import os import gradio as gr import requests import pandas as pd from smolagents import LiteLLMModel, CodeAgent, DuckDuckGoSearchTool from gaia_tools import ReverseTextTool, RunPythonFileTool, download_server # System prompt for the agent SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with just the answer — no prefixes like "FINAL ANSWER:". Your answer should be a number OR as few words as possible OR a comma-separated list of numbers and/or strings. If you're asked for a number, don’t use commas or units like $ or %, unless specified. If you're asked for a string, don’t use articles or abbreviations (e.g. for cities), and write digits in plain text unless told otherwise. Tool Use Guidelines: 1. Do *not* use any tools outside of the provided tools list. 2. Always use *only one tool at a time* in each step of your execution. 3. If the question refers to a .py file or uploaded Python script, use *RunPythonFileTool* to execute it and base your answer on its output. 4. If the question looks reversed (starts with a period or reads backward), first use *ReverseTextTool* to reverse it, then process the question. 5. For logic or word puzzles, solve them directly unless they are reversed — in which case, decode first using *ReverseTextTool*. 6. When dealing with Excel files, prioritize using the *excel* tool over writing code in *terminal-controller*. 7. If you need to download a file, always use the *download_server* tool and save it to the correct path. 8. Even for complex tasks, assume a solution exists. If one method fails, try another approach using different tools. 9. Due to context length limits, keep browser-based tasks (e.g., searches) as short and efficient as possible. """ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # Agent wrapper using LiteLLMModel class MyAgent: def _init_(self): gemini_api_key = os.getenv("GEMINI_API_KEY") if not gemini_api_key: raise ValueError("GEMINI_API_KEY not set in environment variables.") self.model = LiteLLMModel( model_id="gemini/gemini-2.0-flash-lite", api_key=gemini_api_key, system_prompt=SYSTEM_PROMPT ) self.agent = CodeAgent( tools=[ DuckDuckGoSearchTool(), ReverseTextTool, RunPythonFileTool, download_server ], model=self.model, add_base_tools=True, ) def _call_(self, question: str) -> str: return self.agent.run(question) # Main evaluation function def run_and_submit_all(profile: gr.OAuthProfile | None): space_id = os.getenv("SPACE_ID") if profile: username = profile.username print(f"User logged in: {username}") else: print("User not logged in.") return "Please login to Hugging Face.", None questions_url = f"{DEFAULT_API_URL}/questions" submit_url = f"{DEFAULT_API_URL}/submit" try: agent = MyAgent() except Exception as e: return f"Error initializing agent: {e}", None try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() except Exception as e: return f"Error fetching questions: {e}", None results_log = [] answers_payload = [] for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: continue try: submitted_answer = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) except Exception as e: results_log.append({ "Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}" }) if not answers_payload: return "Agent did not return any answers.", pd.DataFrame(results_log) submission_data = { "username": profile.username.strip(), "agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main", "answers": answers_payload } try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) return final_status, pd.DataFrame(results_log) except Exception as e: return f"Submission failed: {e}", pd.DataFrame(results_log) # Gradio UI setup with gr.Blocks() as demo: gr.Markdown("# Basic Agent Evaluation Runner") gr.Markdown(""" *Instructions:* 1. Clone this space and configure your Gemini API key. 2. Log in to Hugging Face. 3. Run your agent on evaluation tasks and submit answers. """) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Submission Result", lines=5, interactive=False) results_table = gr.DataFrame(label="Results", wrap=True) run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) if __name__ == "__main__": print("🔧 App starting...") demo.launch(debug=True, share=False)