|
469 |
+
xt = x.permute(0, 2, 1) # (B, D, T)
|
470 |
+
g = self.gate_proj(xt).permute(0, 2, 1) # (B, T, D)
|
471 |
+
u = self.up_proj(xt).permute(0, 2, 1) # (B, T, D)
|
472 |
+
x = x.reshape(batch_size, -1, self.intermediate_dim) # (B, T, D)
|
473 |
+
|
474 |
+
c = self.down_proj(self.act_fn(g) * u) # (B, T, D)
|
475 |
+
res = self.layer_norm(c + x) # (B, T, D)
|
476 |
+
res = res.transpose(1, 2) # (B, D, T)
|
477 |
+
return res, output_length # (B, D, T)
|
478 |
+
|
479 |
+
|
480 |
+
class UpConv(nn.Module):
|
481 |
+
def __init__(self, d_model=1280, stride=4):
|
482 |
+
"""
|
483 |
+
Simple upsampling module using transpose convolution
|
484 |
+
|
485 |
+
Parameters:
|
486 |
+
d_model (int): Input and output hidden dimension
|
487 |
+
stride (int): Upsampling factor (transpose convolution step)
|
488 |
+
"""
|
489 |
+
super().__init__()
|
490 |
+
self.d_model = d_model
|
491 |
+
self.stride = stride
|
492 |
+
|
493 |
+
# Simple transpose convolution layer to keep channel number consistent
|
494 |
+
self.up_conv = nn.ConvTranspose1d(
|
495 |
+
self.stride * d_model,
|
496 |
+
d_model,
|
497 |
+
kernel_size=stride,
|
498 |
+
stride=stride,
|
499 |
+
bias=False
|
500 |
+
)
|
501 |
+
|
502 |
+
def forward(self, x, input_length):
|
503 |
+
"""
|
504 |
+
Forward propagation, execute upsampling
|
505 |
+
|
506 |
+
Parameters:
|
507 |
+
x (torch.Tensor): Input tensor, shape [B, D * stride, T]
|
508 |
+
|
509 |
+
Returns:
|
510 |
+
res (torch.Tensor): Upsampled feature, shape [B, D, T * stride]
|
511 |
+
"""
|
512 |
+
# Directly apply transpose convolution
|
513 |
+
res = self.up_conv(x)
|
514 |
+
output_length = input_length * self.stride
|
515 |
+
return res, output_length
|
516 |
+
|
517 |
+
|
518 |
+
# Define Transformer encoder containing multiple Transformer layers for feature extraction and transformation
|
519 |
+
class Transformer(nn.Module):
|
520 |
+
def __init__(
|
521 |
+
self,
|
522 |
+
input_dim=1280, # Input feature dimension
|
523 |
+
d_model=1280, # Model's hidden state dimension (embedding dimension)
|
524 |
+
output_dim=1280, # Output feature dimension
|
525 |
+
max_source_positions=1500, # Maximum sequence length for positional embedding
|
526 |
+
encoder_layers=32, # Transformer encoder layer number
|
527 |
+
encoder_attention_heads=20, # Attention head number for each Transformer layer
|
528 |
+
encoder_ffn_dim=5120, # Intermediate dimension for feedforward network
|
529 |
+
activation_function="gelu", # Activation function type, default GELU
|
530 |
+
attn_type="varlen" # Attention mechanism type
|
531 |
+
):
|
532 |
+
super().__init__()
|
533 |
+
self.input_dim = input_dim # Save input dimension
|
534 |
+
self.d_model = d_model # Save hidden state dimension
|
535 |
+
self.output_dim = output_dim # Save output dimension
|
536 |
+
self.max_source_positions = max_source_positions # Save maximum sequence length
|
537 |
+
|
538 |
+
# If input dimension and model dimension are not consistent, add input projection layer
|
539 |
+
if input_dim != d_model:
|
540 |
+
self.proj = nn.Linear(input_dim, d_model, bias=True)
|
541 |
+
else:
|
542 |
+
self.proj = None # No need for input projection layer
|
543 |
+
|
544 |
+
# Register positional embedding buffer, using sine function to generate, shape (max_source_positions, d_model)
|
545 |
+
self.register_buffer("positional_embedding", sinusoids(self.max_source_positions, d_model))
|
546 |
+
|
547 |
+
# Create Transformer encoder layer list, each layer contains attention mechanism and feedforward network
|
548 |
+
self.layers = nn.ModuleList([
|
549 |
+
OmniWhisperTransformerLayer(
|
550 |
+
activation_function=activation_function,
|
551 |
+
d_model=d_model,
|
552 |
+
attention_heads=encoder_attention_heads,
|
553 |
+
ffn_dim=encoder_ffn_dim,
|
554 |
+
causal=False, # Encoder does not need causal attention
|
555 |
+
attn_type=attn_type # Pass attention type
|
556 |
+
) for _ in range(encoder_layers)
|
557 |
+
])
|
558 |
+
|
559 |
+
# Last layer normalization for stable output
|
560 |
+
self.layer_norm = nn.LayerNorm(d_model)
|
561 |
+
|
562 |
+
# If output dimension and model dimension are not consistent, add output projection layer
|
563 |
+
if output_dim != d_model:
|
564 |
+
self.out_proj = nn.Linear(d_model, output_dim, bias=True)
|
565 |
+
else:
|
566 |
+
self.out_proj = None # No need for output projection layer
|
567 |
+
|
568 |
+
def forward(self, input_features: torch.Tensor, input_length: torch.Tensor, output_hidden_states: bool = False):
|
569 |
+
"""
|
570 |
+
Forward propagation function to convert input features through Transformer layer to hidden state representation
|
571 |
+
|
572 |
+
Parameters:
|
573 |
+
input_features (torch.Tensor): Input features, shape [bsz, input_dim, seq_len] (B, input_dim, T)
|
574 |
+
input_length (torch.Tensor): Input sequence length for each sample, shape [bsz]
|
575 |
+
output_hidden_states (bool, optional): Whether to return hidden states for each layer, default False
|
576 |
+
|
577 |
+
Returns:
|
578 |
+
if output_hidden_states is False:
|
579 |
+
hidden_states (torch.Tensor): Encoded hidden states, shape [bsz, output_dim, seq_len] (B, output_dim, T)
|
580 |
+
output_length (torch.Tensor): Output sequence length for each sample, shape [bsz]
|
581 |
+
else:
|
582 |
+
hidden_states (torch.Tensor): Encoded hidden states, shape [bsz, output_dim, seq_len] (B, output_dim, T)
|
583 |
+
output_length (torch.Tensor): Output sequence length for each sample, shape [bsz]
|
584 |
+
hidden_states_all_layers (tuple): Tuple containing hidden states for each layer, each shape [bsz, seq_len, d_model]
|
585 |
+
"""
|
586 |
+
# Output length is the same as input length, Transformer does not change sequence length
|
587 |
+
output_length = input_length.long() # [bsz]
|
588 |
+
|
589 |
+
# If there is input projection layer, map input features from input_dim to d_model
|
590 |
+
if self.proj is not None:
|
591 |
+
hidden_states = self.proj(input_features.permute(0, 2, 1)).permute(0, 2, 1) # [bsz, d_model, seq_len] (B, D, T)
|
592 |
+
else:
|
593 |
+
hidden_states = input_features # [bsz, d_model, seq_len] (B, D, T)
|
594 |
+
|
595 |
+
# Adjust input dimension order to [bsz, seq_len, d_model] for Transformer input
|
596 |
+
hidden_states = hidden_states.permute(0, 2, 1) # [bsz, seq_len, d_model] (B, T, D)
|
597 |
+
|
598 |
+
# Get batch size and target sequence length
|
599 |
+
bsz, tgt_len, _ = hidden_states.size()
|
600 |
+
|
601 |
+
# According to current sequence length, take or use complete positional embedding
|
602 |
+
if tgt_len < self.positional_embedding.shape[0]:
|
603 |
+
current_positional_embedding = self.positional_embedding[:tgt_len] # [tgt_len, d_model]
|
604 |
+
else:
|
605 |
+
current_positional_embedding = self.positional_embedding # [max_source_positions, d_model]
|
606 |
+
|
607 |
+
# Add input features to positional embedding, convert to float to avoid precision issues
|
608 |
+
hidden_states = (hidden_states.to(torch.float32) + current_positional_embedding).to(hidden_states.dtype) # [bsz, seq_len, d_model]
|
609 |
+
|
610 |
+
# Generate sequence mask for processing variable-length sequence
|
611 |
+
attention_mask = get_sequence_mask(hidden_states, output_length) # [bsz, tgt_len, 1]
|
612 |
+
|
613 |
+
# Initialize hidden states list for storing output for each layer (if needed)
|
614 |
+
hidden_states_all_layers = () if output_hidden_states else None
|
615 |
+
|
616 |
+
# Process hidden states through Transformer encoder layer by layer
|
617 |
+
for encoder_layer in self.layers:
|
618 |
+
if output_hidden_states:
|
619 |
+
hidden_states_all_layers = hidden_states_all_layers + (hidden_states,)
|
620 |
+
hidden_states = encoder_layer(hidden_states, output_length) # [bsz, seq_len, d_model]
|
621 |
+
|
622 |
+
# Normalize hidden states
|
623 |
+
hidden_states = self.layer_norm(hidden_states) # [bsz, seq_len, d_model]
|
624 |
+
if output_hidden_states:
|
625 |
+
hidden_states_all_layers = hidden_states_all_layers + (hidden_states,)
|
626 |
+
|
627 |
+
# Use mask to zero out padding parts and ensure output only retains valid data
|
628 |
+
hidden_states = torch.where(attention_mask, hidden_states, 0) # [bsz, seq_len, d_model]
|
629 |
+
|
630 |
+
# Adjust dimension order to [bsz, d_model, seq_len]
|
631 |
+
hidden_states = hidden_states.transpose(1, 2) # [bsz, d_model, seq_len] (B, D, T)
|
632 |
+
|
633 |
+
# If there is output projection layer, map hidden states from d_model to output_dim
|
634 |
+
if self.out_proj is not None:
|
635 |
+
hidden_states = self.out_proj(hidden_states.permute(0, 2, 1)).permute(0, 2, 1) # [bsz, output_dim, seq_len] (B, output_dim, T)
|
636 |
+
|
637 |
+
if not output_hidden_states:
|
638 |
+
return hidden_states, output_length
|
639 |
+
else:
|
640 |
+
return hidden_states, output_length, hidden_states_all_layers
|
641 |
+
|
642 |
+
|
643 |
+
def safe_log(x: torch.Tensor, clip_val: float = 1e-7) -> torch.Tensor:
|
644 |
+
"""
|
645 |
+
Computes the element-wise logarithm of the input tensor with clipping to avoid near-zero values.
|
646 |
+
|
647 |
+
Args:
|
648 |
+
x (Tensor): Input tensor.
|
649 |
+
clip_val (float, optional): Minimum value to clip the input tensor. Defaults to 1e-7.
|
650 |
+
|
651 |
+
Returns:
|
652 |
+
Tensor: Element-wise logarithm of the input tensor with clipping applied.
|
653 |
+
"""
|
654 |
+
return torch.log(torch.clip(x, min=clip_val))
|
655 |
+
|
656 |
+
|
657 |
+
def symlog(x: torch.Tensor) -> torch.Tensor:
|
658 |
+
return torch.sign(x) * torch.log1p(x.abs())
|
659 |
+
|
660 |
+
|
661 |
+
def symexp(x: torch.Tensor) -> torch.Tensor:
|
662 |
+
return torch.sign(x) * (torch.exp(x.abs()) - 1)
|
663 |
+
|
664 |
+
|
665 |
+
class STFT(nn.Module):
|
666 |
+
def __init__(
|
667 |
+
self,
|
668 |
+
n_fft: int,
|
669 |
+
hop_length: int,
|
670 |
+
win_length: int,
|
671 |
+
center=True,
|
672 |
+
):
|
673 |
+
super().__init__()
|
674 |
+
self.center = center
|
675 |
+
self.n_fft = n_fft
|
676 |
+
self.hop_length = hop_length
|
677 |
+
self.win_length = win_length
|
678 |
+
window = torch.hann_window(win_length)
|
679 |
+
self.register_buffer("window", window)
|
680 |
+
|
681 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
682 |
+
# x: (B, T * hop_length)
|
683 |
+
|
684 |
+
if not self.center:
|
685 |
+
pad = self.win_length - self.hop_length
|
686 |
+
x = torch.nn.functional.pad(x, (pad // 2, pad // 2), mode="reflect")
|
687 |
+
|
688 |
+
stft_spec = torch.stft(
|
689 |
+
x,
|
690 |
+
self.n_fft,
|
691 |
+
hop_length=self.hop_length,
|
692 |
+
win_length=self.win_length,
|
693 |
+
window=self.window,
|
694 |
+
center=self.center,
|
695 |
+
return_complex=False,
|
696 |
+
) # (B, n_fft // 2 + 1, T, 2)
|
697 |
+
|
698 |
+
rea = stft_spec[:, :, :, 0] # (B, n_fft // 2 + 1, T, 2)
|
699 |
+
imag = stft_spec[:, :, :, 1] # (B, n_fft // 2 + 1, T, 2)
|
700 |
+
|
701 |
+
log_mag = torch.log(
|
702 |
+
torch.abs(torch.sqrt(torch.pow(rea, 2) + torch.pow(imag, 2))) + 1e-5
|
703 |
+
) # (B, n_fft // 2 + 1, T)
|
704 |
+
phase = torch.atan2(imag, rea) # (B, n_fft // 2 + 1, T)
|
705 |
+
|
706 |
+
return log_mag, phase
|
707 |
+
|
708 |
+
|
709 |
+
class ISTFT(nn.Module):
|
710 |
+
"""
|
711 |
+
Custom implementation of ISTFT since torch.istft doesn't allow custom padding (other than `center=True`) with
|
712 |
+
windowing. This is because the NOLA (Nonzero Overlap Add) check fails at the edges.
|
713 |
+
See issue: https://github.com/pytorch/pytorch/issues/62323
|
714 |
+
Specifically, in the context of neural vocoding we are interested in "same" padding analogous to CNNs.
|
715 |
+
The NOLA constraint is met as we trim padded samples anyway.
|
716 |
+
|
717 |
+
Args:
|
718 |
+
n_fft (int): Size of Fourier transform.
|
719 |
+
hop_length (int): The distance between neighboring sliding window frames.
|
720 |
+
win_length (int): The size of window frame and STFT filter.
|
721 |
+
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
722 |
+
"""
|
723 |
+
|
724 |
+
def __init__(
|
725 |
+
self, n_fft: int, hop_length: int, win_length: int, padding: str = "same"
|
726 |
+
):
|
727 |
+
super().__init__()
|
728 |
+
if padding not in ["center", "same"]:
|
729 |
+
raise ValueError("Padding must be 'center' or 'same'.")
|
730 |
+
self.padding = padding
|
731 |
+
self.n_fft = n_fft
|
732 |
+
self.hop_length = hop_length
|
733 |
+
self.win_length = win_length
|
734 |
+
window = torch.hann_window(win_length)
|
735 |
+
self.register_buffer("window", window)
|
736 |
+
|
737 |
+
def forward(self, spec: torch.Tensor) -> torch.Tensor:
|
738 |
+
"""
|
739 |
+
Compute the Inverse Short Time Fourier Transform (ISTFT) of a complex spectrogram.
|
740 |
+
|
741 |
+
Args:
|
742 |
+
spec (Tensor): Input complex spectrogram of shape (B, N, T), where B is the batch size,
|
743 |
+
N is the number of frequency bins, and T is the number of time frames.
|
744 |
+
|
745 |
+
Returns:
|
746 |
+
Tensor: Reconstructed time-domain signal of shape (B, L), where L is the length of the output signal.
|
747 |
+
"""
|
748 |
+
if self.padding == "center":
|
749 |
+
# Fallback to pytorch native implementation
|
750 |
+
return torch.istft(
|
751 |
+
spec,
|
752 |
+
self.n_fft,
|
753 |
+
self.hop_length,
|
754 |
+
self.win_length,
|
755 |
+
self.window,
|
756 |
+
center=True,
|
757 |
+
)
|
758 |
+
elif self.padding == "same":
|
759 |
+
pad = (self.win_length - self.hop_length) // 2
|
760 |
+
else:
|
761 |
+
raise ValueError("Padding must be 'center' or 'same'.")
|
762 |
+
|
763 |
+
assert spec.dim() == 3, "Expected a 3D tensor as input"
|
764 |
+
B, N, T = spec.shape
|
765 |
+
|
766 |
+
# Inverse FFT
|
767 |
+
ifft = torch.fft.irfft(spec, self.n_fft, dim=1, norm="backward")
|
768 |
+
ifft = ifft * self.window[None, :, None]
|
769 |
+
|
770 |
+
# Overlap and Add
|
771 |
+
output_size = (T - 1) * self.hop_length + self.win_length
|
772 |
+
y = torch.nn.functional.fold(
|
773 |
+
ifft,
|
774 |
+
output_size=(1, output_size),
|
775 |
+
kernel_size=(1, self.win_length),
|
776 |
+
stride=(1, self.hop_length),
|
777 |
+
)[:, 0, 0, pad:-pad]
|
778 |
+
|
779 |
+
# Window envelope
|
780 |
+
window_sq = self.window.square().expand(1, T, -1).transpose(1, 2)
|
781 |
+
window_envelope = torch.nn.functional.fold(
|
782 |
+
window_sq,
|
783 |
+
output_size=(1, output_size),
|
784 |
+
kernel_size=(1, self.win_length),
|
785 |
+
stride=(1, self.hop_length),
|
786 |
+
).squeeze()[pad:-pad]
|
787 |
+
|
788 |
+
# Normalize
|
789 |
+
assert (window_envelope > 1e-11).all()
|
790 |
+
y = y / window_envelope
|
791 |
+
|
792 |
+
return y
|
793 |
+
|
794 |
+
|
795 |
+
class MDCT(nn.Module):
|
796 |
+
"""
|
797 |
+
Modified Discrete Cosine Transform (MDCT) module.
|
798 |
+
|
799 |
+
Args:
|
800 |
+
frame_len (int): Length of the MDCT frame.
|
801 |
+
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
802 |
+
"""
|
803 |
+
|
804 |
+
def __init__(self, frame_len: int, padding: str = "same"):
|
805 |
+
super().__init__()
|
806 |
+
if padding not in ["center", "same"]:
|
807 |
+
raise ValueError("Padding must be 'center' or 'same'.")
|
808 |
+
self.padding = padding
|
809 |
+
self.frame_len = frame_len
|
810 |
+
N = frame_len // 2
|
811 |
+
n0 = (N + 1) / 2
|
812 |
+
window = torch.from_numpy(scipy.signal.cosine(frame_len)).float()
|
813 |
+
self.register_buffer("window", window)
|
814 |
+
|
815 |
+
pre_twiddle = torch.exp(-1j * torch.pi * torch.arange(frame_len) / frame_len)
|
816 |
+
post_twiddle = torch.exp(-1j * torch.pi * n0 * (torch.arange(N) + 0.5) / N)
|
817 |
+
# view_as_real: NCCL Backend does not support ComplexFloat data type
|
818 |
+
# https://github.com/pytorch/pytorch/issues/71613
|
819 |
+
self.register_buffer("pre_twiddle", view_as_real(pre_twiddle))
|
820 |
+
self.register_buffer("post_twiddle", view_as_real(post_twiddle))
|
821 |
+
|
822 |
+
def forward(self, audio: torch.Tensor) -> torch.Tensor:
|
823 |
+
"""
|
824 |
+
Apply the Modified Discrete Cosine Transform (MDCT) to the input audio.
|
825 |
+
|
826 |
+
Args:
|
827 |
+
audio (Tensor): Input audio waveform of shape (B, T), where B is the batch size
|
828 |
+
and T is the length of the audio.
|
829 |
+
|
830 |
+
Returns:
|
831 |
+
Tensor: MDCT coefficients of shape (B, L, N), where L is the number of output frames
|
832 |
+
and N is the number of frequency bins.
|
833 |
+
"""
|
834 |
+
if self.padding == "center":
|
835 |
+
audio = torch.nn.functional.pad(
|
836 |
+
audio, (self.frame_len // 2, self.frame_len // 2)
|
837 |
+
)
|
838 |
+
elif self.padding == "same":
|
839 |
+
# hop_length is 1/2 frame_len
|
840 |
+
audio = torch.nn.functional.pad(
|
841 |
+
audio, (self.frame_len // 4, self.frame_len // 4)
|
842 |
+
)
|
843 |
+
else:
|
844 |
+
raise ValueError("Padding must be 'center' or 'same'.")
|
845 |
+
|
846 |
+
x = audio.unfold(-1, self.frame_len, self.frame_len // 2)
|
847 |
+
N = self.frame_len // 2
|
848 |
+
x = x * self.window.expand(x.shape)
|
849 |
+
X = torch.fft.fft(
|
850 |
+
x * view_as_complex(self.pre_twiddle).expand(x.shape), dim=-1
|
851 |
+
)[..., :N]
|
852 |
+
res = X * view_as_complex(self.post_twiddle).expand(X.shape) * np.sqrt(1 / N)
|
853 |
+
return torch.real(res) * np.sqrt(2)
|
854 |
+
|
855 |
+
|
856 |
+
class IMDCT(nn.Module):
|
857 |
+
"""
|
858 |
+
Inverse Modified Discrete Cosine Transform (IMDCT) module.
|
859 |
+
|
860 |
+
Args:
|
861 |
+
frame_len (int): Length of the MDCT frame.
|
862 |
+
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
863 |
+
"""
|
864 |
+
|
865 |
+
def __init__(self, frame_len: int, padding: str = "same"):
|
866 |
+
super().__init__()
|
867 |
+
if padding not in ["center", "same"]:
|
868 |
+
raise ValueError("Padding must be 'center' or 'same'.")
|
869 |
+
self.padding = padding
|
870 |
+
self.frame_len = frame_len
|
871 |
+
N = frame_len // 2
|
872 |
+
n0 = (N + 1) / 2
|
873 |
+
window = torch.from_numpy(scipy.signal.cosine(frame_len)).float()
|
874 |
+
self.register_buffer("window", window)
|
875 |
+
|
876 |
+
pre_twiddle = torch.exp(1j * torch.pi * n0 * torch.arange(N * 2) / N)
|
877 |
+
post_twiddle = torch.exp(1j * torch.pi * (torch.arange(N * 2) + n0) / (N * 2))
|
878 |
+
self.register_buffer("pre_twiddle", view_as_real(pre_twiddle))
|
879 |
+
self.register_buffer("post_twiddle", view_as_real(post_twiddle))
|
880 |
+
|
881 |
+
def forward(self, X: torch.Tensor) -> torch.Tensor:
|
882 |
+
"""
|
883 |
+
Apply the Inverse Modified Discrete Cosine Transform (IMDCT) to the input MDCT coefficients.
|
884 |
+
|
885 |
+
Args:
|
886 |
+
X (Tensor): Input MDCT coefficients of shape (B, L, N), where B is the batch size,
|
887 |
+
L is the number of frames, and N is the number of frequency bins.
|
888 |
+
|
889 |
+
Returns:
|
890 |
+
Tensor: Reconstructed audio waveform of shape (B, T), where T is the length of the audio.
|
891 |
+
"""
|
892 |
+
B, L, N = X.shape
|
893 |
+
Y = torch.zeros((B, L, N * 2), dtype=X.dtype, device=X.device)
|
894 |
+
Y[..., :N] = X
|
895 |
+
Y[..., N:] = -1 * torch.conj(torch.flip(X, dims=(-1,)))
|
896 |
+
y = torch.fft.ifft(
|
897 |
+
Y * view_as_complex(self.pre_twiddle).expand(Y.shape), dim=-1
|
898 |
+
)
|
899 |
+
y = (
|
900 |
+
torch.real(y * view_as_complex(self.post_twiddle).expand(y.shape))
|
901 |
+
* np.sqrt(N)
|
902 |
+
* np.sqrt(2)
|
903 |
+
)
|
904 |
+
result = y * self.window.expand(y.shape)
|
905 |
+
output_size = (1, (L + 1) * N)
|
906 |
+
audio = torch.nn.functional.fold(
|
907 |
+
result.transpose(1, 2),
|
908 |
+
output_size=output_size,
|
909 |
+
kernel_size=(1, self.frame_len),
|
910 |
+
stride=(1, self.frame_len // 2),
|
911 |
+
)[:, 0, 0, :]
|
912 |
+
|
913 |
+
if self.padding == "center":
|
914 |
+
pad = self.frame_len // 2
|
915 |
+
elif self.padding == "same":
|
916 |
+
pad = self.frame_len // 4
|
917 |
+
else:
|
918 |
+
raise ValueError("Padding must be 'center' or 'same'.")
|
919 |
+
|
920 |
+
audio = audio[:, pad:-pad]
|
921 |
+
return audio
|
922 |
+
|
923 |
+
|
924 |
+
class FourierHead(nn.Module):
|
925 |
+
"""Base class for inverse fourier modules."""
|
926 |
+
|
927 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
928 |
+
"""
|
929 |
+
Args:
|
930 |
+
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
|
931 |
+
L is the sequence length, and H denotes the model dimension.
|
932 |
+
|
933 |
+
Returns:
|
934 |
+
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
|
935 |
+
"""
|
936 |
+
raise NotImplementedError("Subclasses must implement the forward method.")
|
937 |
+
|
938 |
+
|
939 |
+
class ISTFTHead(FourierHead):
|
940 |
+
"""
|
941 |
+
ISTFT Head module for predicting STFT complex coefficients.
|
942 |
+
|
943 |
+
Args:
|
944 |
+
dim (int): Hidden dimension of the model.
|
945 |
+
n_fft (int): Size of Fourier transform.
|
946 |
+
hop_length (int): The distance between neighboring sliding window frames, which should align with
|
947 |
+
the resolution of the input features.
|
948 |
+
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
949 |
+
"""
|
950 |
+
|
951 |
+
def __init__(self, dim: int, n_fft: int, hop_length: int, padding: str = "same"):
|
952 |
+
super().__init__()
|
953 |
+
out_dim = n_fft + 2
|
954 |
+
self.out = torch.nn.Linear(dim, out_dim)
|
955 |
+
self.istft = ISTFT(
|
956 |
+
n_fft=n_fft, hop_length=hop_length, win_length=n_fft, padding=padding
|
957 |
+
)
|
958 |
+
|
959 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
960 |
+
"""
|
961 |
+
Forward pass of the ISTFTHead module.
|
962 |
+
|
963 |
+
Args:
|
964 |
+
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
|
965 |
+
L is the sequence length, and H denotes the model dimension.
|
966 |
+
|
967 |
+
Returns:
|
968 |
+
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
|
969 |
+
"""
|
970 |
+
x = self.out(x).transpose(1, 2)
|
971 |
+
mag, p = x.chunk(2, dim=1)
|
972 |
+
mag = torch.exp(mag)
|
973 |
+
mag = torch.clip(
|
974 |
+
mag, max=1e2
|
975 |
+
) # safeguard to prevent excessively large magnitudes
|
976 |
+
# wrapping happens here. These two lines produce real and imaginary value
|
977 |
+
x = torch.cos(p)
|
978 |
+
y = torch.sin(p)
|
979 |
+
# recalculating phase here does not produce anything new
|
980 |
+
# only costs time
|
981 |
+
# phase = torch.atan2(y, x)
|
982 |
+
# S = mag * torch.exp(phase * 1j)
|
983 |
+
# better directly produce the complex value
|
984 |
+
original_dtype = x.dtype
|
985 |
+
S = mag.float() * (x.float() + 1j * y.float())
|
986 |
+
audio = self.istft(S)
|
987 |
+
audio = audio.to(original_dtype)
|
988 |
+
return audio
|
989 |
+
|
990 |
+
|
991 |
+
class IMDCTSymExpHead(FourierHead):
|
992 |
+
"""
|
993 |
+
IMDCT Head module for predicting MDCT coefficients with symmetric exponential function
|
994 |
+
|
995 |
+
Args:
|
996 |
+
dim (int): Hidden dimension of the model.
|
997 |
+
mdct_frame_len (int): Length of the MDCT frame.
|
998 |
+
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
999 |
+
sample_rate (int, optional): The sample rate of the audio. If provided, the last layer will be initialized
|
1000 |
+
based on perceptual scaling. Defaults to None.
|
1001 |
+
clip_audio (bool, optional): Whether to clip the audio output within the range of [-1.0, 1.0]. Defaults to False.
|
1002 |
+
"""
|
1003 |
+
|
1004 |
+
def __init__(
|
1005 |
+
self,
|
1006 |
+
dim: int,
|
1007 |
+
mdct_frame_len: int,
|
1008 |
+
padding: str = "same",
|
1009 |
+
sample_rate: Optional[int] = None,
|
1010 |
+
clip_audio: bool = False,
|
1011 |
+
):
|
1012 |
+
super().__init__()
|
1013 |
+
out_dim = mdct_frame_len // 2
|
1014 |
+
self.out = nn.Linear(dim, out_dim)
|
1015 |
+
self.imdct = IMDCT(frame_len=mdct_frame_len, padding=padding)
|
1016 |
+
self.clip_audio = clip_audio
|
1017 |
+
|
1018 |
+
if sample_rate is not None:
|
1019 |
+
# optionally init the last layer following mel-scale
|
1020 |
+
m_max = _hz_to_mel(sample_rate // 2)
|
1021 |
+
m_pts = torch.linspace(0, m_max, out_dim)
|
1022 |
+
f_pts = _mel_to_hz(m_pts)
|
1023 |
+
scale = 1 - (f_pts / f_pts.max())
|
1024 |
+
|
1025 |
+
with torch.no_grad():
|
1026 |
+
self.out.weight.mul_(scale.view(-1, 1))
|
1027 |
+
|
1028 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1029 |
+
"""
|
1030 |
+
Forward pass of the IMDCTSymExpHead module.
|
1031 |
+
|
1032 |
+
Args:
|
1033 |
+
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
|
1034 |
+
L is the sequence length, and H denotes the model dimension.
|
1035 |
+
|
1036 |
+
Returns:
|
1037 |
+
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
|
1038 |
+
"""
|
1039 |
+
x = self.out(x)
|
1040 |
+
x = symexp(x)
|
1041 |
+
x = torch.clip(
|
1042 |
+
x, min=-1e2, max=1e2
|
1043 |
+
) # safeguard to prevent excessively large magnitudes
|
1044 |
+
audio = self.imdct(x)
|
1045 |
+
if self.clip_audio:
|
1046 |
+
audio = torch.clip(x, min=-1.0, max=1.0)
|
1047 |
+
|
1048 |
+
return audio
|
1049 |
+
|
1050 |
+
|
1051 |
+
class IMDCTCosHead(FourierHead):
|
1052 |
+
"""
|
1053 |
+
IMDCT Head module for predicting MDCT coefficients with parametrizing MDCT = exp(m) · cos(p)
|
1054 |
+
|
1055 |
+
Args:
|
1056 |
+
dim (int): Hidden dimension of the model.
|
1057 |
+
mdct_frame_len (int): Length of the MDCT frame.
|
1058 |
+
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
1059 |
+
clip_audio (bool, optional): Whether to clip the audio output within the range of [-1.0, 1.0]. Defaults to False.
|
1060 |
+
"""
|
1061 |
+
|
1062 |
+
def __init__(
|
1063 |
+
self,
|
1064 |
+
dim: int,
|
1065 |
+
mdct_frame_len: int,
|
1066 |
+
padding: str = "same",
|
1067 |
+
clip_audio: bool = False,
|
1068 |
+
):
|
1069 |
+
super().__init__()
|
1070 |
+
self.clip_audio = clip_audio
|
1071 |
+
self.out = nn.Linear(dim, mdct_frame_len)
|
1072 |
+
self.imdct = IMDCT(frame_len=mdct_frame_len, padding=padding)
|
1073 |
+
|
1074 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1075 |
+
"""
|
1076 |
+
Forward pass of the IMDCTCosHead module.
|
1077 |
+
|
1078 |
+
Args:
|
1079 |
+
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
|
1080 |
+
L is the sequence length, and H denotes the model dimension.
|
1081 |
+
|
1082 |
+
Returns:
|
1083 |
+
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
|
1084 |
+
"""
|
1085 |
+
x = self.out(x)
|
1086 |
+
m, p = x.chunk(2, dim=2)
|
1087 |
+
m = torch.exp(m).clip(
|
1088 |
+
max=1e2
|
1089 |
+
) # safeguard to prevent excessively large magnitudes
|
1090 |
+
audio = self.imdct(m * torch.cos(p))
|
1091 |
+
if self.clip_audio:
|
1092 |
+
audio = torch.clip(x, min=-1.0, max=1.0)
|
1093 |
+
return audio
|
1094 |
+
|
1095 |
+
|
1096 |
+
class ConvNeXtBlock(nn.Module):
|
1097 |
+
"""ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal.
|
1098 |
+
|
1099 |
+
Args:
|
1100 |
+
dim (int): Number of input channels.
|
1101 |
+
intermediate_dim (int): Dimensionality of the intermediate layer.
|
1102 |
+
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
|
1103 |
+
Defaults to None.
|
1104 |
+
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
|
1105 |
+
None means non-conditional LayerNorm. Defaults to None.
|
1106 |
+
"""
|
1107 |
+
|
1108 |
+
def __init__(
|
1109 |
+
self,
|
1110 |
+
dim: int,
|
1111 |
+
intermediate_dim: int,
|
1112 |
+
layer_scale_init_value: float,
|
1113 |
+
adanorm_num_embeddings: Optional[int] = None,
|
1114 |
+
):
|
1115 |
+
super().__init__()
|
1116 |
+
self.dwconv = nn.Conv1d(
|
1117 |
+
dim, dim, kernel_size=7, padding=3, groups=dim
|
1118 |
+
) # depthwise conv
|
1119 |
+
self.adanorm = adanorm_num_embeddings is not None
|
1120 |
+
if adanorm_num_embeddings:
|
1121 |
+
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6)
|
1122 |
+
else:
|
1123 |
+
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
1124 |
+
self.pwconv1 = nn.Linear(
|
1125 |
+
dim, intermediate_dim
|
1126 |
+
) # pointwise/1x1 convs, implemented with linear layers
|
1127 |
+
self.act = nn.GELU()
|
1128 |
+
self.pwconv2 = nn.Linear(intermediate_dim, dim)
|
1129 |
+
self.gamma = (
|
1130 |
+
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
|
1131 |
+
if layer_scale_init_value > 0
|
1132 |
+
else None
|
1133 |
+
)
|
1134 |
+
|
1135 |
+
def forward(
|
1136 |
+
self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None
|
1137 |
+
) -> torch.Tensor:
|
1138 |
+
residual = x
|
1139 |
+
x = self.dwconv(x)
|
1140 |
+
x = x.transpose(1, 2) # (B, C, T) -> (B, T, C)
|
1141 |
+
if self.adanorm:
|
1142 |
+
assert cond_embedding_id is not None
|
1143 |
+
x = self.norm(x, cond_embedding_id)
|
1144 |
+
else:
|
1145 |
+
x = self.norm(x)
|
1146 |
+
x = self.pwconv1(x)
|
1147 |
+
x = self.act(x)
|
1148 |
+
x = self.pwconv2(x)
|
1149 |
+
if self.gamma is not None:
|
1150 |
+
x = self.gamma * x
|
1151 |
+
x = x.transpose(1, 2) # (B, T, C) -> (B, C, T)
|
1152 |
+
|
1153 |
+
x = residual + x
|
1154 |
+
return x
|
1155 |
+
|
1156 |
+
|
1157 |
+
class AdaLayerNorm(nn.Module):
|
1158 |
+
"""
|
1159 |
+
Adaptive Layer Normalization module with learnable embeddings per `num_embeddings` classes
|
1160 |
+
|
1161 |
+
Args:
|
1162 |
+
num_embeddings (int): Number of embeddings.
|
1163 |
+
embedding_dim (int): Dimension of the embeddings.
|
1164 |
+
"""
|
1165 |
+
|
1166 |
+
def __init__(self, num_embeddings: int, embedding_dim: int, eps: float = 1e-6):
|
1167 |
+
super().__init__()
|
1168 |
+
self.eps = eps
|
1169 |
+
self.dim = embedding_dim
|
1170 |
+
self.scale = nn.Embedding(
|
1171 |
+
num_embeddings=num_embeddings, embedding_dim=embedding_dim
|
1172 |
+
)
|
1173 |
+
self.shift = nn.Embedding(
|
1174 |
+
num_embeddings=num_embeddings, embedding_dim=embedding_dim
|
1175 |
+
)
|
1176 |
+
torch.nn.init.ones_(self.scale.weight)
|
1177 |
+
torch.nn.init.zeros_(self.shift.weight)
|
1178 |
+
|
1179 |
+
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor) -> torch.Tensor:
|
1180 |
+
scale = self.scale(cond_embedding_id)
|
1181 |
+
shift = self.shift(cond_embedding_id)
|
1182 |
+
x = nn.functional.layer_norm(x, (self.dim,), eps=self.eps)
|
1183 |
+
x = x * scale + shift
|
1184 |
+
return x
|
1185 |
+
|
1186 |
+
|
1187 |
+
class ResBlock1(nn.Module):
|
1188 |
+
"""
|
1189 |
+
ResBlock adapted from HiFi-GAN V1 (https://github.com/jik876/hifi-gan) with dilated 1D convolutions,
|
1190 |
+
but without upsampling layers.
|
1191 |
+
|
1192 |
+
Args:
|
1193 |
+
dim (int): Number of input channels.
|
1194 |
+
kernel_size (int, optional): Size of the convolutional kernel. Defaults to 3.
|
1195 |
+
dilation (tuple[int], optional): Dilation factors for the dilated convolutions.
|
1196 |
+
Defaults to (1, 3, 5).
|
1197 |
+
lrelu_slope (float, optional): Negative slope of the LeakyReLU activation function.
|
1198 |
+
Defaults to 0.1.
|
1199 |
+
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
|
1200 |
+
Defaults to None.
|
1201 |
+
"""
|
1202 |
+
|
1203 |
+
def __init__(
|
1204 |
+
self,
|
1205 |
+
dim: int,
|
1206 |
+
kernel_size: int = 3,
|
1207 |
+
dilation: Tuple[int, int, int] = (1, 3, 5),
|
1208 |
+
lrelu_slope: float = 0.1,
|
1209 |
+
layer_scale_init_value: Optional[float] = None,
|
1210 |
+
):
|
1211 |
+
super().__init__()
|
1212 |
+
self.lrelu_slope = lrelu_slope
|
1213 |
+
self.convs1 = nn.ModuleList(
|
1214 |
+
[
|
1215 |
+
weight_norm(
|
1216 |
+
nn.Conv1d(
|
1217 |
+
dim,
|
1218 |
+
dim,
|
1219 |
+
kernel_size,
|
1220 |
+
1,
|
1221 |
+
dilation=dilation[0],
|
1222 |
+
padding=self.get_padding(kernel_size, dilation[0]),
|
1223 |
+
)
|
1224 |
+
),
|
1225 |
+
weight_norm(
|
1226 |
+
nn.Conv1d(
|
1227 |
+
dim,
|
1228 |
+
dim,
|
1229 |
+
kernel_size,
|
1230 |
+
1,
|
1231 |
+
dilation=dilation[1],
|
1232 |
+
padding=self.get_padding(kernel_size, dilation[1]),
|
1233 |
+
)
|
1234 |
+
),
|
1235 |
+
weight_norm(
|
1236 |
+
nn.Conv1d(
|
1237 |
+
dim,
|
1238 |
+
dim,
|
1239 |
+
kernel_size,
|
1240 |
+
1,
|
1241 |
+
dilation=dilation[2],
|
1242 |
+
padding=self.get_padding(kernel_size, dilation[2]),
|
1243 |
+
)
|
1244 |
+
),
|
1245 |
+
]
|
1246 |
+
)
|
1247 |
+
|
1248 |
+
self.convs2 = nn.ModuleList(
|
1249 |
+
[
|
1250 |
+
weight_norm(
|
1251 |
+
nn.Conv1d(
|
1252 |
+
dim,
|
1253 |
+
dim,
|
1254 |
+
kernel_size,
|
1255 |
+
1,
|
1256 |
+
dilation=1,
|
1257 |
+
padding=self.get_padding(kernel_size, 1),
|
1258 |
+
)
|
1259 |
+
),
|
1260 |
+
weight_norm(
|
1261 |
+
nn.Conv1d(
|
1262 |
+
dim,
|
1263 |
+
dim,
|
1264 |
+
kernel_size,
|
1265 |
+
1,
|
1266 |
+
dilation=1,
|
1267 |
+
padding=self.get_padding(kernel_size, 1),
|
1268 |
+
)
|
1269 |
+
),
|
1270 |
+
weight_norm(
|
1271 |
+
nn.Conv1d(
|
1272 |
+
dim,
|
1273 |
+
dim,
|
1274 |
+
kernel_size,
|
1275 |
+
1,
|
1276 |
+
dilation=1,
|
1277 |
+
padding=self.get_padding(kernel_size, 1),
|
1278 |
+
)
|
1279 |
+
),
|
1280 |
+
]
|
1281 |
+
)
|
1282 |
+
|
1283 |
+
self.gamma = nn.ParameterList(
|
1284 |
+
[
|
1285 |
+
(
|
1286 |
+
nn.Parameter(
|
1287 |
+
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
|
1288 |
+
)
|
1289 |
+
if layer_scale_init_value is not None
|
1290 |
+
else None
|
1291 |
+
),
|
1292 |
+
(
|
1293 |
+
nn.Parameter(
|
1294 |
+
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
|
1295 |
+
)
|
1296 |
+
if layer_scale_init_value is not None
|
1297 |
+
else None
|
1298 |
+
),
|
1299 |
+
(
|
1300 |
+
nn.Parameter(
|
1301 |
+
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
|
1302 |
+
)
|
1303 |
+
if layer_scale_init_value is not None
|
1304 |
+
else None
|
1305 |
+
),
|
1306 |
+
]
|
1307 |
+
)
|
1308 |
+
|
1309 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1310 |
+
for c1, c2, gamma in zip(self.convs1, self.convs2, self.gamma):
|
1311 |
+
xt = torch.nn.functional.leaky_relu(x, negative_slope=self.lrelu_slope)
|
1312 |
+
xt = c1(xt)
|
1313 |
+
xt = torch.nn.functional.leaky_relu(xt, negative_slope=self.lrelu_slope)
|
1314 |
+
xt = c2(xt)
|
1315 |
+
if gamma is not None:
|
1316 |
+
xt = gamma * xt
|
1317 |
+
x = xt + x
|
1318 |
+
return x
|
1319 |
+
|
1320 |
+
def remove_weight_norm(self):
|
1321 |
+
for l in self.convs1:
|
1322 |
+
remove_weight_norm(l)
|
1323 |
+
for l in self.convs2:
|
1324 |
+
remove_weight_norm(l)
|
1325 |
+
|
1326 |
+
@staticmethod
|
1327 |
+
def get_padding(kernel_size: int, dilation: int = 1) -> int:
|
1328 |
+
return int((kernel_size * dilation - dilation) / 2)
|
1329 |
+
|
1330 |
+
|
1331 |
+
class Backbone(nn.Module):
|
1332 |
+
"""Base class for the generator's backbone. It preserves the same temporal resolution across all layers."""
|
1333 |
+
|
1334 |
+
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
|
1335 |
+
"""
|
1336 |
+
Args:
|
1337 |
+
x (Tensor): Input tensor of shape (B, C, L), where B is the batch size,
|
1338 |
+
C denotes output features, and L is the sequence length.
|
1339 |
+
|
1340 |
+
Returns:
|
1341 |
+
Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length,
|
1342 |
+
and H denotes the model dimension.
|
1343 |
+
"""
|
1344 |
+
raise NotImplementedError("Subclasses must implement the forward method.")
|
1345 |
+
|
1346 |
+
|
1347 |
+
class VocosBackbone(Backbone):
|
1348 |
+
"""
|
1349 |
+
Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization
|
1350 |
+
|
1351 |
+
Args:
|
1352 |
+
input_channels (int): Number of input features channels.
|
1353 |
+
dim (int): Hidden dimension of the model.
|
1354 |
+
intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock.
|
1355 |
+
num_layers (int): Number of ConvNeXtBlock layers.
|
1356 |
+
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`.
|
1357 |
+
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
|
1358 |
+
None means non-conditional model. Defaults to None.
|
1359 |
+
"""
|
1360 |
+
|
1361 |
+
def __init__(
|
1362 |
+
self,
|
1363 |
+
input_channels: int,
|
1364 |
+
dim: int,
|
1365 |
+
intermediate_dim: int,
|
1366 |
+
num_layers: int,
|
1367 |
+
layer_scale_init_value: Optional[float] = None,
|
1368 |
+
adanorm_num_embeddings: Optional[int] = None,
|
1369 |
+
):
|
1370 |
+
super().__init__()
|
1371 |
+
self.input_channels = input_channels
|
1372 |
+
self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3)
|
1373 |
+
self.adanorm = adanorm_num_embeddings is not None
|
1374 |
+
if adanorm_num_embeddings:
|
1375 |
+
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6)
|
1376 |
+
else:
|
1377 |
+
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
1378 |
+
layer_scale_init_value = layer_scale_init_value or 1 / num_layers
|
1379 |
+
self.convnext = nn.ModuleList(
|
1380 |
+
[
|
1381 |
+
ConvNeXtBlock(
|
1382 |
+
dim=dim,
|
1383 |
+
intermediate_dim=intermediate_dim,
|
1384 |
+
layer_scale_init_value=layer_scale_init_value,
|
1385 |
+
adanorm_num_embeddings=adanorm_num_embeddings,
|
1386 |
+
)
|
1387 |
+
for _ in range(num_layers)
|
1388 |
+
]
|
1389 |
+
)
|
1390 |
+
self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6)
|
1391 |
+
self.apply(self._init_weights)
|
1392 |
+
|
1393 |
+
def _init_weights(self, m):
|
1394 |
+
if isinstance(m, (nn.Conv1d, nn.Linear)):
|
1395 |
+
nn.init.trunc_normal_(m.weight, std=0.02)
|
1396 |
+
nn.init.constant_(m.bias, 0)
|
1397 |
+
|
1398 |
+
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
|
1399 |
+
bandwidth_id = kwargs.get("bandwidth_id", None)
|
1400 |
+
x = self.embed(x)
|
1401 |
+
if self.adanorm:
|
1402 |
+
assert bandwidth_id is not None
|
1403 |
+
x = self.norm(x.transpose(1, 2), cond_embedding_id=bandwidth_id)
|
1404 |
+
else:
|
1405 |
+
x = self.norm(x.transpose(1, 2))
|
1406 |
+
x = x.transpose(1, 2)
|
1407 |
+
for conv_block in self.convnext:
|
1408 |
+
x = conv_block(x, cond_embedding_id=bandwidth_id)
|
1409 |
+
x = self.final_layer_norm(x.transpose(1, 2))
|
1410 |
+
return x
|
1411 |
+
|
1412 |
+
|
1413 |
+
class VocosResNetBackbone(Backbone):
|
1414 |
+
"""
|
1415 |
+
Vocos backbone module built with ResBlocks.
|
1416 |
+
|
1417 |
+
Args:
|
1418 |
+
input_channels (int): Number of input features channels.
|
1419 |
+
dim (int): Hidden dimension of the model.
|
1420 |
+
num_blocks (int): Number of ResBlock1 blocks.
|
1421 |
+
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None.
|
1422 |
+
"""
|
1423 |
+
|
1424 |
+
def __init__(
|
1425 |
+
self,
|
1426 |
+
input_channels,
|
1427 |
+
dim,
|
1428 |
+
num_blocks,
|
1429 |
+
layer_scale_init_value=None,
|
1430 |
+
):
|
1431 |
+
super().__init__()
|
1432 |
+
self.input_channels = input_channels
|
1433 |
+
self.embed = weight_norm(
|
1434 |
+
nn.Conv1d(input_channels, dim, kernel_size=3, padding=1)
|
1435 |
+
)
|
1436 |
+
layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3
|
1437 |
+
self.resnet = nn.Sequential(
|
1438 |
+
*[
|
1439 |
+
ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value)
|
1440 |
+
for _ in range(num_blocks)
|
1441 |
+
]
|
1442 |
+
)
|
1443 |
+
|
1444 |
+
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
|
1445 |
+
x = self.embed(x)
|
1446 |
+
x = self.resnet(x)
|
1447 |
+
x = x.transpose(1, 2)
|
1448 |
+
return x
|
1449 |
+
|
1450 |
+
|
1451 |
+
class Vocos(nn.Module):
|
1452 |
+
def __init__(
|
1453 |
+
self,
|
1454 |
+
input_channels: int = 128,
|
1455 |
+
dim: int = 512,
|
1456 |
+
intermediate_dim: int = 4096,
|
1457 |
+
num_layers: int = 30,
|
1458 |
+
n_fft: int = 640,
|
1459 |
+
hop_size: int = 160,
|
1460 |
+
padding: str = "same",
|
1461 |
+
adanorm_num_embeddings=None,
|
1462 |
+
):
|
1463 |
+
super().__init__()
|
1464 |
+
|
1465 |
+
self.backbone = VocosBackbone(
|
1466 |
+
input_channels=input_channels,
|
1467 |
+
dim=dim,
|
1468 |
+
intermediate_dim=intermediate_dim,
|
1469 |
+
num_layers=num_layers,
|
1470 |
+
adanorm_num_embeddings=adanorm_num_embeddings,
|
1471 |
+
)
|
1472 |
+
self.head = ISTFTHead(dim, n_fft, hop_size, padding)
|
1473 |
+
self.hop_size = hop_size
|
1474 |
+
|
1475 |
+
def forward(self, x, input_length):
|
1476 |
+
x = self.backbone(x)
|
1477 |
+
x = self.head(x)
|
1478 |
+
output_length = input_length * self.hop_size
|
1479 |
+
return x[:, None, :], output_length
|
1480 |
+
|
XY_Tokenizer/xy_tokenizer/nn/quantizer.py
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torch.distributed as dist
|
6 |
+
|
7 |
+
from einops import rearrange
|
8 |
+
from torch.nn.utils import weight_norm
|
9 |
+
|
10 |
+
def WNConv1d(*args, **kwargs):
|
11 |
+
return weight_norm(nn.Conv1d(*args, **kwargs))
|
12 |
+
|
13 |
+
def WNConvTranspose1d(*args, **kwargs):
|
14 |
+
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
|
15 |
+
|
16 |
+
def sample_vectors(samples, num):
|
17 |
+
# samples: (N, D), num_samples: N, feature dim: D
|
18 |
+
num_samples, device = samples.shape[0], samples.device
|
19 |
+
if num_samples >= num:
|
20 |
+
indices = torch.randperm(num_samples, device=device)[:num]
|
21 |
+
else:
|
22 |
+
indices = torch.randint(0, num_samples, (num,), device=device)
|
23 |
+
return samples[indices].float() # (num, D), ensure fp32
|
24 |
+
|
25 |
+
def kmeans(samples, num_clusters, num_iters=10):
|
26 |
+
# samples: (N, D), N samples with D dimensions
|
27 |
+
dim, dtype = samples.shape[-1], torch.float32 # Force fp32
|
28 |
+
means = sample_vectors(samples, num_clusters).float() # (num_clusters, D), ensure fp32
|
29 |
+
|
30 |
+
for _ in range(num_iters):
|
31 |
+
dists = -(samples.float().pow(2).sum(1, keepdim=True) - # (N, 1), ensure fp32
|
32 |
+
2 * samples.float() @ means.t() + # (N, num_clusters), ensure fp32
|
33 |
+
means.t().float().pow(2).sum(0, keepdim=True)) # (1, num_clusters), ensure fp32
|
34 |
+
# dists: (N, num_clusters)
|
35 |
+
buckets = dists.max(dim=-1).indices # (N)
|
36 |
+
bins = torch.bincount(buckets, minlength=num_clusters) # (num_clusters)
|
37 |
+
zero_mask = bins == 0 # (num_clusters)
|
38 |
+
bins_min_clamped = bins.masked_fill(zero_mask, 1) # (num_clusters)
|
39 |
+
|
40 |
+
new_means = buckets.new_zeros(num_clusters, dim, dtype=torch.float32) # (num_clusters, D), ensure fp32
|
41 |
+
new_means.scatter_add_(0, buckets.unsqueeze(1).expand(-1, dim), samples.float()) # (num_clusters, D), ensure fp32
|
42 |
+
new_means = new_means / bins_min_clamped[..., None] # (num_clusters, D)
|
43 |
+
means = torch.where(zero_mask[..., None], means, new_means) # (num_clusters, D)
|
44 |
+
|
45 |
+
# Final cluster assignments for returning cluster sizes
|
46 |
+
dists = -(samples.float().pow(2).sum(1, keepdim=True) -
|
47 |
+
2 * samples.float() @ means.t() +
|
48 |
+
means.t().float().pow(2).sum(0, keepdim=True)) # (N, num_clusters), ensure fp32
|
49 |
+
buckets = dists.max(dim=-1).indices # (N)
|
50 |
+
bins = torch.bincount(buckets, minlength=num_clusters).float() # (num_clusters), ensure fp32
|
51 |
+
|
52 |
+
return means, bins # (num_clusters, D), (num_clusters)
|
53 |
+
|
54 |
+
class VectorQuantize(nn.Module):
|
55 |
+
def __init__(
|
56 |
+
self,
|
57 |
+
input_dim,
|
58 |
+
codebook_size,
|
59 |
+
codebook_dim,
|
60 |
+
commitment=1.0,
|
61 |
+
decay=0.99, # EMA decay
|
62 |
+
epsilon=1e-5, # Laplace smoothing epsilon
|
63 |
+
threshold_ema_dead=2, # Dead code threshold
|
64 |
+
kmeans_init=True, # Use kmeans initialization
|
65 |
+
kmeans_iters=10, # Kmeans iterations
|
66 |
+
):
|
67 |
+
super().__init__()
|
68 |
+
self.input_dim = input_dim
|
69 |
+
self.codebook_size = codebook_size
|
70 |
+
self.codebook_dim = codebook_dim
|
71 |
+
self.commitment = commitment
|
72 |
+
self.decay = decay
|
73 |
+
self.epsilon = epsilon
|
74 |
+
self.threshold_ema_dead = threshold_ema_dead
|
75 |
+
self.kmeans_init = kmeans_init
|
76 |
+
self.kmeans_iters = kmeans_iters
|
77 |
+
|
78 |
+
if self.input_dim != self.codebook_dim:
|
79 |
+
self.in_project = WNConv1d(self.input_dim, self.codebook_dim, kernel_size=1) # (B, D, T) -> (B, D', T)
|
80 |
+
self.out_project = WNConv1d(self.codebook_dim, self.input_dim, kernel_size=1) # (B, D', T) -> (B, D, T)
|
81 |
+
else:
|
82 |
+
self.in_project = nn.Identity()
|
83 |
+
self.out_project = nn.Identity()
|
84 |
+
|
85 |
+
# Initialize codebook and EMA buffers
|
86 |
+
init_fn = torch.zeros if kmeans_init else lambda x, y: torch.randn(x, y)
|
87 |
+
self.register_buffer("codebook", init_fn(codebook_size, codebook_dim).float()) # (codebook_size, D'), ensure fp32
|
88 |
+
self.register_buffer("inited", torch.tensor([not kmeans_init], dtype=torch.bool)) # (1)
|
89 |
+
self.register_buffer("cluster_size", torch.zeros(codebook_size).float()) # (codebook_size), ensure fp32
|
90 |
+
self.register_buffer("embed_avg", self.codebook.clone().float()) # (codebook_size, D'), ensure fp32
|
91 |
+
|
92 |
+
def ema_update(self, encodings, embed_onehot):
|
93 |
+
# encodings: (B*T, D'), embed_onehot: (B*T, codebook_size)
|
94 |
+
"""Update codebook using EMA"""
|
95 |
+
encodings = encodings.float() # Ensure fp32
|
96 |
+
embed_onehot = embed_onehot.float() # Ensure fp32
|
97 |
+
cluster_size_new = embed_onehot.sum(0) # (codebook_size)
|
98 |
+
embed_sum = encodings.t() @ embed_onehot # (D', codebook_size)
|
99 |
+
|
100 |
+
# Distributed reduction
|
101 |
+
if dist.is_initialized():
|
102 |
+
dist.all_reduce(cluster_size_new, op=dist.ReduceOp.SUM)
|
103 |
+
dist.all_reduce(embed_sum, op=dist.ReduceOp.SUM)
|
104 |
+
|
105 |
+
ema_inplace(self.cluster_size, cluster_size_new, self.decay) # (codebook_size)
|
106 |
+
ema_inplace(self.embed_avg, embed_sum.t(), self.decay) # (codebook_size, D')
|
107 |
+
|
108 |
+
# Laplace smoothing
|
109 |
+
cluster_size = (self.cluster_size + self.epsilon) / (self.cluster_size.sum() + self.codebook_size * self.epsilon) # (codebook_size)
|
110 |
+
cluster_size = cluster_size * self.cluster_size.sum() # (codebook_size)
|
111 |
+
self.codebook.copy_(self.embed_avg / cluster_size.unsqueeze(1)) # (codebook_size, D')
|
112 |
+
|
113 |
+
def replace_dead_codes(self, encodings):
|
114 |
+
# encodings: (B*T, D')
|
115 |
+
"""Replace dead codes with random samples from current batch"""
|
116 |
+
if self.threshold_ema_dead == 0:
|
117 |
+
return
|
118 |
+
|
119 |
+
dead_mask = self.cluster_size < self.threshold_ema_dead # (codebook_size)
|
120 |
+
if dead_mask.any():
|
121 |
+
if dist.is_initialized() and dist.get_rank() == 0:
|
122 |
+
samples = sample_vectors(encodings.float(), self.codebook_size) # (codebook_size, D'), ensure fp32
|
123 |
+
else:
|
124 |
+
samples = torch.zeros_like(self.codebook).float() # Placeholder, ensure fp32
|
125 |
+
|
126 |
+
# Broadcast samples
|
127 |
+
if dist.is_initialized():
|
128 |
+
dist.broadcast(samples, src=0)
|
129 |
+
|
130 |
+
self.codebook[dead_mask] = samples[:dead_mask.sum()].to(self.codebook.dtype) # Update dead codes
|
131 |
+
|
132 |
+
def init_codebook(self, encodings):
|
133 |
+
# encodings: (B*T, D')
|
134 |
+
"""Initialize codebook with k-means and update cluster_size"""
|
135 |
+
if self.inited.item():
|
136 |
+
return
|
137 |
+
|
138 |
+
if dist.is_initialized() and dist.get_rank() == 0:
|
139 |
+
embed, cluster_sizes = kmeans(encodings.float(), self.codebook_size, self.kmeans_iters) # (codebook_size, D'), (codebook_size), ensure fp32
|
140 |
+
else:
|
141 |
+
embed = torch.zeros(self.codebook_size, self.codebook_dim, device=encodings.device).float() # ensure fp32
|
142 |
+
cluster_sizes = torch.zeros(self.codebook_size, device=encodings.device, dtype=torch.float32) # ensure fp32
|
143 |
+
|
144 |
+
# Broadcast results
|
145 |
+
if dist.is_initialized():
|
146 |
+
dist.broadcast(embed, src=0)
|
147 |
+
dist.broadcast(cluster_sizes, src=0)
|
148 |
+
|
149 |
+
self.codebook.copy_(embed) # (codebook_size, D')
|
150 |
+
self.embed_avg.copy_(embed.clone()) # (codebook_size, D')
|
151 |
+
self.cluster_size.copy_(cluster_sizes.float()) # (codebook_size)
|
152 |
+
self.inited.fill_(True)
|
153 |
+
|
154 |
+
def forward(self, z): # z: (B, D, T)
|
155 |
+
# logging.info(f"{self.cluster_size = }, {self.codebook = }, {self.embed_avg = }, {self.inited = }")
|
156 |
+
z = z.float() # Ensure fp32
|
157 |
+
z_e = self.in_project(z).float() # (B, D', T), ensure fp32
|
158 |
+
|
159 |
+
# Rearrange for quantization
|
160 |
+
encodings = rearrange(z_e, "b d t -> (b t) d").float() # (B*T, D'), ensure fp32
|
161 |
+
|
162 |
+
# Initialize codebook if needed
|
163 |
+
if self.kmeans_init and not self.inited.item():
|
164 |
+
self.init_codebook(encodings)
|
165 |
+
|
166 |
+
# Quantization
|
167 |
+
dist = (encodings.pow(2).sum(1, keepdim=True) - # (B*T, 1)
|
168 |
+
2 * encodings @ self.codebook.float().t() + # (B*T, codebook_size)
|
169 |
+
self.codebook.float().pow(2).sum(1, keepdim=True).t()) # (1, codebook_size)
|
170 |
+
# dist: (B*T, codebook_size)
|
171 |
+
|
172 |
+
indices = (-dist).max(1)[1] # (B*T)
|
173 |
+
indices = rearrange(indices, "(b t) -> b t", b=z.size(0)) # (B, T)
|
174 |
+
|
175 |
+
# Get quantized vectors
|
176 |
+
z_q = self.decode_code(indices).float() # (B, D', T), ensure fp32
|
177 |
+
|
178 |
+
# Commitment loss
|
179 |
+
commit_loss = F.mse_loss(z_e, z_q.detach(), reduction="none").mean([1, 2]) * self.commitment # (B)
|
180 |
+
|
181 |
+
# EMA updates and dead code replacement during training
|
182 |
+
if self.training and torch.is_grad_enabled():
|
183 |
+
embed_onehot = F.one_hot(indices.view(-1), self.codebook_size).float() # (B*T, codebook_size), ensure fp32
|
184 |
+
self.ema_update(encodings, embed_onehot)
|
185 |
+
self.replace_dead_codes(encodings)
|
186 |
+
|
187 |
+
# Straight-through estimator
|
188 |
+
z_q = z_e + (z_q - z_e).detach() # (B, D', T)
|
189 |
+
z_q = self.out_project(z_q).float() # (B, D, T), ensure fp32
|
190 |
+
|
191 |
+
return z_q, commit_loss, torch.tensor(0.0, device=z.device, dtype=torch.float32), indices, z # (B, D, T), (B), scalar, (B, T), (B, D', T)
|
192 |
+
|
193 |
+
def decode_code(self, embed_id): # embed_id: (B, T)
|
194 |
+
return F.embedding(embed_id, self.codebook).transpose(1, 2).float() # (B, D', T), ensure fp32
|
195 |
+
|
196 |
+
class ResidualVQ(nn.Module):
|
197 |
+
def __init__(
|
198 |
+
self,
|
199 |
+
input_dim: int = 1280, # Input dimension, unrelated to RVQ
|
200 |
+
rvq_dim = None, # RVQ dimension. If different from input_dim/output_dim, will add input_dim->rvq_dim/rvq_dim->output_dim projection
|
201 |
+
output_dim: int = None, # Output dimension, unrelated to RVQ
|
202 |
+
num_quantizers: int = 32,
|
203 |
+
codebook_size: int = 1024,
|
204 |
+
codebook_dim: int = 8, # Dimension of each codebook. If different from rvq_dim, will add rvq_dim->codebook_dim and codebook_dim->rvq_dim projections
|
205 |
+
quantizer_dropout: float = 0.5,
|
206 |
+
decay=0.99,
|
207 |
+
epsilon=1e-5,
|
208 |
+
threshold_ema_dead=2,
|
209 |
+
kmeans_init=True,
|
210 |
+
kmeans_iters=10,
|
211 |
+
skip_rvq_ratio: float = 0.0, # New parameter: probability of skipping RVQ
|
212 |
+
**kwargs,
|
213 |
+
):
|
214 |
+
super().__init__()
|
215 |
+
self.input_dim = input_dim
|
216 |
+
|
217 |
+
self.num_quantizers = num_quantizers
|
218 |
+
self.codebook_size = codebook_size
|
219 |
+
self.codebook_dim = codebook_dim
|
220 |
+
self.quantizer_dropout = quantizer_dropout
|
221 |
+
self.skip_rvq_ratio = skip_rvq_ratio # Store skip probability
|
222 |
+
self.rvq_dim = rvq_dim
|
223 |
+
|
224 |
+
self.input_proj = WNConv1d(input_dim, rvq_dim, kernel_size=1) if input_dim != rvq_dim else nn.Identity()
|
225 |
+
self.output_proj = WNConv1d(rvq_dim, output_dim, kernel_size=1) if rvq_dim != output_dim else nn.Identity()
|
226 |
+
|
227 |
+
self.quantizers = nn.ModuleList(
|
228 |
+
[
|
229 |
+
VectorQuantize(
|
230 |
+
input_dim=rvq_dim,
|
231 |
+
codebook_size=codebook_size,
|
232 |
+
codebook_dim=codebook_dim,
|
233 |
+
decay=decay,
|
234 |
+
epsilon=epsilon,
|
235 |
+
threshold_ema_dead=threshold_ema_dead,
|
236 |
+
kmeans_init=kmeans_init,
|
237 |
+
kmeans_iters=kmeans_iters,
|
238 |
+
**kwargs,
|
239 |
+
)
|
240 |
+
for _ in range(num_quantizers)
|
241 |
+
]
|
242 |
+
)
|
243 |
+
|
244 |
+
def forward(self, z, input_length, n_quantizers: int = None): # z: (B, D, T), input_length: (B)
|
245 |
+
z = self.input_proj(z)
|
246 |
+
|
247 |
+
with torch.autocast('cuda', enabled = False):
|
248 |
+
batch_size, _, max_time = z.shape
|
249 |
+
mask = torch.arange(max_time, device=z.device).expand(batch_size, max_time) < input_length.unsqueeze(1) # (B, T)
|
250 |
+
|
251 |
+
quantized_out = torch.zeros_like(z, dtype=torch.float32) # (B, D, T), ensure fp32
|
252 |
+
residual = z.clone().float() # (B, D, T), ensure fp32
|
253 |
+
|
254 |
+
all_commit_losses = []
|
255 |
+
all_indices = []
|
256 |
+
all_quantized = []
|
257 |
+
|
258 |
+
n_quantizers = n_quantizers or self.num_quantizers
|
259 |
+
|
260 |
+
# Randomly decide whether to skip RVQ during training
|
261 |
+
skip_mask = None
|
262 |
+
if self.training and torch.is_grad_enabled() and self.skip_rvq_ratio > 0:
|
263 |
+
# Generate random mask with skip_rvq_ratio probability
|
264 |
+
skip_mask = torch.rand(batch_size, device=z.device) < self.skip_rvq_ratio # (B,)
|
265 |
+
# If all samples are skipped, force the first sample to be unskipped
|
266 |
+
if skip_mask.all():
|
267 |
+
skip_mask[0] = False # Ensure at least one sample (index 0) is not skipped
|
268 |
+
|
269 |
+
if self.training and torch.is_grad_enabled():
|
270 |
+
n_quantizers_tensor = torch.ones((z.shape[0],), dtype=torch.float32, device=z.device) * self.num_quantizers + 1 # (B)
|
271 |
+
dropout = torch.randint(1, self.num_quantizers + 1, (z.shape[0],), dtype=torch.float32, device=z.device) # (B)
|
272 |
+
n_dropout = int(z.shape[0] * self.quantizer_dropout)
|
273 |
+
n_quantizers_tensor[:n_dropout] = dropout[:n_dropout] # (B)
|
274 |
+
else:
|
275 |
+
n_quantizers_tensor = torch.full((z.shape[0],), n_quantizers, dtype=torch.float32, device=z.device) # (B)
|
276 |
+
|
277 |
+
for i, quantizer in enumerate(self.quantizers):
|
278 |
+
if not self.training and i >= n_quantizers:
|
279 |
+
break
|
280 |
+
|
281 |
+
masked_residual = residual * mask.unsqueeze(1) # (B, D, T)
|
282 |
+
|
283 |
+
# If skipping RVQ, directly use input value
|
284 |
+
if self.training and skip_mask is not None and skip_mask.any():
|
285 |
+
z_q_i = torch.zeros_like(masked_residual, dtype=torch.float32) # (B, D, T), ensure fp32
|
286 |
+
commit_loss_i = torch.zeros(batch_size, device=z.device, dtype=torch.float32) # (B), ensure fp32
|
287 |
+
indices_i = torch.zeros(batch_size, max_time, device=z.device, dtype=torch.long) # (B, T)
|
288 |
+
z_e_i = torch.zeros_like(masked_residual, dtype=torch.float32) # (B, D, T), ensure fp32
|
289 |
+
|
290 |
+
# Quantize non-skipped samples
|
291 |
+
non_skipped_mask = ~skip_mask # (B)
|
292 |
+
if non_skipped_mask.any():
|
293 |
+
z_q_i_non_skipped, commit_loss_i_non_skipped, _, indices_i_non_skipped, z_e_i_non_skipped = quantizer(
|
294 |
+
masked_residual[non_skipped_mask].float() # Ensure fp32
|
295 |
+
)
|
296 |
+
z_q_i[non_skipped_mask] = z_q_i_non_skipped
|
297 |
+
commit_loss_i[non_skipped_mask] = commit_loss_i_non_skipped
|
298 |
+
indices_i[non_skipped_mask] = indices_i_non_skipped
|
299 |
+
z_e_i[non_skipped_mask] = z_e_i_non_skipped
|
300 |
+
else:
|
301 |
+
z_q_i, commit_loss_i, _, indices_i, z_e_i = quantizer(masked_residual.float()) # (B, D, T), (B), scalar, (B, T), (B, D', T), ensure fp32
|
302 |
+
|
303 |
+
quantizer_mask = (torch.full((z.shape[0],), i, device=z.device, dtype=torch.float32) < n_quantizers_tensor) # (B)
|
304 |
+
update_mask = (mask & quantizer_mask.unsqueeze(-1)).unsqueeze(1) # (B, 1, T)
|
305 |
+
|
306 |
+
# If skipping, output is directly the input
|
307 |
+
if skip_mask is not None:
|
308 |
+
skip_mask_expanded = skip_mask.unsqueeze(1).unsqueeze(2) # (B, 1, 1)
|
309 |
+
z_q_i = torch.where(skip_mask_expanded, masked_residual, z_q_i) # (B, D, T)
|
310 |
+
commit_loss_i = torch.where(skip_mask, torch.zeros_like(commit_loss_i), commit_loss_i) # (B)
|
311 |
+
|
312 |
+
quantized_out = quantized_out + z_q_i * update_mask # (B, D, T)
|
313 |
+
|
314 |
+
residual_fp32 = residual.to(dtype=torch.float32) # (B, D, T)
|
315 |
+
z_q_i_fp32 = z_q_i.to(dtype=torch.float32) # (B, D, T)
|
316 |
+
residual_fp32 = residual_fp32 - z_q_i_fp32 * update_mask # (B, D, T)
|
317 |
+
residual = residual_fp32.to(dtype=torch.float32) # (B, D, T), ensure fp32
|
318 |
+
|
319 |
+
valid_mask = mask & quantizer_mask.unsqueeze(-1) # (B, T)
|
320 |
+
if valid_mask.any():
|
321 |
+
commit_loss_i = (commit_loss_i * quantizer_mask).sum() / quantizer_mask.sum() # scalar
|
322 |
+
else:
|
323 |
+
commit_loss_i = torch.tensor(0.0, device=z.device, dtype=torch.float32) # scalar, ensure fp32
|
324 |
+
|
325 |
+
all_commit_losses.append(commit_loss_i) # scalar
|
326 |
+
all_indices.append(indices_i) # (B, T)
|
327 |
+
all_quantized.append(z_q_i) # (B, D, T)
|
328 |
+
|
329 |
+
all_commit_losses = torch.stack(all_commit_losses) # (N)
|
330 |
+
all_indices = torch.stack(all_indices) # (N, B, T)
|
331 |
+
all_quantized = torch.stack(all_quantized) # (N, B, D, T)
|
332 |
+
|
333 |
+
output_length = input_length # (B)
|
334 |
+
|
335 |
+
quantized_out = self.output_proj(quantized_out)
|
336 |
+
|
337 |
+
return (
|
338 |
+
quantized_out, # (B, D, T)
|
339 |
+
all_indices, # (N, B, T)
|
340 |
+
all_commit_losses,# (N)
|
341 |
+
all_quantized, # (N, B, D, T)
|
342 |
+
output_length, # (B)
|
343 |
+
)
|
344 |
+
|
345 |
+
def decode_codes(self, codes): # codes: (nq, B, T)
|
346 |
+
"""Decode codes from multiple quantizers to embeddings.
|
347 |
+
|
348 |
+
Args:
|
349 |
+
codes: Tensor of shape (nq, B, T) containing code indices for each quantizer.
|
350 |
+
|
351 |
+
Returns:
|
352 |
+
emb: Tensor of shape (B, D, T) representing the decoded embeddings.
|
353 |
+
"""
|
354 |
+
nq, B, T = codes.shape
|
355 |
+
device = codes.device
|
356 |
+
emb = torch.zeros(B, self.rvq_dim, T, device=device, dtype=torch.float32) # (B, D, T)
|
357 |
+
|
358 |
+
for i, quantizer in enumerate(self.quantizers[:nq]):
|
359 |
+
code_i = codes[i] # (B, T)
|
360 |
+
quantized_i = quantizer.decode_code(code_i) # (B, D', T)
|
361 |
+
emb += quantized_i # Accumulate quantized embeddings
|
362 |
+
|
363 |
+
emb = self.output_proj(emb) # (B, D, T), apply output projection
|
364 |
+
return emb # (B, D, T)
|
365 |
+
|
366 |
+
|
367 |
+
def ema_inplace(moving_avg, new, decay):
|
368 |
+
# moving_avg: (codebook_size) or (codebook_size, D'), new: same as moving_avg
|
369 |
+
"""Update exponential moving average in-place"""
|
370 |
+
moving_avg.data.mul_(decay).add_(new.float(), alpha=(1 - decay)) # ensure fp32
|
app.py
CHANGED
@@ -1,7 +1,495 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
import tempfile
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
from typing import Optional, Tuple
|
8 |
|
9 |
+
from generation_utils import load_model, process_batch
|
|
|
10 |
|
11 |
+
def load_examples_from_jsonl():
|
12 |
+
"""
|
13 |
+
Load examples from examples/examples.jsonl and convert to ROLE_EXAMPLES format
|
14 |
+
"""
|
15 |
+
examples = []
|
16 |
+
jsonl_path = "examples/examples.jsonl"
|
17 |
+
|
18 |
+
if not os.path.exists(jsonl_path):
|
19 |
+
print(f"Warning: {jsonl_path} not found")
|
20 |
+
return []
|
21 |
+
|
22 |
+
with open(jsonl_path, 'r', encoding='utf-8') as f:
|
23 |
+
for line in f:
|
24 |
+
line = line.strip()
|
25 |
+
|
26 |
+
data = json.loads(line)
|
27 |
+
|
28 |
+
# Extract required fields
|
29 |
+
text = data.get('text', '')
|
30 |
+
base_path = data.get('base_path', 'examples')
|
31 |
+
|
32 |
+
# Check if this is a role-based example (has speaker1 and speaker2 audio)
|
33 |
+
if 'prompt_audio_speaker1' in data and 'prompt_audio_speaker2' in data:
|
34 |
+
# Role mode example
|
35 |
+
audio_mode = "Role"
|
36 |
+
prompt_audio_1 = os.path.join(base_path, data['prompt_audio_speaker1'])
|
37 |
+
prompt_text_1 = data.get('prompt_text_speaker1', '')
|
38 |
+
prompt_audio_2 = os.path.join(base_path, data['prompt_audio_speaker2'])
|
39 |
+
prompt_text_2 = data.get('prompt_text_speaker2', '')
|
40 |
+
use_normalize = True
|
41 |
+
|
42 |
+
example = [text, audio_mode, prompt_audio_1, prompt_text_1, prompt_audio_2, prompt_text_2, use_normalize]
|
43 |
+
examples.append(example)
|
44 |
+
|
45 |
+
print(f"Loaded {len(examples)} examples from {jsonl_path}")
|
46 |
+
return examples
|
47 |
+
|
48 |
+
# Load examples from JSONL file
|
49 |
+
ROLE_EXAMPLES = load_examples_from_jsonl()
|
50 |
+
|
51 |
+
# Language configuration
|
52 |
+
LANGUAGES = {
|
53 |
+
"English": {
|
54 |
+
"title": "MOSS-TTSD🪐 Dialogue Generation",
|
55 |
+
"script_input": "### Script Input",
|
56 |
+
"text_to_synthesize": "Text to Synthesize",
|
57 |
+
"text_placeholder": "Text to be synthesized, format: [S1]Role1 text[S2]Role2 text",
|
58 |
+
"use_normalize": "Use text normalization",
|
59 |
+
"normalize_info": "Recommended to enable, improves handling of numbers, punctuation, etc.",
|
60 |
+
"audio_input_mode": "### Audio Input Mode",
|
61 |
+
"select_input_mode": "Select input mode",
|
62 |
+
"mode_info": "Single Audio: Upload one audio with [S1][S2] text; Role Audio: Upload separate audio for Role1 and Role2",
|
63 |
+
"drag_drop_audio": "Drag and drop audio here - or - click to upload",
|
64 |
+
"prompt_text": "Prompt Text",
|
65 |
+
"prompt_placeholder": "Format: [S1]Role1 text[S2]Role2 text",
|
66 |
+
"role1_audio": "**Role1 Audio**",
|
67 |
+
"role1_audio_file": "Role1 Audio File",
|
68 |
+
"role1_text": "Role1 Text",
|
69 |
+
"role1_placeholder": "Role1 text content",
|
70 |
+
"role2_audio": "**Role2 Audio**",
|
71 |
+
"role2_audio_file": "Role2 Audio File",
|
72 |
+
"role2_text": "Role2 Text",
|
73 |
+
"role2_placeholder": "Role2 text content",
|
74 |
+
"generate_audio": "Generate Audio",
|
75 |
+
"generated_audio": "Generated Audio",
|
76 |
+
"status_info": "Status Information",
|
77 |
+
"examples": "### Examples",
|
78 |
+
"examples_desc": "Click on examples below to auto-fill the form",
|
79 |
+
"role_headers": ["Text to Synthesize", "Input Mode", "Role1 Audio File", "Role1 Text", "Role2 Audio File", "Role2 Text", "Use Normalize"]
|
80 |
+
},
|
81 |
+
"中文": {
|
82 |
+
"title": "MOSS-TTSD🪐 对话语音生成",
|
83 |
+
"script_input": "### 文本输入",
|
84 |
+
"text_to_synthesize": "要合成的文本",
|
85 |
+
"text_placeholder": "要合成的文本,格式:[S1]角色1文本[S2]角色2文本",
|
86 |
+
"use_normalize": "使用文本规范化",
|
87 |
+
"normalize_info": "建议启用,改善数字、标点符号等的处理",
|
88 |
+
"audio_input_mode": "### 音频输入模式",
|
89 |
+
"select_input_mode": "选择输入模式",
|
90 |
+
"mode_info": "单音频:上传一个包含[S1][S2]文本的音频;角色音频:分别为角色1和角色2上传音频",
|
91 |
+
"drag_drop_audio": "拖拽音频文件到此处 - 或 - 点击上传",
|
92 |
+
"prompt_text": "提示文本",
|
93 |
+
"prompt_placeholder": "格式:[S1]角色1文本[S2]角色2文本",
|
94 |
+
"role1_audio": "**角色1音频**",
|
95 |
+
"role1_audio_file": "角色1音频文件",
|
96 |
+
"role1_text": "角色1文本",
|
97 |
+
"role1_placeholder": "角色1文本内容",
|
98 |
+
"role2_audio": "**角色2音频**",
|
99 |
+
"role2_audio_file": "角色2音频文件",
|
100 |
+
"role2_text": "角色2文本",
|
101 |
+
"role2_placeholder": "角色2文本内容",
|
102 |
+
"generate_audio": "生成音频",
|
103 |
+
"generated_audio": "生成的音频",
|
104 |
+
"status_info": "状态信息",
|
105 |
+
"examples": "### 示例",
|
106 |
+
"examples_desc": "点击下方示例自动填充表单",
|
107 |
+
"role_headers": ["要合成的文本", "输入模式", "角色1音频文件", "角色1文本", "角色2音频文件", "角色2文本", "使用规范化"]
|
108 |
+
}
|
109 |
+
}
|
110 |
+
|
111 |
+
# Model configuration
|
112 |
+
SYSTEM_PROMPT = "You are a speech synthesizer that generates natural, realistic, and human-like conversational audio from dialogue text."
|
113 |
+
MODEL_PATH = "fnlp/MOSS-TTSD-v0"
|
114 |
+
SPT_CONFIG_PATH = "XY_Tokenizer/config/xy_tokenizer_config.yaml"
|
115 |
+
SPT_CHECKPOINT_PATH = "XY_Tokenizer/weights/xy_tokenizer.ckpt"
|
116 |
+
MAX_CHANNELS = 8
|
117 |
+
|
118 |
+
from huggingface_hub import hf_hub_download
|
119 |
+
|
120 |
+
ckpt_path = hf_hub_download(
|
121 |
+
repo_id="fnlp/XY_Tokenizer_TTSD_V0",
|
122 |
+
filename="xy_tokenizer.ckpt",
|
123 |
+
cache_dir="XY_Tokenizer/weights"
|
124 |
+
)
|
125 |
+
|
126 |
+
print("Checkpoint downloaded to:", ckpt_path)
|
127 |
+
|
128 |
+
# Global variables for caching loaded models
|
129 |
+
tokenizer = None
|
130 |
+
model = None
|
131 |
+
spt = None
|
132 |
+
device = None
|
133 |
+
|
134 |
+
def initialize_model():
|
135 |
+
"""Initialize model (load only on first call)"""
|
136 |
+
global tokenizer, model, spt, device
|
137 |
+
|
138 |
+
if tokenizer is None:
|
139 |
+
print("Initializing model...")
|
140 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
141 |
+
tokenizer, model, spt = load_model(MODEL_PATH, SPT_CONFIG_PATH, SPT_CHECKPOINT_PATH)
|
142 |
+
spt = spt.to(device)
|
143 |
+
model = model.to(device)
|
144 |
+
print("Model initialization completed!")
|
145 |
+
|
146 |
+
return tokenizer, model, spt, device
|
147 |
+
|
148 |
+
def process_single_audio_generation(
|
149 |
+
text_input: str,
|
150 |
+
audio_mode: str,
|
151 |
+
prompt_text_single: str,
|
152 |
+
prompt_audio_single: Optional[str] = None,
|
153 |
+
prompt_text_1: str = "",
|
154 |
+
prompt_audio_1: Optional[str] = None,
|
155 |
+
prompt_text_2: str = "",
|
156 |
+
prompt_audio_2: Optional[str] = None,
|
157 |
+
use_normalize: bool = True
|
158 |
+
) -> Tuple[Optional[str], str]:
|
159 |
+
"""
|
160 |
+
Process single audio generation request
|
161 |
+
|
162 |
+
Args:
|
163 |
+
text_input: Text to synthesize
|
164 |
+
prompt_text_single: Prompt text for single audio
|
165 |
+
prompt_audio_single: Single audio file path
|
166 |
+
prompt_text_1: Role1 text
|
167 |
+
prompt_audio_1: Role1 audio file path
|
168 |
+
prompt_text_2: Role2 text
|
169 |
+
prompt_audio_2: Role2 audio file path
|
170 |
+
use_normalize: Whether to use text normalization
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
Generated audio file path and status information
|
174 |
+
"""
|
175 |
+
try:
|
176 |
+
# Initialize model
|
177 |
+
tokenizer, model, spt, device = initialize_model()
|
178 |
+
|
179 |
+
# Build input item
|
180 |
+
item = {
|
181 |
+
"text": text_input,
|
182 |
+
}
|
183 |
+
|
184 |
+
# Handle different audio input modes (mutually exclusive)
|
185 |
+
if audio_mode == "Single":
|
186 |
+
# Use single audio mode
|
187 |
+
item["prompt_audio"] = prompt_audio_single
|
188 |
+
item["prompt_text"] = prompt_text_single
|
189 |
+
elif audio_mode == "Role" and prompt_audio_1 and prompt_audio_2:
|
190 |
+
# Use role audio mode (requires both audio files)
|
191 |
+
item["prompt_audio_speaker1"] = prompt_audio_1
|
192 |
+
item["prompt_text_speaker1"] = prompt_text_1 if prompt_text_1 else ""
|
193 |
+
item["prompt_audio_speaker2"] = prompt_audio_2
|
194 |
+
item["prompt_text_speaker2"] = prompt_text_2 if prompt_text_2 else ""
|
195 |
+
elif audio_mode == "Role" and prompt_audio_1:
|
196 |
+
# Only Role 1 audio provided, treat as single audio
|
197 |
+
print("Only Role 1 audio provided, treating as single audio.")
|
198 |
+
item["prompt_audio"] = prompt_audio_1
|
199 |
+
item["prompt_text"] = prompt_text_1 if prompt_text_1 else ""
|
200 |
+
elif audio_mode == "Role" and prompt_audio_2:
|
201 |
+
# Only Role 2 audio provided, treat as single audio
|
202 |
+
print("Only Role 2 audio provided, treating as single audio.")
|
203 |
+
item["prompt_audio"] = prompt_audio_2
|
204 |
+
item["prompt_text"] = prompt_text_2 if prompt_text_2 else ""
|
205 |
+
else:
|
206 |
+
return None, "Error: Please select a mode and provide corresponding audio files\n- Single Audio Mode: Provide one audio file and corresponding text\n- Role Mode: Provide audio files for Role1 and Role2"
|
207 |
+
|
208 |
+
# Set random seed to ensure reproducible results
|
209 |
+
import accelerate
|
210 |
+
accelerate.utils.set_seed(42)
|
211 |
+
|
212 |
+
# Process batch (single item)
|
213 |
+
actual_texts_data, audio_results = process_batch(
|
214 |
+
batch_items=[item],
|
215 |
+
tokenizer=tokenizer,
|
216 |
+
model=model,
|
217 |
+
spt=spt,
|
218 |
+
device=device,
|
219 |
+
system_prompt=SYSTEM_PROMPT,
|
220 |
+
start_idx=0,
|
221 |
+
use_normalize=use_normalize
|
222 |
+
)
|
223 |
+
|
224 |
+
# Check results
|
225 |
+
if not audio_results or audio_results[0] is None:
|
226 |
+
return None, "Error: Audio generation failed"
|
227 |
+
|
228 |
+
audio_result = audio_results[0]
|
229 |
+
|
230 |
+
# Create temporary output file
|
231 |
+
output_path = tempfile.NamedTemporaryFile(suffix=".wav", delete=False).name
|
232 |
+
|
233 |
+
# Save audio
|
234 |
+
torchaudio.save(output_path, audio_result["audio_data"], audio_result["sample_rate"])
|
235 |
+
|
236 |
+
# Build status information (using English since this is server-side output)
|
237 |
+
status_info = f"""
|
238 |
+
✅ Generation successful!
|
239 |
+
📊 Audio Information:
|
240 |
+
- Sample Rate: {audio_result["sample_rate"]} Hz
|
241 |
+
- Audio Length: {audio_result["audio_data"].shape[-1] / audio_result["sample_rate"]:.2f} seconds
|
242 |
+
- Channels: {audio_result["audio_data"].shape[0]}
|
243 |
+
|
244 |
+
📝 Text Processing Information:
|
245 |
+
- Original Text: {actual_texts_data[0]['original_text'][:100]}...
|
246 |
+
- Final Text: {actual_texts_data[0]['final_text'][:100]}...
|
247 |
+
- Use Normalize: {actual_texts_data[0]['use_normalize']}
|
248 |
+
"""
|
249 |
+
|
250 |
+
return output_path, status_info
|
251 |
+
|
252 |
+
except Exception as e:
|
253 |
+
import traceback
|
254 |
+
error_msg = f"Error: Audio generation failed: {str(e)}\n\nDetails:\n{traceback.format_exc()}"
|
255 |
+
return None, error_msg
|
256 |
+
|
257 |
+
# Create Gradio interface
|
258 |
+
def create_gradio_interface() -> gr.Blocks:
|
259 |
+
with gr.Blocks(title="MOSS-TTSD🪐 Dialogue Generation", theme=gr.themes.Soft()) as demo:
|
260 |
+
|
261 |
+
# Language selection at the top
|
262 |
+
with gr.Row():
|
263 |
+
language_selector = gr.Radio(
|
264 |
+
choices=["English", "中文"],
|
265 |
+
value="English",
|
266 |
+
label="Language / 语言",
|
267 |
+
info="Select interface language / 选择界面语言"
|
268 |
+
)
|
269 |
+
|
270 |
+
# Title and header (will be updated based on language)
|
271 |
+
title_md = gr.Markdown("# MOSS-TTSD🪐 Dialogue Generation")
|
272 |
+
github_md = gr.Markdown("### [Github](https://github.com/OpenMOSS/MOSS-TTSD)")
|
273 |
+
|
274 |
+
with gr.Row():
|
275 |
+
# Left input area
|
276 |
+
with gr.Column(scale=1):
|
277 |
+
script_input_md = gr.Markdown("### Script Input")
|
278 |
+
|
279 |
+
text_input = gr.Textbox(
|
280 |
+
label="Text to Synthesize",
|
281 |
+
placeholder="Text to be synthesized, format: [S1]Role1 text[S2]Role2 text",
|
282 |
+
lines=6,
|
283 |
+
)
|
284 |
+
|
285 |
+
use_normalize_single = gr.Checkbox(
|
286 |
+
label="Use text normalization",
|
287 |
+
value=True,
|
288 |
+
info="Recommended to enable, improves handling of numbers, punctuation, etc."
|
289 |
+
)
|
290 |
+
|
291 |
+
# Right audio input area
|
292 |
+
with gr.Column(scale=1):
|
293 |
+
audio_input_mode_md = gr.Markdown("### Audio Input Mode")
|
294 |
+
|
295 |
+
# Audio input mode selection
|
296 |
+
audio_mode = gr.Radio(
|
297 |
+
choices=["Single", "Role"],
|
298 |
+
value="Single",
|
299 |
+
label="Select input mode",
|
300 |
+
info="Single Audio: Upload one audio with [S1][S2] text; Role Audio: Upload separate audio for Role1 and Role2"
|
301 |
+
)
|
302 |
+
|
303 |
+
# Single audio mode
|
304 |
+
with gr.Group(visible=True) as single_mode_group:
|
305 |
+
prompt_audio_single = gr.File(
|
306 |
+
label="Drag and drop audio here - or - click to upload",
|
307 |
+
file_types=["audio"],
|
308 |
+
type="filepath"
|
309 |
+
)
|
310 |
+
prompt_text_single = gr.Textbox(
|
311 |
+
label="Prompt Text",
|
312 |
+
placeholder="Format: [S1]Role1 text[S2]Role2 text",
|
313 |
+
lines=3,
|
314 |
+
)
|
315 |
+
|
316 |
+
# Role audio mode
|
317 |
+
with gr.Group(visible=False) as role_mode_group:
|
318 |
+
with gr.Row():
|
319 |
+
with gr.Column():
|
320 |
+
role1_audio_md = gr.Markdown("**Role1 Audio**")
|
321 |
+
prompt_audio_1 = gr.File(
|
322 |
+
label="Role1 Audio File",
|
323 |
+
file_types=["audio"],
|
324 |
+
type="filepath"
|
325 |
+
)
|
326 |
+
prompt_text_1 = gr.Textbox(
|
327 |
+
label="Role1 Text",
|
328 |
+
placeholder="Role1 text content",
|
329 |
+
lines=2
|
330 |
+
)
|
331 |
+
|
332 |
+
with gr.Column():
|
333 |
+
role2_audio_md = gr.Markdown("**Role2 Audio**")
|
334 |
+
prompt_audio_2 = gr.File(
|
335 |
+
label="Role2 Audio File",
|
336 |
+
file_types=["audio"],
|
337 |
+
type="filepath"
|
338 |
+
)
|
339 |
+
prompt_text_2 = gr.Textbox(
|
340 |
+
label="Role2 Text",
|
341 |
+
placeholder="Role2 text content",
|
342 |
+
lines=2
|
343 |
+
)
|
344 |
+
|
345 |
+
# Generate button
|
346 |
+
with gr.Row():
|
347 |
+
generate_btn = gr.Button("Generate Audio", variant="primary", size="lg")
|
348 |
+
|
349 |
+
# Output area
|
350 |
+
with gr.Row():
|
351 |
+
with gr.Column():
|
352 |
+
output_audio = gr.Audio(label="Generated Audio", type="filepath")
|
353 |
+
status_info = gr.Textbox(
|
354 |
+
label="Status Information",
|
355 |
+
lines=10,
|
356 |
+
interactive=False
|
357 |
+
)
|
358 |
+
|
359 |
+
# Examples area
|
360 |
+
with gr.Row():
|
361 |
+
with gr.Column():
|
362 |
+
examples_md = gr.Markdown("### Examples")
|
363 |
+
examples_desc_md = gr.Markdown("Click on examples below to auto-fill the form")
|
364 |
+
|
365 |
+
role_examples = gr.Examples(
|
366 |
+
examples=ROLE_EXAMPLES,
|
367 |
+
inputs=[text_input, audio_mode, prompt_audio_1, prompt_text_1, prompt_audio_2, prompt_text_2, use_normalize_single],
|
368 |
+
)
|
369 |
+
|
370 |
+
# Event handlers
|
371 |
+
|
372 |
+
# Language change event
|
373 |
+
def update_language(lang):
|
374 |
+
"""Update interface language"""
|
375 |
+
texts = LANGUAGES[lang]
|
376 |
+
|
377 |
+
# Update demo title
|
378 |
+
demo.title = texts["title"]
|
379 |
+
|
380 |
+
return (
|
381 |
+
gr.Markdown(f"# {texts['title']}"), # title_md
|
382 |
+
texts["script_input"], # script_input_md
|
383 |
+
gr.Textbox(
|
384 |
+
label=texts["text_to_synthesize"],
|
385 |
+
placeholder=texts["text_placeholder"],
|
386 |
+
lines=6,
|
387 |
+
), # text_input
|
388 |
+
gr.Checkbox(
|
389 |
+
label=texts["use_normalize"],
|
390 |
+
value=True,
|
391 |
+
info=texts["normalize_info"]
|
392 |
+
), # use_normalize_single
|
393 |
+
texts["audio_input_mode"], # audio_input_mode_md
|
394 |
+
gr.Radio(
|
395 |
+
choices=["Single", "Role"],
|
396 |
+
value="Single",
|
397 |
+
label=texts["select_input_mode"],
|
398 |
+
info=texts["mode_info"]
|
399 |
+
), # audio_mode
|
400 |
+
gr.File(
|
401 |
+
label=texts["drag_drop_audio"],
|
402 |
+
file_types=["audio"],
|
403 |
+
type="filepath"
|
404 |
+
), # prompt_audio_single
|
405 |
+
gr.Textbox(
|
406 |
+
label=texts["prompt_text"],
|
407 |
+
placeholder=texts["prompt_placeholder"],
|
408 |
+
lines=3,
|
409 |
+
), # prompt_text_single
|
410 |
+
texts["role1_audio"], # role1_audio_md
|
411 |
+
gr.File(
|
412 |
+
label=texts["role1_audio_file"],
|
413 |
+
file_types=["audio"],
|
414 |
+
type="filepath"
|
415 |
+
), # prompt_audio_1
|
416 |
+
gr.Textbox(
|
417 |
+
label=texts["role1_text"],
|
418 |
+
placeholder=texts["role1_placeholder"],
|
419 |
+
lines=2
|
420 |
+
), # prompt_text_1
|
421 |
+
texts["role2_audio"], # role2_audio_md
|
422 |
+
gr.File(
|
423 |
+
label=texts["role2_audio_file"],
|
424 |
+
file_types=["audio"],
|
425 |
+
type="filepath"
|
426 |
+
), # prompt_audio_2
|
427 |
+
gr.Textbox(
|
428 |
+
label=texts["role2_text"],
|
429 |
+
placeholder=texts["role2_placeholder"],
|
430 |
+
lines=2
|
431 |
+
), # prompt_text_2
|
432 |
+
gr.Button(texts["generate_audio"], variant="primary", size="lg"), # generate_btn
|
433 |
+
gr.Audio(label=texts["generated_audio"], type="filepath"), # output_audio
|
434 |
+
gr.Textbox(
|
435 |
+
label=texts["status_info"],
|
436 |
+
lines=10,
|
437 |
+
interactive=False
|
438 |
+
), # status_info
|
439 |
+
texts["examples"], # examples_md
|
440 |
+
texts["examples_desc"], # examples_desc_md
|
441 |
+
gr.Dataset(headers=texts["role_headers"])
|
442 |
+
)
|
443 |
+
|
444 |
+
language_selector.change(
|
445 |
+
fn=update_language,
|
446 |
+
inputs=[language_selector],
|
447 |
+
outputs=[
|
448 |
+
title_md, script_input_md, text_input, use_normalize_single,
|
449 |
+
audio_input_mode_md, audio_mode, prompt_audio_single, prompt_text_single,
|
450 |
+
role1_audio_md, prompt_audio_1, prompt_text_1,
|
451 |
+
role2_audio_md, prompt_audio_2, prompt_text_2,
|
452 |
+
generate_btn, output_audio, status_info,
|
453 |
+
examples_md, examples_desc_md, role_examples.dataset,
|
454 |
+
]
|
455 |
+
)
|
456 |
+
|
457 |
+
# Audio mode toggle event
|
458 |
+
def toggle_audio_mode(mode):
|
459 |
+
if mode == "Single":
|
460 |
+
return gr.Group(visible=True), gr.Group(visible=False)
|
461 |
+
else:
|
462 |
+
return gr.Group(visible=False), gr.Group(visible=True)
|
463 |
+
|
464 |
+
audio_mode.change(
|
465 |
+
fn=toggle_audio_mode,
|
466 |
+
inputs=[audio_mode],
|
467 |
+
outputs=[single_mode_group, role_mode_group]
|
468 |
+
)
|
469 |
+
|
470 |
+
# Audio generation event
|
471 |
+
generate_btn.click(
|
472 |
+
fn=process_single_audio_generation,
|
473 |
+
inputs=[
|
474 |
+
text_input,
|
475 |
+
audio_mode,
|
476 |
+
prompt_text_single,
|
477 |
+
prompt_audio_single,
|
478 |
+
prompt_text_1,
|
479 |
+
prompt_audio_1,
|
480 |
+
prompt_text_2,
|
481 |
+
prompt_audio_2,
|
482 |
+
use_normalize_single
|
483 |
+
],
|
484 |
+
outputs=[output_audio, status_info],
|
485 |
+
show_progress=True
|
486 |
+
)
|
487 |
+
|
488 |
+
return demo
|
489 |
+
|
490 |
+
# Main function
|
491 |
+
if __name__ == "__main__":
|
492 |
+
demo = create_gradio_interface()
|
493 |
+
|
494 |
+
# Launch interface
|
495 |
+
demo.launch()
|
generation_utils.py
ADDED
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torchaudio
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from transformers import AutoTokenizer
|
9 |
+
from modeling_asteroid import AsteroidTTSInstruct
|
10 |
+
from XY_Tokenizer.xy_tokenizer.model import XY_Tokenizer
|
11 |
+
|
12 |
+
MAX_CHANNELS = 8
|
13 |
+
SILENCE_DURATION = 5.0 # Fixed silence duration: 5 seconds
|
14 |
+
|
15 |
+
def load_model(model_path, spt_config_path, spt_checkpoint_path):
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
17 |
+
|
18 |
+
model = AsteroidTTSInstruct.from_pretrained(model_path, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2")
|
19 |
+
|
20 |
+
spt = XY_Tokenizer.load_from_checkpoint(config_path=spt_config_path, ckpt_path=spt_checkpoint_path)
|
21 |
+
|
22 |
+
model.eval()
|
23 |
+
spt.eval()
|
24 |
+
return tokenizer, model, spt
|
25 |
+
|
26 |
+
|
27 |
+
def process_jsonl_item(item):
|
28 |
+
"""Process JSONL data items and extract audio and text information according to the new format"""
|
29 |
+
base_path = item.get("base_path", "")
|
30 |
+
text = item.get("text", "")
|
31 |
+
|
32 |
+
# Process prompt audio and text
|
33 |
+
if "prompt_audio" in item and "prompt_text" in item:
|
34 |
+
print("Using prompt_audio and prompt_text directly from item.")
|
35 |
+
# If prompt_audio and prompt_text exist, use them directly
|
36 |
+
prompt_audio = item["prompt_audio"]
|
37 |
+
prompt_text = item["prompt_text"]
|
38 |
+
|
39 |
+
# Only perform path joining when prompt_audio is a string path
|
40 |
+
if isinstance(prompt_audio, str) and base_path and prompt_audio:
|
41 |
+
prompt_audio = os.path.join(base_path, prompt_audio)
|
42 |
+
else:
|
43 |
+
print("Using speaker1 and speaker2 information for prompt audio and text.")
|
44 |
+
# Otherwise, merge speaker1 and speaker2 information
|
45 |
+
prompt_audio_speaker1 = item.get("prompt_audio_speaker1", "")
|
46 |
+
prompt_text_speaker1 = item.get("prompt_text_speaker1", "")
|
47 |
+
prompt_audio_speaker2 = item.get("prompt_audio_speaker2", "")
|
48 |
+
prompt_text_speaker2 = item.get("prompt_text_speaker2", "")
|
49 |
+
|
50 |
+
# Process audio: if it's a string path, perform path joining; if it's a tuple, use directly
|
51 |
+
if isinstance(prompt_audio_speaker1, str):
|
52 |
+
speaker1_audio = os.path.join(base_path, prompt_audio_speaker1) if base_path and prompt_audio_speaker1 else prompt_audio_speaker1
|
53 |
+
else:
|
54 |
+
speaker1_audio = prompt_audio_speaker1 # Use tuple directly
|
55 |
+
|
56 |
+
if isinstance(prompt_audio_speaker2, str):
|
57 |
+
speaker2_audio = os.path.join(base_path, prompt_audio_speaker2) if base_path and prompt_audio_speaker2 else prompt_audio_speaker2
|
58 |
+
else:
|
59 |
+
speaker2_audio = prompt_audio_speaker2 # Use tuple directly
|
60 |
+
|
61 |
+
prompt_audio = {
|
62 |
+
"speaker1": speaker1_audio,
|
63 |
+
"speaker2": speaker2_audio
|
64 |
+
}
|
65 |
+
|
66 |
+
# Merge text
|
67 |
+
prompt_text = ""
|
68 |
+
if prompt_text_speaker1:
|
69 |
+
prompt_text += f"[S1]{prompt_text_speaker1}"
|
70 |
+
if prompt_text_speaker2:
|
71 |
+
prompt_text += f"[S2]{prompt_text_speaker2}"
|
72 |
+
prompt_text = prompt_text.strip()
|
73 |
+
|
74 |
+
return {
|
75 |
+
"text": text,
|
76 |
+
"prompt_text": prompt_text,
|
77 |
+
"prompt_audio": prompt_audio
|
78 |
+
}
|
79 |
+
|
80 |
+
|
81 |
+
def load_audio_data(prompt_audio, target_sample_rate=16000):
|
82 |
+
"""Load audio data and return processed audio tensor
|
83 |
+
|
84 |
+
Args:
|
85 |
+
prompt_audio: Can be in the following formats:
|
86 |
+
- String: audio file path
|
87 |
+
- Tuple: (wav, sr) result from torchaudio.load
|
88 |
+
- Dict: {"speaker1": path_or_tuple, "speaker2": path_or_tuple}
|
89 |
+
"""
|
90 |
+
if prompt_audio is None:
|
91 |
+
return None
|
92 |
+
|
93 |
+
try:
|
94 |
+
# Check if prompt_audio is a dictionary (containing speaker1 and speaker2)
|
95 |
+
if isinstance(prompt_audio, dict) and "speaker1" in prompt_audio and "speaker2" in prompt_audio:
|
96 |
+
# Process audio from both speakers separately
|
97 |
+
wav1, sr1 = _load_single_audio(prompt_audio["speaker1"])
|
98 |
+
wav2, sr2 = _load_single_audio(prompt_audio["speaker2"])
|
99 |
+
# Merge audio from both speakers
|
100 |
+
wav = merge_speaker_audios(wav1, sr1, wav2, sr2, target_sample_rate)
|
101 |
+
if wav is None:
|
102 |
+
return None
|
103 |
+
else:
|
104 |
+
# Single audio
|
105 |
+
wav, sr = _load_single_audio(prompt_audio)
|
106 |
+
# Resample to 16k
|
107 |
+
if sr != target_sample_rate:
|
108 |
+
wav = torchaudio.functional.resample(wav, sr, target_sample_rate)
|
109 |
+
# Ensure mono channel
|
110 |
+
if wav.shape[0] > 1:
|
111 |
+
wav = wav.mean(dim=0, keepdim=True) # Convert multi-channel to mono
|
112 |
+
if len(wav.shape) == 1:
|
113 |
+
wav = wav.unsqueeze(0)
|
114 |
+
|
115 |
+
return wav
|
116 |
+
except Exception as e:
|
117 |
+
print(f"Error loading audio data: {e}")
|
118 |
+
import traceback
|
119 |
+
traceback.print_exc()
|
120 |
+
return None
|
121 |
+
|
122 |
+
|
123 |
+
def _load_single_audio(audio_input):
|
124 |
+
"""Load single audio, supports file path or (wav, sr) tuple
|
125 |
+
|
126 |
+
Args:
|
127 |
+
audio_input: String (file path) or tuple (wav, sr)
|
128 |
+
|
129 |
+
Returns:
|
130 |
+
tuple: (wav, sr)
|
131 |
+
"""
|
132 |
+
if isinstance(audio_input, tuple) and len(audio_input) == 2:
|
133 |
+
# Already a (wav, sr) tuple
|
134 |
+
wav, sr = audio_input
|
135 |
+
return wav, sr
|
136 |
+
elif isinstance(audio_input, str):
|
137 |
+
# Is a file path, needs to be loaded
|
138 |
+
wav, sr = torchaudio.load(audio_input)
|
139 |
+
return wav, sr
|
140 |
+
else:
|
141 |
+
raise ValueError(f"Unsupported audio input format: {type(audio_input)}")
|
142 |
+
|
143 |
+
|
144 |
+
def merge_speaker_audios(wav1, sr1, wav2, sr2, target_sample_rate=16000):
|
145 |
+
"""Merge audio data from two speakers"""
|
146 |
+
try:
|
147 |
+
# Process first audio
|
148 |
+
if sr1 != target_sample_rate:
|
149 |
+
wav1 = torchaudio.functional.resample(wav1, sr1, target_sample_rate)
|
150 |
+
# Ensure mono channel
|
151 |
+
if wav1.shape[0] > 1:
|
152 |
+
wav1 = wav1.mean(dim=0, keepdim=True) # Convert multi-channel to mono
|
153 |
+
if len(wav1.shape) == 1:
|
154 |
+
wav1 = wav1.unsqueeze(0)
|
155 |
+
|
156 |
+
# Process second audio
|
157 |
+
if sr2 != target_sample_rate:
|
158 |
+
wav2 = torchaudio.functional.resample(wav2, sr2, target_sample_rate)
|
159 |
+
# Ensure mono channel
|
160 |
+
if wav2.shape[0] > 1:
|
161 |
+
wav2 = wav2.mean(dim=0, keepdim=True) # Convert multi-channel to mono
|
162 |
+
if len(wav2.shape) == 1:
|
163 |
+
wav2 = wav2.unsqueeze(0)
|
164 |
+
|
165 |
+
# Concatenate audio
|
166 |
+
merged_wav = torch.cat([wav1, wav2], dim=1)
|
167 |
+
return merged_wav
|
168 |
+
except Exception as e:
|
169 |
+
print(f"Error merging audio: {e}")
|
170 |
+
return None
|
171 |
+
|
172 |
+
|
173 |
+
def process_inputs(tokenizer, spt, prompt, text, device, audio_data=None, max_channels=8, pad_token=1024):
|
174 |
+
seq = f"<|begin_of_style|>{prompt}<|end_of_style|>\n<|begin_of_text|>{text}<|end_of_text|>\n<|begin_of_speech|>"
|
175 |
+
inputs1 = np.array(tokenizer.encode(seq))
|
176 |
+
input_ids = np.full((inputs1.shape[0], max_channels), pad_token)
|
177 |
+
input_ids[:, 0] = inputs1
|
178 |
+
|
179 |
+
if audio_data is not None:
|
180 |
+
try:
|
181 |
+
# audio_data should now be a processed audio tensor
|
182 |
+
wav = audio_data
|
183 |
+
|
184 |
+
# Add fixed 5-second silence at the end of audio (using 16k sample rate)
|
185 |
+
silence_samples = int(SILENCE_DURATION * 16000)
|
186 |
+
silence = torch.zeros(wav.shape[0], silence_samples)
|
187 |
+
wav = torch.cat([wav, silence], dim=1)
|
188 |
+
|
189 |
+
with torch.no_grad():
|
190 |
+
# Use SPT encoding
|
191 |
+
encode_result = spt.encode([wav.squeeze().to(device)])
|
192 |
+
audio_token = encode_result["codes_list"][0].permute(1, 0).cpu().numpy() # Adjust dimension order
|
193 |
+
|
194 |
+
# similar to DAC encoding adjustment
|
195 |
+
audio_token[:, 0] = audio_token[:, 0] + 151665 # Keep this line if offset is needed, otherwise delete
|
196 |
+
input_ids = np.concatenate([input_ids, audio_token])[:-60]
|
197 |
+
except Exception as e:
|
198 |
+
print(f"Error processing audio data: {e}")
|
199 |
+
import traceback
|
200 |
+
traceback.print_exc()
|
201 |
+
# If error occurs, still return input without audio
|
202 |
+
|
203 |
+
return input_ids
|
204 |
+
|
205 |
+
|
206 |
+
def shifting_inputs(input_ids, tokenizer, pad_token=1024, max_channels=8):
|
207 |
+
seq_len = input_ids.shape[0]
|
208 |
+
new_seq_len = seq_len + max_channels - 1
|
209 |
+
shifted_input_ids = np.full((new_seq_len, max_channels), pad_token, dtype=np.int64)
|
210 |
+
shifted_input_ids[:, 0] = np.full(new_seq_len, tokenizer.pad_token_id, dtype=np.int64)
|
211 |
+
for i in range(max_channels):
|
212 |
+
shifted_input_ids[i : (seq_len + i), i] = input_ids[:, i]
|
213 |
+
return shifted_input_ids
|
214 |
+
|
215 |
+
|
216 |
+
def rpadding(input_ids, channels, tokenizer):
|
217 |
+
attention_masks = [np.ones(inputs.shape[0]) for inputs in input_ids]
|
218 |
+
max_length = max(ids.shape[0] for ids in input_ids)
|
219 |
+
padded_input_ids, padded_attns = [], []
|
220 |
+
|
221 |
+
for ids, attn in zip(input_ids, attention_masks):
|
222 |
+
pad_len = max_length - ids.shape[0]
|
223 |
+
input_pad = np.full((pad_len, channels), 1024)
|
224 |
+
input_pad[:, 0] = tokenizer.pad_token_id
|
225 |
+
padded_input_ids.append(np.concatenate([input_pad, ids]))
|
226 |
+
attn_pad = np.zeros(pad_len)
|
227 |
+
padded_attns.append(np.concatenate([attn_pad, attn]))
|
228 |
+
|
229 |
+
input_ids = torch.tensor(np.stack(padded_input_ids))
|
230 |
+
attention_mask = torch.tensor(np.stack(padded_attns))
|
231 |
+
|
232 |
+
return input_ids, attention_mask
|
233 |
+
|
234 |
+
|
235 |
+
def find_max_valid_positions(C: torch.Tensor, invalid_value=1024) -> torch.Tensor:
|
236 |
+
values = C[:, :, 1]
|
237 |
+
mask = (values != invalid_value)
|
238 |
+
reversed_mask = mask.flip(dims=[1])
|
239 |
+
reversed_indices = torch.argmax(reversed_mask.int(), dim=1)
|
240 |
+
seq_len = C.size(1)
|
241 |
+
original_indices = seq_len - 1 - reversed_indices
|
242 |
+
has_valid = mask.any(dim=1)
|
243 |
+
original_indices = torch.where(has_valid, original_indices, -1)
|
244 |
+
return original_indices
|
245 |
+
|
246 |
+
|
247 |
+
def normalize_text(text: str) -> str:
|
248 |
+
"""
|
249 |
+
Normalize multi-speaker script.
|
250 |
+
|
251 |
+
1. Don't preserve line breaks.
|
252 |
+
2. Remove brackets for non-speaker tags (if [] doesn't contain S1/S2...Sx format, remove the brackets themselves).
|
253 |
+
3. Remove decorative symbols: 【】《》()『』「」"-“” .
|
254 |
+
4. Internal punctuation !;:、 → ,;only allow ? and ,。
|
255 |
+
5. Multiple 。 keep only the last one, others → ,。
|
256 |
+
6. Replace consecutive "哈" (>=2) with "(笑)".
|
257 |
+
7. Auto-recognize [S1] / [S2] … tags; if missing, treat as whole segment.
|
258 |
+
"""
|
259 |
+
# Replace [1], [2] etc. format with [S1], [S2] etc. format
|
260 |
+
text = re.sub(r'\[(\d+)\]', r'[S\1]', text)
|
261 |
+
|
262 |
+
# Remove decorative characters
|
263 |
+
remove_chars = "【】《》()『』「」""\"-“”"
|
264 |
+
|
265 |
+
|
266 |
+
# Remove brackets for non-speaker tags (keep content, only remove brackets themselves)
|
267 |
+
text = re.sub(r'\[(?!S\d+\])([^\]]*)\]', r'\1', text)
|
268 |
+
|
269 |
+
# Use positive lookahead to split text by speaker tags (tags themselves are still preserved)
|
270 |
+
segments = re.split(r'(?=\[S\d+\])', text.replace("\n", " "))
|
271 |
+
normalized_lines = []
|
272 |
+
|
273 |
+
for seg in segments:
|
274 |
+
seg = seg.strip()
|
275 |
+
if not seg:
|
276 |
+
continue
|
277 |
+
|
278 |
+
# Extract tags
|
279 |
+
m = re.match(r'^(\[S\d+\])\s*(.*)', seg)
|
280 |
+
tag, content = m.groups() if m else ('', seg)
|
281 |
+
|
282 |
+
# Remove irrelevant symbols
|
283 |
+
content = re.sub(f"[{re.escape(remove_chars)}]", "", content)
|
284 |
+
|
285 |
+
# Handle consecutive "哈" characters: replace 2 or more with "(笑)"
|
286 |
+
content = re.sub(r'哈{2,}', '(笑)', content)
|
287 |
+
|
288 |
+
# First handle multi-character punctuation marks
|
289 |
+
content = content.replace('——', ',')
|
290 |
+
content = content.replace('……', ',')
|
291 |
+
|
292 |
+
# Handle single-character internal punctuation marks
|
293 |
+
internal_punct_map = str.maketrans({
|
294 |
+
'!': ',', '!': ',',
|
295 |
+
';': ',', ';': ',',
|
296 |
+
':': ',', ':': ',',
|
297 |
+
'、': ',',
|
298 |
+
'?': ',', '?': ','
|
299 |
+
})
|
300 |
+
content = content.translate(internal_punct_map)
|
301 |
+
content = content.strip()
|
302 |
+
|
303 |
+
# Keep only the final period
|
304 |
+
if len(content) > 1:
|
305 |
+
last_ch = "。" if content[-1] == "," else ("." if content[-1] == "," else content[-1])
|
306 |
+
body = content[:-1].replace('。', ',')
|
307 |
+
content = body + last_ch
|
308 |
+
|
309 |
+
normalized_lines.append(f"{tag}{content}".strip())
|
310 |
+
|
311 |
+
return "".join(normalized_lines)
|
312 |
+
|
313 |
+
|
314 |
+
def process_batch(batch_items, tokenizer, model, spt, device, system_prompt, start_idx, use_normalize=False):
|
315 |
+
"""Process a batch of data items and generate audio, return audio data and metadata"""
|
316 |
+
try:
|
317 |
+
# Prepare batch data
|
318 |
+
batch_size = len(batch_items)
|
319 |
+
texts = []
|
320 |
+
prompts = [system_prompt] * batch_size
|
321 |
+
prompt_audios = []
|
322 |
+
actual_texts_data = [] # Store actual text data used
|
323 |
+
|
324 |
+
print(f"Processing {batch_size} samples starting from index {start_idx}...")
|
325 |
+
|
326 |
+
# Extract text and audio from each sample
|
327 |
+
for i, item in enumerate(batch_items):
|
328 |
+
# Use new processing function
|
329 |
+
processed_item = process_jsonl_item(item)
|
330 |
+
|
331 |
+
text = processed_item["text"]
|
332 |
+
prompt_text = processed_item["prompt_text"]
|
333 |
+
|
334 |
+
# Merge text
|
335 |
+
full_text = prompt_text + text
|
336 |
+
original_full_text = full_text # Save original text
|
337 |
+
|
338 |
+
# Apply text normalization based on parameter
|
339 |
+
if use_normalize:
|
340 |
+
full_text = normalize_text(full_text)
|
341 |
+
|
342 |
+
# Replace speaker tags
|
343 |
+
final_text = full_text.replace("[S1]", "<speaker1>").replace("[S2]", "<speaker2>")
|
344 |
+
texts.append(final_text)
|
345 |
+
|
346 |
+
# Save actual text information used
|
347 |
+
actual_texts_data.append({
|
348 |
+
"index": start_idx + i,
|
349 |
+
"original_text": original_full_text,
|
350 |
+
"normalized_text": normalize_text(original_full_text) if use_normalize else None,
|
351 |
+
"final_text": final_text,
|
352 |
+
"use_normalize": use_normalize
|
353 |
+
})
|
354 |
+
|
355 |
+
# Get reference audio
|
356 |
+
prompt_audios.append(processed_item["prompt_audio"])
|
357 |
+
|
358 |
+
# Process inputs
|
359 |
+
input_ids_list = []
|
360 |
+
for i, (text, prompt, audio_path) in enumerate(zip(texts, prompts, prompt_audios)):
|
361 |
+
# Load audio data here
|
362 |
+
audio_data = load_audio_data(audio_path) if audio_path else None
|
363 |
+
inputs = process_inputs(tokenizer, spt, prompt, text, device, audio_data)
|
364 |
+
inputs = shifting_inputs(inputs, tokenizer)
|
365 |
+
input_ids_list.append(inputs)
|
366 |
+
|
367 |
+
# Pad batch inputs
|
368 |
+
input_ids, attention_mask = rpadding(input_ids_list, MAX_CHANNELS, tokenizer)
|
369 |
+
|
370 |
+
# Batch generation
|
371 |
+
print(f"Starting batch audio generation...")
|
372 |
+
start = input_ids.shape[1] - MAX_CHANNELS + 1
|
373 |
+
|
374 |
+
# Move inputs to GPU
|
375 |
+
input_ids = input_ids.to(device)
|
376 |
+
attention_mask = attention_mask.to(device)
|
377 |
+
|
378 |
+
# Generate model outputs
|
379 |
+
outputs = model.generate(
|
380 |
+
input_ids=input_ids,
|
381 |
+
attention_mask=attention_mask,
|
382 |
+
)
|
383 |
+
print(f"Original outputs shape: {outputs.shape}")
|
384 |
+
print(f"Start value: {start}")
|
385 |
+
print(f"Shape after slicing: {outputs[:, start:].shape}")
|
386 |
+
print(f"MAX_CHANNELS: {MAX_CHANNELS}")
|
387 |
+
print(f"Calculated seq_len: {outputs.shape[1] - MAX_CHANNELS + 1}")
|
388 |
+
# Process outputs
|
389 |
+
outputs = outputs[:, start:]
|
390 |
+
seq_len = outputs.shape[1] - MAX_CHANNELS + 1
|
391 |
+
speech_ids = torch.full((outputs.shape[0], seq_len, MAX_CHANNELS), 0).to(device)
|
392 |
+
|
393 |
+
|
394 |
+
# Adjust output format
|
395 |
+
for j in range(MAX_CHANNELS):
|
396 |
+
speech_ids[..., j] = outputs[:, j : seq_len + j, j]
|
397 |
+
if j == 0:
|
398 |
+
speech_ids[..., j] = speech_ids[..., j] - 151665
|
399 |
+
|
400 |
+
# Find valid positions for each sample
|
401 |
+
li = find_max_valid_positions(speech_ids)
|
402 |
+
|
403 |
+
# Store audio result data
|
404 |
+
audio_results = []
|
405 |
+
|
406 |
+
# Process batch sample results individually
|
407 |
+
for i in range(batch_size):
|
408 |
+
try:
|
409 |
+
# Extract valid speech tokens
|
410 |
+
end_idx = li[i] + 1
|
411 |
+
if end_idx <= 0:
|
412 |
+
print(f"Sample {start_idx + i} has no valid speech tokens")
|
413 |
+
audio_results.append(None)
|
414 |
+
continue
|
415 |
+
|
416 |
+
this_speech_id = speech_ids[i, :end_idx]
|
417 |
+
print(f"Speech token shape for sample {start_idx + i}: {this_speech_id.shape}")
|
418 |
+
|
419 |
+
# Decode generated audio
|
420 |
+
with torch.no_grad():
|
421 |
+
codes_list = [this_speech_id.permute(1, 0)] # Convert to SPT expected format
|
422 |
+
decode_result = spt.decode(codes_list, overlap_seconds=10)
|
423 |
+
audio_result = decode_result["syn_wav_list"][0].cpu().detach()
|
424 |
+
|
425 |
+
if audio_result.ndim == 1: # If 1D [samples]
|
426 |
+
audio_result = audio_result.unsqueeze(0) # Convert to 2D [1, samples]
|
427 |
+
|
428 |
+
# Save audio data instead of file path
|
429 |
+
audio_results.append({
|
430 |
+
"audio_data": audio_result,
|
431 |
+
"sample_rate": spt.output_sample_rate,
|
432 |
+
"index": start_idx + i
|
433 |
+
})
|
434 |
+
print(f"Audio generation completed: sample {start_idx + i}")
|
435 |
+
|
436 |
+
except Exception as e:
|
437 |
+
print(f"Error processing sample {start_idx + i}: {str(e)}")
|
438 |
+
import traceback
|
439 |
+
traceback.print_exc()
|
440 |
+
audio_results.append(None)
|
441 |
+
|
442 |
+
# Clean up GPU memory
|
443 |
+
torch.cuda.empty_cache()
|
444 |
+
|
445 |
+
# Return text data and audio data
|
446 |
+
return actual_texts_data, audio_results
|
447 |
+
|
448 |
+
except Exception as e:
|
449 |
+
print(f"Error during batch processing: {str(e)}")
|
450 |
+
import traceback
|
451 |
+
traceback.print_exc()
|
452 |
+
return [], [None] * len(batch_items)
|
modeling_asteroid.py
ADDED
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from transformers.utils import ModelOutput
|
5 |
+
from transformers.cache_utils import Cache
|
6 |
+
from typing import Optional, List, Tuple, Union
|
7 |
+
from transformers.loss.loss_utils import ForCausalLMLoss
|
8 |
+
from transformers.generation.streamers import BaseStreamer
|
9 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
10 |
+
from transformers.generation.configuration_utils import GenerationConfig
|
11 |
+
from transformers.generation.stopping_criteria import StoppingCriteriaList
|
12 |
+
from transformers import PreTrainedModel, GenerationMixin, Qwen3Config, Qwen3Model
|
13 |
+
from transformers.generation.logits_process import LogitsProcessorList, RepetitionPenaltyLogitsProcessor, TopKLogitsWarper, TopPLogitsWarper, TemperatureLogitsWarper
|
14 |
+
|
15 |
+
|
16 |
+
class AsteroidTTSConfig(Qwen3Config):
|
17 |
+
def __init__(self,
|
18 |
+
channels = 8,
|
19 |
+
speech_pad_token = 1024,
|
20 |
+
speech_vocab_size = 1025,
|
21 |
+
speech_token_range = [],
|
22 |
+
**kwargs):
|
23 |
+
super().__init__(**kwargs)
|
24 |
+
self.channels = channels
|
25 |
+
self.speech_pad_token = speech_pad_token
|
26 |
+
self.speech_vocab_size = speech_vocab_size
|
27 |
+
self.speech_token_range = speech_token_range
|
28 |
+
|
29 |
+
|
30 |
+
@dataclass
|
31 |
+
class AsteroidTTSOutputWithPast(ModelOutput):
|
32 |
+
loss: Optional[torch.FloatTensor] = None
|
33 |
+
logits: torch.FloatTensor = None
|
34 |
+
loss_all: Optional[Tuple[torch.FloatTensor]] = None
|
35 |
+
logits_all: Optional[Tuple[torch.FloatTensor]] = None
|
36 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
37 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
38 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
39 |
+
|
40 |
+
|
41 |
+
@dataclass
|
42 |
+
class GenerateDecoderOnlyOutput(ModelOutput):
|
43 |
+
sequences: torch.LongTensor = None
|
44 |
+
scores: Optional[Tuple[torch.FloatTensor]] = None
|
45 |
+
logits: Optional[Tuple[torch.FloatTensor]] = None
|
46 |
+
attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
47 |
+
hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
48 |
+
past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
|
49 |
+
|
50 |
+
|
51 |
+
class CustomMixin(GenerationMixin):
|
52 |
+
def _sample(
|
53 |
+
self,
|
54 |
+
input_ids: torch.LongTensor,
|
55 |
+
logits_processor: LogitsProcessorList,
|
56 |
+
stopping_criteria: StoppingCriteriaList,
|
57 |
+
generation_config: GenerationConfig,
|
58 |
+
synced_gpus: bool,
|
59 |
+
streamer: Optional["BaseStreamer"],
|
60 |
+
**model_kwargs,
|
61 |
+
) -> Union[GenerateDecoderOnlyOutput, torch.LongTensor]:
|
62 |
+
# 提取配置参数
|
63 |
+
speech_pad_idx = self.config.speech_pad_token
|
64 |
+
|
65 |
+
eos_token_id = generation_config.eos_token_id
|
66 |
+
output_attentions = generation_config.output_attentions
|
67 |
+
output_hidden_states = generation_config.output_hidden_states
|
68 |
+
output_scores = generation_config.output_scores
|
69 |
+
output_logits = generation_config.output_logits
|
70 |
+
return_dict_in_generate = generation_config.return_dict_in_generate
|
71 |
+
max_length = generation_config.max_length
|
72 |
+
has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria)
|
73 |
+
do_sample = generation_config.do_sample
|
74 |
+
|
75 |
+
# 初始化输出元组
|
76 |
+
scores = () if (return_dict_in_generate and output_scores) else None
|
77 |
+
raw_logits = () if (return_dict_in_generate and output_logits) else None
|
78 |
+
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
|
79 |
+
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
|
80 |
+
|
81 |
+
# 初始化跟踪变量
|
82 |
+
batch_size, cur_len, channels = input_ids.shape # channels = 8
|
83 |
+
this_peer_finished = False
|
84 |
+
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
|
85 |
+
needs_additional_steps = -1 * torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
|
86 |
+
tf_inputs = input_ids[:]
|
87 |
+
input_ids = input_ids[:, :-(channels - 1)]
|
88 |
+
model_kwargs["attention_mask"] = model_kwargs["attention_mask"][:, :-(channels - 1)]
|
89 |
+
base_length = input_ids.shape[1]
|
90 |
+
model_kwargs = self._get_initial_cache_position(cur_len, input_ids.device, model_kwargs)
|
91 |
+
|
92 |
+
# 定义logits processor
|
93 |
+
if generation_config.do_samples is not None:
|
94 |
+
do_samples = generation_config.do_samples
|
95 |
+
realprocessor = [LogitsProcessorList() for _ in range(channels)]
|
96 |
+
for i, layer_config in enumerate(generation_config.layers):
|
97 |
+
if layer_config.get("repetition_penalty") is not None:
|
98 |
+
realprocessor[i].append(RepetitionPenaltyLogitsProcessor(penalty=layer_config.get("repetition_penalty")))
|
99 |
+
if layer_config.get("temperature") is not None:
|
100 |
+
realprocessor[i].append(TemperatureLogitsWarper(temperature=layer_config.get("temperature")))
|
101 |
+
if layer_config.get("top_k") is not None:
|
102 |
+
realprocessor[i].append(TopKLogitsWarper(top_k=layer_config.get("top_k")))
|
103 |
+
if layer_config.get("top_p") is not None:
|
104 |
+
realprocessor[i].append(TopPLogitsWarper(top_p=layer_config.get("top_p")))
|
105 |
+
else:
|
106 |
+
do_samples = [do_sample for _ in range(channels)]
|
107 |
+
realprocessor = [logits_processor for _ in range(channels)]
|
108 |
+
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
|
109 |
+
# 准备模型输入
|
110 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
111 |
+
model_inputs.update({"output_attentions": output_attentions} if output_attentions else {})
|
112 |
+
model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {})
|
113 |
+
# 前向传递
|
114 |
+
outputs = self(**model_inputs, return_dict=True)
|
115 |
+
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
|
116 |
+
|
117 |
+
if synced_gpus and this_peer_finished:
|
118 |
+
continue
|
119 |
+
|
120 |
+
# 获取下一个 token 的 logits
|
121 |
+
next_token_logits = [logits[:, -1, :].clone().float().to(input_ids.device) for logits in outputs.logits_all]
|
122 |
+
for i, channel_logits in enumerate(next_token_logits):
|
123 |
+
if i != 0 and input_ids.shape[1] + 1 > tf_inputs.shape[1] - 7 + i:
|
124 |
+
channel_logits[:, 1024] = - torch.inf
|
125 |
+
if i == 0 and input_ids.shape[1] + 1 <= tf_inputs.shape[1]:
|
126 |
+
channel_logits[:, 152694] = - torch.inf
|
127 |
+
next_token_scores = [realprocessor[i](input_ids[..., i], logits) for i, logits in enumerate(next_token_logits)]
|
128 |
+
# 生成下一个 token
|
129 |
+
next_tokens = []
|
130 |
+
for i, channel_score in enumerate(next_token_scores):
|
131 |
+
if do_samples[i]:
|
132 |
+
channel_ntk = torch.multinomial(nn.functional.softmax(channel_score, dim=-1), num_samples=1).squeeze(1)
|
133 |
+
elif not do_samples[i]:
|
134 |
+
channel_ntk = torch.argmax(channel_score, dim=-1)
|
135 |
+
next_tokens.append(channel_ntk)
|
136 |
+
next_tokens = torch.stack(next_tokens, dim=-1) # [batch_size, channels]
|
137 |
+
# 额外步骤逻辑
|
138 |
+
indices = (~self.is_speech_token(next_tokens[:, 0])) & (needs_additional_steps < 0)
|
139 |
+
needs_additional_steps[indices] = channels - 1 # 对于 8 个通道,需要 6 步
|
140 |
+
|
141 |
+
if input_ids.shape[1] + 1 <= tf_inputs.shape[1]:
|
142 |
+
i = input_ids.shape[1] + 1 - base_length
|
143 |
+
next_tokens[:, i:] = tf_inputs[:, input_ids.shape[1], i:]
|
144 |
+
|
145 |
+
# 在额外步骤中替换 token
|
146 |
+
mask = (needs_additional_steps > 0) & (needs_additional_steps < 7)
|
147 |
+
if mask.any().item():
|
148 |
+
next_tokens[mask, 0] = self.config.eos_token_id
|
149 |
+
for i in range(1, channels):
|
150 |
+
mask_i = mask & (needs_additional_steps < channels - i)
|
151 |
+
next_tokens[mask_i, i] = speech_pad_idx
|
152 |
+
|
153 |
+
if has_eos_stopping_criteria:
|
154 |
+
for i in range(channels):
|
155 |
+
pddp = self.config.eos_token_id if i == 0 else speech_pad_idx
|
156 |
+
next_tokens[:, i] = next_tokens[:, i] * unfinished_sequences + pddp * (1 - unfinished_sequences)
|
157 |
+
|
158 |
+
input_ids = torch.cat([input_ids, next_tokens[:, None, :]], dim=1)
|
159 |
+
if streamer is not None:
|
160 |
+
streamer.put(next_tokens[:, 0].cpu())
|
161 |
+
|
162 |
+
# 更新 unfinished_sequences
|
163 |
+
needs_additional_steps = torch.where(needs_additional_steps > 0, needs_additional_steps - 1, needs_additional_steps)
|
164 |
+
stopping = stopping_criteria(input_ids[..., 0], scores) | (needs_additional_steps == 0)
|
165 |
+
unfinished_sequences = unfinished_sequences & ~stopping
|
166 |
+
unfinished_sequences = unfinished_sequences | (needs_additional_steps > 0)
|
167 |
+
this_peer_finished = unfinished_sequences.max() == 0
|
168 |
+
|
169 |
+
if return_dict_in_generate:
|
170 |
+
if output_scores:
|
171 |
+
scores += (next_token_scores,)
|
172 |
+
if output_logits:
|
173 |
+
raw_logits += (next_token_logits,)
|
174 |
+
if output_attentions:
|
175 |
+
decoder_attentions += (outputs.attentions,)
|
176 |
+
if output_hidden_states:
|
177 |
+
decoder_hidden_states += (outputs.hidden_states,)
|
178 |
+
|
179 |
+
cur_len += 1
|
180 |
+
del outputs
|
181 |
+
|
182 |
+
if streamer is not None:
|
183 |
+
streamer.end()
|
184 |
+
|
185 |
+
if return_dict_in_generate:
|
186 |
+
return GenerateDecoderOnlyOutput(
|
187 |
+
sequences=input_ids,
|
188 |
+
scores=scores,
|
189 |
+
logits=raw_logits,
|
190 |
+
attentions=decoder_attentions,
|
191 |
+
hidden_states=decoder_hidden_states,
|
192 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
193 |
+
)
|
194 |
+
else:
|
195 |
+
return input_ids
|
196 |
+
|
197 |
+
|
198 |
+
class AsteroidTTSPretrainedModel(PreTrainedModel):
|
199 |
+
config_class = AsteroidTTSConfig
|
200 |
+
base_model_prefix = "model"
|
201 |
+
supports_gradient_checkpointing = True
|
202 |
+
_no_split_modules = ["Qwen3DecoderLayer"]
|
203 |
+
_skip_keys_device_placement = ["past_key_values"]
|
204 |
+
_supports_flash_attn_2 = True
|
205 |
+
_supports_sdpa = True
|
206 |
+
_supports_flex_attn = True
|
207 |
+
_supports_cache_class = True
|
208 |
+
_supports_quantized_cache = True
|
209 |
+
_supports_static_cache = True
|
210 |
+
_supports_attention_backend = True
|
211 |
+
|
212 |
+
|
213 |
+
class AsteroidTTSModel(AsteroidTTSPretrainedModel):
|
214 |
+
def __init__(self, config: AsteroidTTSConfig):
|
215 |
+
super().__init__(config)
|
216 |
+
self.text_pad_idx = config.pad_token_id
|
217 |
+
self.speech_pad_idx = config.speech_pad_token
|
218 |
+
self.embedding_list = nn.ModuleList([])
|
219 |
+
self.embedding_list.append(nn.Embedding(config.vocab_size, config.hidden_size, self.text_pad_idx))
|
220 |
+
# Channels 1 to channels-1: Speech tokens only
|
221 |
+
for _ in range(1, config.channels):
|
222 |
+
self.embedding_list.append(nn.Embedding(config.speech_vocab_size, config.hidden_size, self.speech_pad_idx))
|
223 |
+
|
224 |
+
self.language_model = Qwen3Model(config)
|
225 |
+
self.post_init()
|
226 |
+
|
227 |
+
def get_input_embeddings(self):
|
228 |
+
return self.embedding_list[0]
|
229 |
+
|
230 |
+
def set_input_embeddings(self, value: nn.Embedding):
|
231 |
+
self.embedding_list[0] = value
|
232 |
+
|
233 |
+
def _prepare_multi_modal_inputs(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
|
234 |
+
"""
|
235 |
+
Prepares multi-modal embeddings from input_ids of shape (batch_size, channels, sequence_length).
|
236 |
+
For channel 0: text + speech tokens, for channels 1 to channels-1: speech tokens padded with speech_pad_token.
|
237 |
+
"""
|
238 |
+
batch_size, seq_length, channels = input_ids.shape
|
239 |
+
if channels != self.config.channels:
|
240 |
+
raise ValueError(f"Expected {self.config.channels} channels, got {channels}")
|
241 |
+
|
242 |
+
inputs_embeds = torch.zeros(batch_size, seq_length, self.config.hidden_size, device=input_ids.device, dtype=self.embedding_list[0].weight.dtype)
|
243 |
+
for i in range(channels):
|
244 |
+
embed_layer = self.embedding_list[i]
|
245 |
+
channel_input = input_ids[...,i]
|
246 |
+
inputs_embeds += embed_layer(channel_input)
|
247 |
+
|
248 |
+
return inputs_embeds
|
249 |
+
|
250 |
+
def forward(
|
251 |
+
self,
|
252 |
+
input_ids: torch.LongTensor = None, # Shape: (batch_size, channels, sequence_length)
|
253 |
+
attention_mask: Optional[torch.Tensor] = None,
|
254 |
+
position_ids: Optional[torch.LongTensor] = None,
|
255 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
256 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
257 |
+
use_cache: Optional[bool] = None,
|
258 |
+
output_attentions: Optional[bool] = None,
|
259 |
+
output_hidden_states: Optional[bool] = None,
|
260 |
+
return_dict: Optional[bool] = None,
|
261 |
+
cache_position: Optional[torch.LongTensor] = None,
|
262 |
+
**kwargs,
|
263 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
264 |
+
|
265 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
266 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
267 |
+
|
268 |
+
if input_ids is not None:
|
269 |
+
inputs_embeds = self._prepare_multi_modal_inputs(input_ids)
|
270 |
+
|
271 |
+
outputs = self.language_model(
|
272 |
+
input_ids=None,
|
273 |
+
attention_mask=attention_mask,
|
274 |
+
position_ids=position_ids,
|
275 |
+
past_key_values=past_key_values,
|
276 |
+
inputs_embeds=inputs_embeds,
|
277 |
+
use_cache=use_cache,
|
278 |
+
output_attentions=output_attentions,
|
279 |
+
output_hidden_states=output_hidden_states,
|
280 |
+
return_dict=return_dict,
|
281 |
+
cache_position=cache_position,
|
282 |
+
)
|
283 |
+
return outputs
|
284 |
+
|
285 |
+
|
286 |
+
class AsteroidTTSInstruct(AsteroidTTSPretrainedModel, CustomMixin):
|
287 |
+
_tied_weights_keys = []
|
288 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
289 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
290 |
+
|
291 |
+
def __init__(self, config: AsteroidTTSConfig):
|
292 |
+
super().__init__(config)
|
293 |
+
self.model = AsteroidTTSModel(config)
|
294 |
+
self.channels = config.channels
|
295 |
+
self.weights = [1 for _ in range(self.channels)]
|
296 |
+
self._tied_weights_keys = [f"lm_heads.{i}.weight" for i in range(self.channels)]
|
297 |
+
self.vocab_size = config.vocab_size
|
298 |
+
self.lm_heads = nn.ModuleList([])
|
299 |
+
self.lm_heads.append(nn.Linear(config.hidden_size, config.vocab_size, bias=False))
|
300 |
+
for _ in range(1, config.channels):
|
301 |
+
self.lm_heads.append(nn.Linear(config.hidden_size, config.speech_vocab_size, bias=False))
|
302 |
+
self.post_init()
|
303 |
+
|
304 |
+
def get_input_embeddings(self):
|
305 |
+
return self.model.embedding_list[0]
|
306 |
+
|
307 |
+
def can_generate(self):
|
308 |
+
return True
|
309 |
+
|
310 |
+
def is_speech_token(self, tokens):
|
311 |
+
return (tokens >= self.config.speech_token_range[0]) & (tokens < self.config.speech_token_range[1])
|
312 |
+
|
313 |
+
def tie_weights(self):
|
314 |
+
for i in range(self.config.channels):
|
315 |
+
self._tie_or_clone_weights(self.lm_heads[i], self.model.embedding_list[i])
|
316 |
+
|
317 |
+
def set_input_embeddings(self, value):
|
318 |
+
self.model.embedding_list[0] = value
|
319 |
+
|
320 |
+
def get_output_embeddings(self):
|
321 |
+
return self.lm_heads[0]
|
322 |
+
|
323 |
+
def set_output_embeddings(self, new_embeddings):
|
324 |
+
self.lm_heads[0] = new_embeddings
|
325 |
+
|
326 |
+
def set_decoder(self, decoder):
|
327 |
+
self.model = decoder
|
328 |
+
|
329 |
+
def get_decoder(self):
|
330 |
+
return self.model
|
331 |
+
|
332 |
+
def set_weights(self, weights):
|
333 |
+
self.weights = weights
|
334 |
+
|
335 |
+
def forward(
|
336 |
+
self,
|
337 |
+
input_ids: torch.LongTensor = None,
|
338 |
+
attention_mask: Optional[torch.Tensor] = None,
|
339 |
+
position_ids: Optional[torch.LongTensor] = None,
|
340 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
341 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
342 |
+
labels: Optional[torch.LongTensor] = None,
|
343 |
+
use_cache: Optional[bool] = None,
|
344 |
+
output_attentions: Optional[bool] = None,
|
345 |
+
output_hidden_states: Optional[bool] = None,
|
346 |
+
return_dict: Optional[bool] = None,
|
347 |
+
cache_position: Optional[torch.LongTensor] = None,
|
348 |
+
**kwargs,
|
349 |
+
) -> Union[Tuple, AsteroidTTSOutputWithPast]:
|
350 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
351 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
352 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
353 |
+
|
354 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
355 |
+
outputs = self.model(
|
356 |
+
input_ids=input_ids,
|
357 |
+
attention_mask=attention_mask,
|
358 |
+
position_ids=position_ids,
|
359 |
+
past_key_values=past_key_values,
|
360 |
+
inputs_embeds=inputs_embeds,
|
361 |
+
use_cache=use_cache,
|
362 |
+
output_attentions=output_attentions,
|
363 |
+
output_hidden_states=output_hidden_states,
|
364 |
+
return_dict=return_dict,
|
365 |
+
cache_position=cache_position,
|
366 |
+
**kwargs,
|
367 |
+
)
|
368 |
+
|
369 |
+
hidden_states = outputs[0]
|
370 |
+
logits_all = [lm_head(hidden_states) for lm_head in self.lm_heads]
|
371 |
+
|
372 |
+
loss_all = torch.empty(self.channels, device=input_ids.device if not input_ids is None else inputs_embeds.device)
|
373 |
+
|
374 |
+
if labels is not None:
|
375 |
+
for i in range(self.config.channels):
|
376 |
+
vocab_size = self.config.vocab_size if i == 0 else self.config.speech_vocab_size
|
377 |
+
loss_all[i] = ForCausalLMLoss(logits_all[i], labels[..., i], vocab_size)
|
378 |
+
|
379 |
+
# total_weight = sum(self.weights)
|
380 |
+
# normalized_weights = [w / total_weight for w in self.weights]
|
381 |
+
normalized_weights = self.weights
|
382 |
+
|
383 |
+
total_loss = 0
|
384 |
+
for w, loss in zip(normalized_weights, loss_all):
|
385 |
+
total_loss += w * loss
|
386 |
+
|
387 |
+
if not return_dict:
|
388 |
+
output = (logits_all,) + outputs[1:]
|
389 |
+
return (total_loss, loss_all, ) + output if loss is not None else output
|
390 |
+
|
391 |
+
return AsteroidTTSOutputWithPast(
|
392 |
+
loss=total_loss,
|
393 |
+
logits=logits_all[0],
|
394 |
+
loss_all=loss_all,
|
395 |
+
logits_all=logits_all,
|
396 |
+
past_key_values=outputs.past_key_values,
|
397 |
+
hidden_states=outputs.hidden_states,
|
398 |
+
attentions=outputs.attentions,
|
399 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=2.0.0
|
2 |
+
torchaudio>=2.0.0
|
3 |
+
transformers>=4.30.0
|
4 |
+
gradio>=4.0.0
|
5 |
+
numpy>=1.21.0
|
6 |
+
accelerate>=0.20.0
|
7 |
+
PyPDF2
|
8 |
+
beautifulsoup4
|
9 |
+
soundfile
|
10 |
+
librosa
|
11 |
+
tqdm
|
12 |
+
requests
|
13 |
+
openai
|
14 |
+
PyYAML
|
15 |
+
einops
|
16 |
+
huggingface_hub
|