databytobi commited on
Commit
170a7ce
·
verified ·
1 Parent(s): 81917a3

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +143 -195
app.py CHANGED
@@ -1,196 +1,144 @@
1
- import os
2
- import gradio as gr
3
- import requests
4
- import inspect
5
- import pandas as pd
6
-
7
- # (Keep Constants as is)
8
- # --- Constants ---
9
- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
-
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
- def __init__(self):
15
- print("BasicAgent initialized.")
16
- def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
- """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
- and displays the results.
26
- """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
-
30
- if profile:
31
- username= f"{profile.username}"
32
- print(f"User logged in: {username}")
33
- else:
34
- print("User not logged in.")
35
- return "Please Login to Hugging Face with the button.", None
36
-
37
- api_url = DEFAULT_API_URL
38
- questions_url = f"{api_url}/questions"
39
- submit_url = f"{api_url}/submit"
40
-
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
- try:
43
- agent = BasicAgent()
44
- except Exception as e:
45
- print(f"Error instantiating agent: {e}")
46
- return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
-
51
- # 2. Fetch Questions
52
- print(f"Fetching questions from: {questions_url}")
53
- try:
54
- response = requests.get(questions_url, timeout=15)
55
- response.raise_for_status()
56
- questions_data = response.json()
57
- if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
- print(f"Fetched {len(questions_data)} questions.")
61
- except requests.exceptions.RequestException as e:
62
- print(f"Error fetching questions: {e}")
63
- return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
- except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
-
72
- # 3. Run your Agent
73
- results_log = []
74
- answers_payload = []
75
- print(f"Running agent on {len(questions_data)} questions...")
76
- for item in questions_data:
77
- task_id = item.get("task_id")
78
- question_text = item.get("question")
79
- if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
- continue
82
- try:
83
- submitted_answer = agent(question_text)
84
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
- except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
-
90
- if not answers_payload:
91
- print("Agent did not produce any answers to submit.")
92
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
-
94
- # 4. Prepare Submission
95
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
98
-
99
- # 5. Submit
100
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
- try:
102
- response = requests.post(submit_url, json=submission_data, timeout=60)
103
- response.raise_for_status()
104
- result_data = response.json()
105
- final_status = (
106
- f"Submission Successful!\n"
107
- f"User: {result_data.get('username')}\n"
108
- f"Overall Score: {result_data.get('score', 'N/A')}% "
109
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
- f"Message: {result_data.get('message', 'No message received.')}"
111
- )
112
- print("Submission successful.")
113
- results_df = pd.DataFrame(results_log)
114
- return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
- try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
- except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
- except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
- print(status_message)
139
- results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
-
142
-
143
- # --- Build Gradio Interface using Blocks ---
144
- with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
146
- gr.Markdown(
147
- """
148
- **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
- ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
- """
159
- )
160
-
161
- gr.LoginButton()
162
-
163
- run_button = gr.Button("Run Evaluation & Submit All Answers")
164
-
165
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
-
169
- run_button.click(
170
- fn=run_and_submit_all,
171
- outputs=[status_output, results_table]
172
- )
173
-
174
- if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
- space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
-
180
- if space_host_startup:
181
- print(f"✅ SPACE_HOST found: {space_host_startup}")
182
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
- else:
184
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
-
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
- print(f"✅ SPACE_ID found: {space_id_startup}")
188
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
- else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
-
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
-
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
196
  demo.launch(debug=True, share=False)
 
1
+ import os
2
+ import gradio as gr
3
+ import requests
4
+ import pandas as pd
5
+
6
+ from smolagents import LiteLLMModel, CodeAgent, DuckDuckGoSearchTool
7
+ from gaia_tools import ReverseTextTool, RunPythonFileTool, download_server
8
+
9
+ # System prompt for the agent
10
+ SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question.
11
+ Report your thoughts, and finish your answer with just the answer — no prefixes like "FINAL ANSWER:".
12
+ Your answer should be a number OR as few words as possible OR a comma-separated list of numbers and/or strings.
13
+ If you're asked for a number, don’t use commas or units like $ or %, unless specified.
14
+ If you're asked for a string, don’t use articles or abbreviations (e.g. for cities), and write digits in plain text unless told otherwise.
15
+
16
+ Tool Use Guidelines:
17
+ 1. Do *not* use any tools outside of the provided tools list.
18
+ 2. Always use *only one tool at a time* in each step of your execution.
19
+ 3. If the question refers to a .py file or uploaded Python script, use *RunPythonFileTool* to execute it and base your answer on its output.
20
+ 4. If the question looks reversed (starts with a period or reads backward), first use *ReverseTextTool* to reverse it, then process the question.
21
+ 5. For logic or word puzzles, solve them directly unless they are reversed — in which case, decode first using *ReverseTextTool*.
22
+ 6. When dealing with Excel files, prioritize using the *excel* tool over writing code in *terminal-controller*.
23
+ 7. If you need to download a file, always use the *download_server* tool and save it to the correct path.
24
+ 8. Even for complex tasks, assume a solution exists. If one method fails, try another approach using different tools.
25
+ 9. Due to context length limits, keep browser-based tasks (e.g., searches) as short and efficient as possible.
26
+ """
27
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
28
+
29
+ # Agent wrapper using LiteLLMModel
30
+ class MyAgent:
31
+ def _init_(self):
32
+ gemini_api_key = os.getenv("GEMINI_API_KEY")
33
+ if not gemini_api_key:
34
+ raise ValueError("GEMINI_API_KEY not set in environment variables.")
35
+
36
+ self.model = LiteLLMModel(
37
+ model_id="gemini/gemini-2.0-flash-lite",
38
+ api_key=gemini_api_key,
39
+ system_prompt=SYSTEM_PROMPT
40
+ )
41
+
42
+ self.agent = CodeAgent(
43
+ tools=[
44
+ DuckDuckGoSearchTool(),
45
+ ReverseTextTool,
46
+ RunPythonFileTool,
47
+ download_server
48
+ ],
49
+ model=self.model,
50
+ add_base_tools=True,
51
+ )
52
+
53
+ def _call_(self, question: str) -> str:
54
+ return self.agent.run(question)
55
+
56
+ # Main evaluation function
57
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
58
+ space_id = os.getenv("SPACE_ID")
59
+
60
+ if profile:
61
+ username = profile.username
62
+ print(f"User logged in: {username}")
63
+ else:
64
+ print("User not logged in.")
65
+ return "Please login to Hugging Face.", None
66
+
67
+ questions_url = f"{DEFAULT_API_URL}/questions"
68
+ submit_url = f"{DEFAULT_API_URL}/submit"
69
+
70
+ try:
71
+ agent = MyAgent()
72
+ except Exception as e:
73
+ return f"Error initializing agent: {e}", None
74
+
75
+ try:
76
+ response = requests.get(questions_url, timeout=15)
77
+ response.raise_for_status()
78
+ questions_data = response.json()
79
+ except Exception as e:
80
+ return f"Error fetching questions: {e}", None
81
+
82
+ results_log = []
83
+ answers_payload = []
84
+
85
+ for item in questions_data:
86
+ task_id = item.get("task_id")
87
+ question_text = item.get("question")
88
+ if not task_id or question_text is None:
89
+ continue
90
+ try:
91
+ submitted_answer = agent(question_text)
92
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
93
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
94
+ except Exception as e:
95
+ results_log.append({
96
+ "Task ID": task_id,
97
+ "Question": question_text,
98
+ "Submitted Answer": f"AGENT ERROR: {e}"
99
+ })
100
+
101
+ if not answers_payload:
102
+ return "Agent did not return any answers.", pd.DataFrame(results_log)
103
+
104
+ submission_data = {
105
+ "username": profile.username.strip(),
106
+ "agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main",
107
+ "answers": answers_payload
108
+ }
109
+
110
+ try:
111
+ response = requests.post(submit_url, json=submission_data, timeout=60)
112
+ response.raise_for_status()
113
+ result_data = response.json()
114
+ final_status = (
115
+ f"Submission Successful!\n"
116
+ f"User: {result_data.get('username')}\n"
117
+ f"Score: {result_data.get('score', 'N/A')}% "
118
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
119
+ f"Message: {result_data.get('message', 'No message received.')}"
120
+ )
121
+ return final_status, pd.DataFrame(results_log)
122
+ except Exception as e:
123
+ return f"Submission failed: {e}", pd.DataFrame(results_log)
124
+
125
+ # Gradio UI setup
126
+ with gr.Blocks() as demo:
127
+ gr.Markdown("# Basic Agent Evaluation Runner")
128
+ gr.Markdown("""
129
+ *Instructions:*
130
+ 1. Clone this space and configure your Gemini API key.
131
+ 2. Log in to Hugging Face.
132
+ 3. Run your agent on evaluation tasks and submit answers.
133
+ """)
134
+
135
+ gr.LoginButton()
136
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
137
+ status_output = gr.Textbox(label="Submission Result", lines=5, interactive=False)
138
+ results_table = gr.DataFrame(label="Results", wrap=True)
139
+
140
+ run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
141
+
142
+ if __name__ == "__main__":
143
+ print("🔧 App starting...")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144
  demo.launch(debug=True, share=False)