Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from typing import * | |
from pathlib import Path | |
import math | |
import numpy as np | |
import torch | |
from PIL import Image | |
import cv2 | |
import utils3d | |
from ..utils import pipeline | |
from ..utils.geometry_numpy import focal_to_fov_numpy, mask_aware_nearest_resize_numpy, norm3d | |
from ..utils.io import * | |
from ..utils.tools import timeit | |
class EvalDataLoaderPipeline: | |
def __init__( | |
self, | |
path: str, | |
width: int, | |
height: int, | |
split: int = '.index.txt', | |
drop_max_depth: float = 1000., | |
num_load_workers: int = 4, | |
num_process_workers: int = 8, | |
include_segmentation: bool = False, | |
include_normal: bool = False, | |
depth_to_normal: bool = False, | |
max_segments: int = 100, | |
min_seg_area: int = 1000, | |
depth_unit: str = None, | |
has_sharp_boundary = False, | |
subset: int = None, | |
): | |
filenames = Path(path).joinpath(split).read_text(encoding='utf-8').splitlines() | |
filenames = filenames[::subset] | |
self.width = width | |
self.height = height | |
self.drop_max_depth = drop_max_depth | |
self.path = Path(path) | |
self.filenames = filenames | |
self.include_segmentation = include_segmentation | |
self.include_normal = include_normal | |
self.max_segments = max_segments | |
self.min_seg_area = min_seg_area | |
self.depth_to_normal = depth_to_normal | |
self.depth_unit = depth_unit | |
self.has_sharp_boundary = has_sharp_boundary | |
self.rng = np.random.default_rng(seed=0) | |
self.pipeline = pipeline.Sequential([ | |
self._generator, | |
pipeline.Parallel([self._load_instance] * num_load_workers), | |
pipeline.Parallel([self._process_instance] * num_process_workers), | |
pipeline.Buffer(4) | |
]) | |
def __len__(self): | |
return math.ceil(len(self.filenames)) | |
def _generator(self): | |
for idx in range(len(self)): | |
yield idx | |
def _load_instance(self, idx): | |
if idx >= len(self.filenames): | |
return None | |
path = self.path.joinpath(self.filenames[idx]) | |
instance = { | |
'filename': self.filenames[idx], | |
'width': self.width, | |
'height': self.height, | |
} | |
instance['image'] = read_image(Path(path, 'image.jpg')) | |
depth, _ = read_depth(Path(path, 'depth.png')) # ignore depth unit from depth file, use config instead | |
instance.update({ | |
'depth': np.nan_to_num(depth, nan=1, posinf=1, neginf=1), | |
'depth_mask': np.isfinite(depth), | |
'depth_mask_inf': np.isinf(depth), | |
}) | |
if self.include_segmentation: | |
segmentation_mask, segmentation_labels = read_segmentation(Path(path,'segmentation.png')) | |
instance.update({ | |
'segmentation_mask': segmentation_mask, | |
'segmentation_labels': segmentation_labels, | |
}) | |
meta = read_meta(Path(path, 'meta.json')) | |
instance['intrinsics'] = np.array(meta['intrinsics'], dtype=np.float32) | |
return instance | |
def _process_instance(self, instance: dict): | |
if instance is None: | |
return None | |
image, depth, depth_mask, intrinsics = instance['image'], instance['depth'], instance['depth_mask'], instance['intrinsics'] | |
segmentation_mask, segmentation_labels = instance.get('segmentation_mask', None), instance.get('segmentation_labels', None) | |
raw_height, raw_width = image.shape[:2] | |
raw_horizontal, raw_vertical = abs(1.0 / intrinsics[0, 0]), abs(1.0 / intrinsics[1, 1]) | |
raw_pixel_w, raw_pixel_h = raw_horizontal / raw_width, raw_vertical / raw_height | |
tgt_width, tgt_height = instance['width'], instance['height'] | |
tgt_aspect = tgt_width / tgt_height | |
# set expected target view field | |
tgt_horizontal = min(raw_horizontal, raw_vertical * tgt_aspect) | |
tgt_vertical = tgt_horizontal / tgt_aspect | |
# set target view direction | |
cu, cv = 0.5, 0.5 | |
direction = utils3d.numpy.unproject_cv(np.array([[cu, cv]], dtype=np.float32), np.array([1.0], dtype=np.float32), intrinsics=intrinsics)[0] | |
R = utils3d.numpy.rotation_matrix_from_vectors(direction, np.array([0, 0, 1], dtype=np.float32)) | |
# restrict target view field within the raw view | |
corners = np.array([[0, 0], [0, 1], [1, 1], [1, 0]], dtype=np.float32) | |
corners = np.concatenate([corners, np.ones((4, 1), dtype=np.float32)], axis=1) @ (np.linalg.inv(intrinsics).T @ R.T) # corners in viewport's camera plane | |
corners = corners[:, :2] / corners[:, 2:3] | |
warp_horizontal, warp_vertical = abs(1.0 / intrinsics[0, 0]), abs(1.0 / intrinsics[1, 1]) | |
for i in range(4): | |
intersection, _ = utils3d.numpy.ray_intersection( | |
np.array([0., 0.]), np.array([[tgt_aspect, 1.0], [tgt_aspect, -1.0]]), | |
corners[i - 1], corners[i] - corners[i - 1], | |
) | |
warp_horizontal, warp_vertical = min(warp_horizontal, 2 * np.abs(intersection[:, 0]).min()), min(warp_vertical, 2 * np.abs(intersection[:, 1]).min()) | |
tgt_horizontal, tgt_vertical = min(tgt_horizontal, warp_horizontal), min(tgt_vertical, warp_vertical) | |
# get target view intrinsics | |
fx, fy = 1.0 / tgt_horizontal, 1.0 / tgt_vertical | |
tgt_intrinsics = utils3d.numpy.intrinsics_from_focal_center(fx, fy, 0.5, 0.5).astype(np.float32) | |
# do homogeneous transformation with the rotation and intrinsics | |
# 4.1 The image and depth is resized first to approximately the same pixel size as the target image with PIL's antialiasing resampling | |
tgt_pixel_w, tgt_pixel_h = tgt_horizontal / tgt_width, tgt_vertical / tgt_height # (should be exactly the same for x and y axes) | |
rescaled_w, rescaled_h = int(raw_width * raw_pixel_w / tgt_pixel_w), int(raw_height * raw_pixel_h / tgt_pixel_h) | |
image = np.array(Image.fromarray(image).resize((rescaled_w, rescaled_h), Image.Resampling.LANCZOS)) | |
depth, depth_mask = mask_aware_nearest_resize_numpy(depth, depth_mask, (rescaled_w, rescaled_h)) | |
distance = norm3d(utils3d.numpy.depth_to_points(depth, intrinsics=intrinsics)) | |
segmentation_mask = cv2.resize(segmentation_mask, (rescaled_w, rescaled_h), interpolation=cv2.INTER_NEAREST) if segmentation_mask is not None else None | |
# 4.2 calculate homography warping | |
transform = intrinsics @ np.linalg.inv(R) @ np.linalg.inv(tgt_intrinsics) | |
uv_tgt = utils3d.numpy.image_uv(width=tgt_width, height=tgt_height) | |
pts = np.concatenate([uv_tgt, np.ones((tgt_height, tgt_width, 1), dtype=np.float32)], axis=-1) @ transform.T | |
uv_remap = pts[:, :, :2] / (pts[:, :, 2:3] + 1e-12) | |
pixel_remap = utils3d.numpy.uv_to_pixel(uv_remap, width=rescaled_w, height=rescaled_h).astype(np.float32) | |
tgt_image = cv2.remap(image, pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_LINEAR) | |
tgt_distance = cv2.remap(distance, pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_NEAREST) | |
tgt_ray_length = utils3d.numpy.unproject_cv(uv_tgt, np.ones_like(uv_tgt[:, :, 0]), intrinsics=tgt_intrinsics) | |
tgt_ray_length = (tgt_ray_length[:, :, 0] ** 2 + tgt_ray_length[:, :, 1] ** 2 + tgt_ray_length[:, :, 2] ** 2) ** 0.5 | |
tgt_depth = tgt_distance / (tgt_ray_length + 1e-12) | |
tgt_depth_mask = cv2.remap(depth_mask.astype(np.uint8), pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_NEAREST) > 0 | |
tgt_segmentation_mask = cv2.remap(segmentation_mask, pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_NEAREST) if segmentation_mask is not None else None | |
# drop depth greater than drop_max_depth | |
max_depth = np.nanquantile(np.where(tgt_depth_mask, tgt_depth, np.nan), 0.01) * self.drop_max_depth | |
tgt_depth_mask &= tgt_depth <= max_depth | |
tgt_depth = np.nan_to_num(tgt_depth, nan=0.0) | |
if self.depth_unit is not None: | |
tgt_depth *= self.depth_unit | |
if not np.any(tgt_depth_mask): | |
# always make sure that mask is not empty, otherwise the loss calculation will crash | |
tgt_depth_mask = np.ones_like(tgt_depth_mask) | |
tgt_depth = np.ones_like(tgt_depth) | |
instance['label_type'] = 'invalid' | |
tgt_pts = utils3d.numpy.unproject_cv(uv_tgt, tgt_depth, intrinsics=tgt_intrinsics) | |
# Process segmentation labels | |
if self.include_segmentation and segmentation_mask is not None: | |
for k in ['undefined', 'unannotated', 'background', 'sky']: | |
if k in segmentation_labels: | |
del segmentation_labels[k] | |
seg_id2count = dict(zip(*np.unique(tgt_segmentation_mask, return_counts=True))) | |
sorted_labels = sorted(segmentation_labels.keys(), key=lambda x: seg_id2count.get(segmentation_labels[x], 0), reverse=True) | |
segmentation_labels = {k: segmentation_labels[k] for k in sorted_labels[:self.max_segments] if seg_id2count.get(segmentation_labels[k], 0) >= self.min_seg_area} | |
instance.update({ | |
'image': torch.from_numpy(tgt_image.astype(np.float32) / 255.0).permute(2, 0, 1), | |
'depth': torch.from_numpy(tgt_depth).float(), | |
'depth_mask': torch.from_numpy(tgt_depth_mask).bool(), | |
'intrinsics': torch.from_numpy(tgt_intrinsics).float(), | |
'points': torch.from_numpy(tgt_pts).float(), | |
'segmentation_mask': torch.from_numpy(tgt_segmentation_mask).long() if tgt_segmentation_mask is not None else None, | |
'segmentation_labels': segmentation_labels, | |
'is_metric': self.depth_unit is not None, | |
'has_sharp_boundary': self.has_sharp_boundary, | |
}) | |
instance = {k: v for k, v in instance.items() if v is not None} | |
return instance | |
def start(self): | |
self.pipeline.start() | |
def stop(self): | |
self.pipeline.stop() | |
def __enter__(self): | |
self.start() | |
return self | |
def __exit__(self, exc_type, exc_value, traceback): | |
self.stop() | |
def get(self): | |
return self.pipeline.get() |