|
import os
|
|
import gradio as gr
|
|
import requests
|
|
import pandas as pd
|
|
|
|
from smolagents import LiteLLMModel, CodeAgent, DuckDuckGoSearchTool
|
|
from gaia_tools import ReverseTextTool, RunPythonFileTool, download_server
|
|
|
|
|
|
SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question.
|
|
Report your thoughts, and finish your answer with just the answer — no prefixes like "FINAL ANSWER:".
|
|
Your answer should be a number OR as few words as possible OR a comma-separated list of numbers and/or strings.
|
|
If you're asked for a number, don’t use commas or units like $ or %, unless specified.
|
|
If you're asked for a string, don’t use articles or abbreviations (e.g. for cities), and write digits in plain text unless told otherwise.
|
|
|
|
Tool Use Guidelines:
|
|
1. Do *not* use any tools outside of the provided tools list.
|
|
2. Always use *only one tool at a time* in each step of your execution.
|
|
3. If the question refers to a .py file or uploaded Python script, use *RunPythonFileTool* to execute it and base your answer on its output.
|
|
4. If the question looks reversed (starts with a period or reads backward), first use *ReverseTextTool* to reverse it, then process the question.
|
|
5. For logic or word puzzles, solve them directly unless they are reversed — in which case, decode first using *ReverseTextTool*.
|
|
6. When dealing with Excel files, prioritize using the *excel* tool over writing code in *terminal-controller*.
|
|
7. If you need to download a file, always use the *download_server* tool and save it to the correct path.
|
|
8. Even for complex tasks, assume a solution exists. If one method fails, try another approach using different tools.
|
|
9. Due to context length limits, keep browser-based tasks (e.g., searches) as short and efficient as possible.
|
|
"""
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
|
|
class MyAgent:
|
|
def _init_(self):
|
|
gemini_api_key = os.getenv("GEMINI_API_KEY")
|
|
if not gemini_api_key:
|
|
raise ValueError("GEMINI_API_KEY not set in environment variables.")
|
|
|
|
self.model = LiteLLMModel(
|
|
model_id="gemini/gemini-2.0-flash-lite",
|
|
api_key=gemini_api_key,
|
|
system_prompt=SYSTEM_PROMPT
|
|
)
|
|
|
|
self.agent = CodeAgent(
|
|
tools=[
|
|
DuckDuckGoSearchTool(),
|
|
ReverseTextTool,
|
|
RunPythonFileTool,
|
|
download_server
|
|
],
|
|
model=self.model,
|
|
add_base_tools=True,
|
|
)
|
|
|
|
def _call_(self, question: str) -> str:
|
|
return self.agent.run(question)
|
|
|
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
space_id = os.getenv("SPACE_ID")
|
|
|
|
if profile:
|
|
username = profile.username
|
|
print(f"User logged in: {username}")
|
|
else:
|
|
print("User not logged in.")
|
|
return "Please login to Hugging Face.", None
|
|
|
|
questions_url = f"{DEFAULT_API_URL}/questions"
|
|
submit_url = f"{DEFAULT_API_URL}/submit"
|
|
|
|
try:
|
|
agent = MyAgent()
|
|
except Exception as e:
|
|
return f"Error initializing agent: {e}", None
|
|
|
|
try:
|
|
response = requests.get(questions_url, timeout=15)
|
|
response.raise_for_status()
|
|
questions_data = response.json()
|
|
except Exception as e:
|
|
return f"Error fetching questions: {e}", None
|
|
|
|
results_log = []
|
|
answers_payload = []
|
|
|
|
for item in questions_data:
|
|
task_id = item.get("task_id")
|
|
question_text = item.get("question")
|
|
if not task_id or question_text is None:
|
|
continue
|
|
try:
|
|
submitted_answer = agent(question_text)
|
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
|
except Exception as e:
|
|
results_log.append({
|
|
"Task ID": task_id,
|
|
"Question": question_text,
|
|
"Submitted Answer": f"AGENT ERROR: {e}"
|
|
})
|
|
|
|
if not answers_payload:
|
|
return "Agent did not return any answers.", pd.DataFrame(results_log)
|
|
|
|
submission_data = {
|
|
"username": profile.username.strip(),
|
|
"agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main",
|
|
"answers": answers_payload
|
|
}
|
|
|
|
try:
|
|
response = requests.post(submit_url, json=submission_data, timeout=60)
|
|
response.raise_for_status()
|
|
result_data = response.json()
|
|
final_status = (
|
|
f"Submission Successful!\n"
|
|
f"User: {result_data.get('username')}\n"
|
|
f"Score: {result_data.get('score', 'N/A')}% "
|
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
|
f"Message: {result_data.get('message', 'No message received.')}"
|
|
)
|
|
return final_status, pd.DataFrame(results_log)
|
|
except Exception as e:
|
|
return f"Submission failed: {e}", pd.DataFrame(results_log)
|
|
|
|
|
|
with gr.Blocks() as demo:
|
|
gr.Markdown("# Basic Agent Evaluation Runner")
|
|
gr.Markdown("""
|
|
*Instructions:*
|
|
1. Clone this space and configure your Gemini API key.
|
|
2. Log in to Hugging Face.
|
|
3. Run your agent on evaluation tasks and submit answers.
|
|
""")
|
|
|
|
gr.LoginButton()
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
|
status_output = gr.Textbox(label="Submission Result", lines=5, interactive=False)
|
|
results_table = gr.DataFrame(label="Results", wrap=True)
|
|
|
|
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
|
|
|
if __name__ == "__main__":
|
|
print("🔧 App starting...")
|
|
demo.launch(debug=True, share=False) |