import os from typing import * from pathlib import Path import math import numpy as np import torch from PIL import Image import cv2 import utils3d from ..utils import pipeline from ..utils.geometry_numpy import focal_to_fov_numpy, mask_aware_nearest_resize_numpy, norm3d from ..utils.io import * from ..utils.tools import timeit class EvalDataLoaderPipeline: def __init__( self, path: str, width: int, height: int, split: int = '.index.txt', drop_max_depth: float = 1000., num_load_workers: int = 4, num_process_workers: int = 8, include_segmentation: bool = False, include_normal: bool = False, depth_to_normal: bool = False, max_segments: int = 100, min_seg_area: int = 1000, depth_unit: str = None, has_sharp_boundary = False, subset: int = None, ): filenames = Path(path).joinpath(split).read_text(encoding='utf-8').splitlines() filenames = filenames[::subset] self.width = width self.height = height self.drop_max_depth = drop_max_depth self.path = Path(path) self.filenames = filenames self.include_segmentation = include_segmentation self.include_normal = include_normal self.max_segments = max_segments self.min_seg_area = min_seg_area self.depth_to_normal = depth_to_normal self.depth_unit = depth_unit self.has_sharp_boundary = has_sharp_boundary self.rng = np.random.default_rng(seed=0) self.pipeline = pipeline.Sequential([ self._generator, pipeline.Parallel([self._load_instance] * num_load_workers), pipeline.Parallel([self._process_instance] * num_process_workers), pipeline.Buffer(4) ]) def __len__(self): return math.ceil(len(self.filenames)) def _generator(self): for idx in range(len(self)): yield idx def _load_instance(self, idx): if idx >= len(self.filenames): return None path = self.path.joinpath(self.filenames[idx]) instance = { 'filename': self.filenames[idx], 'width': self.width, 'height': self.height, } instance['image'] = read_image(Path(path, 'image.jpg')) depth, _ = read_depth(Path(path, 'depth.png')) # ignore depth unit from depth file, use config instead instance.update({ 'depth': np.nan_to_num(depth, nan=1, posinf=1, neginf=1), 'depth_mask': np.isfinite(depth), 'depth_mask_inf': np.isinf(depth), }) if self.include_segmentation: segmentation_mask, segmentation_labels = read_segmentation(Path(path,'segmentation.png')) instance.update({ 'segmentation_mask': segmentation_mask, 'segmentation_labels': segmentation_labels, }) meta = read_meta(Path(path, 'meta.json')) instance['intrinsics'] = np.array(meta['intrinsics'], dtype=np.float32) return instance def _process_instance(self, instance: dict): if instance is None: return None image, depth, depth_mask, intrinsics = instance['image'], instance['depth'], instance['depth_mask'], instance['intrinsics'] segmentation_mask, segmentation_labels = instance.get('segmentation_mask', None), instance.get('segmentation_labels', None) raw_height, raw_width = image.shape[:2] raw_horizontal, raw_vertical = abs(1.0 / intrinsics[0, 0]), abs(1.0 / intrinsics[1, 1]) raw_pixel_w, raw_pixel_h = raw_horizontal / raw_width, raw_vertical / raw_height tgt_width, tgt_height = instance['width'], instance['height'] tgt_aspect = tgt_width / tgt_height # set expected target view field tgt_horizontal = min(raw_horizontal, raw_vertical * tgt_aspect) tgt_vertical = tgt_horizontal / tgt_aspect # set target view direction cu, cv = 0.5, 0.5 direction = utils3d.numpy.unproject_cv(np.array([[cu, cv]], dtype=np.float32), np.array([1.0], dtype=np.float32), intrinsics=intrinsics)[0] R = utils3d.numpy.rotation_matrix_from_vectors(direction, np.array([0, 0, 1], dtype=np.float32)) # restrict target view field within the raw view corners = np.array([[0, 0], [0, 1], [1, 1], [1, 0]], dtype=np.float32) corners = np.concatenate([corners, np.ones((4, 1), dtype=np.float32)], axis=1) @ (np.linalg.inv(intrinsics).T @ R.T) # corners in viewport's camera plane corners = corners[:, :2] / corners[:, 2:3] warp_horizontal, warp_vertical = abs(1.0 / intrinsics[0, 0]), abs(1.0 / intrinsics[1, 1]) for i in range(4): intersection, _ = utils3d.numpy.ray_intersection( np.array([0., 0.]), np.array([[tgt_aspect, 1.0], [tgt_aspect, -1.0]]), corners[i - 1], corners[i] - corners[i - 1], ) warp_horizontal, warp_vertical = min(warp_horizontal, 2 * np.abs(intersection[:, 0]).min()), min(warp_vertical, 2 * np.abs(intersection[:, 1]).min()) tgt_horizontal, tgt_vertical = min(tgt_horizontal, warp_horizontal), min(tgt_vertical, warp_vertical) # get target view intrinsics fx, fy = 1.0 / tgt_horizontal, 1.0 / tgt_vertical tgt_intrinsics = utils3d.numpy.intrinsics_from_focal_center(fx, fy, 0.5, 0.5).astype(np.float32) # do homogeneous transformation with the rotation and intrinsics # 4.1 The image and depth is resized first to approximately the same pixel size as the target image with PIL's antialiasing resampling tgt_pixel_w, tgt_pixel_h = tgt_horizontal / tgt_width, tgt_vertical / tgt_height # (should be exactly the same for x and y axes) rescaled_w, rescaled_h = int(raw_width * raw_pixel_w / tgt_pixel_w), int(raw_height * raw_pixel_h / tgt_pixel_h) image = np.array(Image.fromarray(image).resize((rescaled_w, rescaled_h), Image.Resampling.LANCZOS)) depth, depth_mask = mask_aware_nearest_resize_numpy(depth, depth_mask, (rescaled_w, rescaled_h)) distance = norm3d(utils3d.numpy.depth_to_points(depth, intrinsics=intrinsics)) segmentation_mask = cv2.resize(segmentation_mask, (rescaled_w, rescaled_h), interpolation=cv2.INTER_NEAREST) if segmentation_mask is not None else None # 4.2 calculate homography warping transform = intrinsics @ np.linalg.inv(R) @ np.linalg.inv(tgt_intrinsics) uv_tgt = utils3d.numpy.image_uv(width=tgt_width, height=tgt_height) pts = np.concatenate([uv_tgt, np.ones((tgt_height, tgt_width, 1), dtype=np.float32)], axis=-1) @ transform.T uv_remap = pts[:, :, :2] / (pts[:, :, 2:3] + 1e-12) pixel_remap = utils3d.numpy.uv_to_pixel(uv_remap, width=rescaled_w, height=rescaled_h).astype(np.float32) tgt_image = cv2.remap(image, pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_LINEAR) tgt_distance = cv2.remap(distance, pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_NEAREST) tgt_ray_length = utils3d.numpy.unproject_cv(uv_tgt, np.ones_like(uv_tgt[:, :, 0]), intrinsics=tgt_intrinsics) tgt_ray_length = (tgt_ray_length[:, :, 0] ** 2 + tgt_ray_length[:, :, 1] ** 2 + tgt_ray_length[:, :, 2] ** 2) ** 0.5 tgt_depth = tgt_distance / (tgt_ray_length + 1e-12) tgt_depth_mask = cv2.remap(depth_mask.astype(np.uint8), pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_NEAREST) > 0 tgt_segmentation_mask = cv2.remap(segmentation_mask, pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_NEAREST) if segmentation_mask is not None else None # drop depth greater than drop_max_depth max_depth = np.nanquantile(np.where(tgt_depth_mask, tgt_depth, np.nan), 0.01) * self.drop_max_depth tgt_depth_mask &= tgt_depth <= max_depth tgt_depth = np.nan_to_num(tgt_depth, nan=0.0) if self.depth_unit is not None: tgt_depth *= self.depth_unit if not np.any(tgt_depth_mask): # always make sure that mask is not empty, otherwise the loss calculation will crash tgt_depth_mask = np.ones_like(tgt_depth_mask) tgt_depth = np.ones_like(tgt_depth) instance['label_type'] = 'invalid' tgt_pts = utils3d.numpy.unproject_cv(uv_tgt, tgt_depth, intrinsics=tgt_intrinsics) # Process segmentation labels if self.include_segmentation and segmentation_mask is not None: for k in ['undefined', 'unannotated', 'background', 'sky']: if k in segmentation_labels: del segmentation_labels[k] seg_id2count = dict(zip(*np.unique(tgt_segmentation_mask, return_counts=True))) sorted_labels = sorted(segmentation_labels.keys(), key=lambda x: seg_id2count.get(segmentation_labels[x], 0), reverse=True) segmentation_labels = {k: segmentation_labels[k] for k in sorted_labels[:self.max_segments] if seg_id2count.get(segmentation_labels[k], 0) >= self.min_seg_area} instance.update({ 'image': torch.from_numpy(tgt_image.astype(np.float32) / 255.0).permute(2, 0, 1), 'depth': torch.from_numpy(tgt_depth).float(), 'depth_mask': torch.from_numpy(tgt_depth_mask).bool(), 'intrinsics': torch.from_numpy(tgt_intrinsics).float(), 'points': torch.from_numpy(tgt_pts).float(), 'segmentation_mask': torch.from_numpy(tgt_segmentation_mask).long() if tgt_segmentation_mask is not None else None, 'segmentation_labels': segmentation_labels, 'is_metric': self.depth_unit is not None, 'has_sharp_boundary': self.has_sharp_boundary, }) instance = {k: v for k, v in instance.items() if v is not None} return instance def start(self): self.pipeline.start() def stop(self): self.pipeline.stop() def __enter__(self): self.start() return self def __exit__(self, exc_type, exc_value, traceback): self.stop() def get(self): return self.pipeline.get()