File size: 10,321 Bytes
a51c6d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
from typing import *
from pathlib import Path
import math

import numpy as np
import torch
from PIL import Image
import cv2
import utils3d

from ..utils import pipeline
from ..utils.geometry_numpy import focal_to_fov_numpy, mask_aware_nearest_resize_numpy, norm3d
from ..utils.io import *
from ..utils.tools import timeit


class EvalDataLoaderPipeline:

    def __init__(
        self, 
        path: str, 
        width: int, 
        height: int, 
        split: int = '.index.txt', 
        drop_max_depth: float = 1000., 
        num_load_workers: int = 4, 
        num_process_workers: int = 8, 
        include_segmentation: bool = False, 
        include_normal: bool = False,
        depth_to_normal: bool = False,
        max_segments: int = 100,
        min_seg_area: int = 1000,
        depth_unit: str = None,
        has_sharp_boundary = False,
        subset: int = None,
    ):
        filenames = Path(path).joinpath(split).read_text(encoding='utf-8').splitlines()
        filenames = filenames[::subset]
        self.width = width
        self.height = height
        self.drop_max_depth = drop_max_depth
        self.path = Path(path)
        self.filenames = filenames
        self.include_segmentation = include_segmentation
        self.include_normal = include_normal
        self.max_segments = max_segments
        self.min_seg_area = min_seg_area
        self.depth_to_normal = depth_to_normal
        self.depth_unit = depth_unit
        self.has_sharp_boundary = has_sharp_boundary

        self.rng = np.random.default_rng(seed=0)
        
        self.pipeline = pipeline.Sequential([
            self._generator,
            pipeline.Parallel([self._load_instance] * num_load_workers),
            pipeline.Parallel([self._process_instance] * num_process_workers),
            pipeline.Buffer(4)
        ])

    def __len__(self):
        return math.ceil(len(self.filenames)) 

    def _generator(self):
        for idx in range(len(self)):
            yield idx
    
    def _load_instance(self, idx):
        if idx >= len(self.filenames):
            return None
        
        path = self.path.joinpath(self.filenames[idx])

        instance = {
            'filename': self.filenames[idx],
            'width': self.width,
            'height': self.height,
        }
        instance['image'] = read_image(Path(path, 'image.jpg'))

        depth, _ = read_depth(Path(path, 'depth.png'))  # ignore depth unit from depth file, use config instead
        instance.update({
            'depth': np.nan_to_num(depth, nan=1, posinf=1, neginf=1),
            'depth_mask': np.isfinite(depth),
            'depth_mask_inf': np.isinf(depth),
        })

        if self.include_segmentation:
            segmentation_mask, segmentation_labels = read_segmentation(Path(path,'segmentation.png'))
            instance.update({
                'segmentation_mask': segmentation_mask,
                'segmentation_labels': segmentation_labels,
            })
        
        meta = read_meta(Path(path, 'meta.json'))
        instance['intrinsics'] = np.array(meta['intrinsics'], dtype=np.float32)

        return instance

    def _process_instance(self, instance: dict):
        if instance is None:
            return None
        
        image, depth, depth_mask, intrinsics = instance['image'], instance['depth'], instance['depth_mask'], instance['intrinsics']
        segmentation_mask, segmentation_labels = instance.get('segmentation_mask', None), instance.get('segmentation_labels', None)

        raw_height, raw_width = image.shape[:2]
        raw_horizontal, raw_vertical = abs(1.0 / intrinsics[0, 0]), abs(1.0 / intrinsics[1, 1])
        raw_pixel_w, raw_pixel_h = raw_horizontal / raw_width, raw_vertical / raw_height
        tgt_width, tgt_height = instance['width'], instance['height']
        tgt_aspect = tgt_width / tgt_height

        # set expected target view field
        tgt_horizontal = min(raw_horizontal, raw_vertical * tgt_aspect)
        tgt_vertical = tgt_horizontal / tgt_aspect

        # set target view direction
        cu, cv = 0.5, 0.5
        direction = utils3d.numpy.unproject_cv(np.array([[cu, cv]], dtype=np.float32), np.array([1.0], dtype=np.float32), intrinsics=intrinsics)[0]
        R = utils3d.numpy.rotation_matrix_from_vectors(direction, np.array([0, 0, 1], dtype=np.float32))

        # restrict target view field within the raw view
        corners = np.array([[0, 0], [0, 1], [1, 1], [1, 0]], dtype=np.float32)
        corners = np.concatenate([corners, np.ones((4, 1), dtype=np.float32)], axis=1) @ (np.linalg.inv(intrinsics).T @ R.T)   # corners in viewport's camera plane
        corners = corners[:, :2] / corners[:, 2:3]

        warp_horizontal, warp_vertical = abs(1.0 / intrinsics[0, 0]), abs(1.0 / intrinsics[1, 1])
        for i in range(4):
            intersection, _ = utils3d.numpy.ray_intersection(
                np.array([0., 0.]), np.array([[tgt_aspect, 1.0], [tgt_aspect, -1.0]]),
                corners[i - 1], corners[i] - corners[i - 1],
            )
            warp_horizontal, warp_vertical = min(warp_horizontal, 2 * np.abs(intersection[:, 0]).min()), min(warp_vertical, 2 * np.abs(intersection[:, 1]).min())
        tgt_horizontal, tgt_vertical = min(tgt_horizontal, warp_horizontal), min(tgt_vertical, warp_vertical)

        # get target view intrinsics
        fx, fy = 1.0 / tgt_horizontal, 1.0 / tgt_vertical
        tgt_intrinsics = utils3d.numpy.intrinsics_from_focal_center(fx, fy, 0.5, 0.5).astype(np.float32)
        
        # do homogeneous transformation with the rotation and intrinsics
        # 4.1 The image and depth is resized first to approximately the same pixel size as the target image with PIL's antialiasing resampling
        tgt_pixel_w, tgt_pixel_h = tgt_horizontal / tgt_width, tgt_vertical / tgt_height        # (should be exactly the same for x and y axes)
        rescaled_w, rescaled_h = int(raw_width * raw_pixel_w / tgt_pixel_w), int(raw_height * raw_pixel_h / tgt_pixel_h)
        image = np.array(Image.fromarray(image).resize((rescaled_w, rescaled_h), Image.Resampling.LANCZOS))

        depth, depth_mask = mask_aware_nearest_resize_numpy(depth, depth_mask, (rescaled_w, rescaled_h))
        distance = norm3d(utils3d.numpy.depth_to_points(depth, intrinsics=intrinsics))
        segmentation_mask = cv2.resize(segmentation_mask, (rescaled_w, rescaled_h), interpolation=cv2.INTER_NEAREST) if segmentation_mask is not None else None

        # 4.2 calculate homography warping
        transform = intrinsics @ np.linalg.inv(R) @ np.linalg.inv(tgt_intrinsics)
        uv_tgt = utils3d.numpy.image_uv(width=tgt_width, height=tgt_height)
        pts = np.concatenate([uv_tgt, np.ones((tgt_height, tgt_width, 1), dtype=np.float32)], axis=-1) @ transform.T
        uv_remap = pts[:, :, :2] / (pts[:, :, 2:3] + 1e-12)
        pixel_remap = utils3d.numpy.uv_to_pixel(uv_remap, width=rescaled_w, height=rescaled_h).astype(np.float32)
        
        tgt_image = cv2.remap(image, pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_LINEAR)
        tgt_distance = cv2.remap(distance, pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_NEAREST)
        tgt_ray_length = utils3d.numpy.unproject_cv(uv_tgt, np.ones_like(uv_tgt[:, :, 0]), intrinsics=tgt_intrinsics)
        tgt_ray_length = (tgt_ray_length[:, :, 0] ** 2 + tgt_ray_length[:, :, 1] ** 2 + tgt_ray_length[:, :, 2] ** 2) ** 0.5
        tgt_depth = tgt_distance / (tgt_ray_length + 1e-12)
        tgt_depth_mask = cv2.remap(depth_mask.astype(np.uint8), pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_NEAREST) > 0
        tgt_segmentation_mask = cv2.remap(segmentation_mask, pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_NEAREST) if segmentation_mask is not None else None

        # drop depth greater than drop_max_depth
        max_depth = np.nanquantile(np.where(tgt_depth_mask, tgt_depth, np.nan), 0.01) * self.drop_max_depth
        tgt_depth_mask &= tgt_depth <= max_depth
        tgt_depth = np.nan_to_num(tgt_depth, nan=0.0)

        if self.depth_unit is not None:
            tgt_depth *= self.depth_unit
        
        if not np.any(tgt_depth_mask):
            # always make sure that mask is not empty, otherwise the loss calculation will crash
            tgt_depth_mask = np.ones_like(tgt_depth_mask)
            tgt_depth = np.ones_like(tgt_depth)
            instance['label_type'] = 'invalid'
        
        tgt_pts = utils3d.numpy.unproject_cv(uv_tgt, tgt_depth, intrinsics=tgt_intrinsics)

        # Process segmentation labels
        if self.include_segmentation and segmentation_mask is not None:
            for k in ['undefined', 'unannotated', 'background', 'sky']:
                if k in segmentation_labels:
                    del segmentation_labels[k]
            seg_id2count = dict(zip(*np.unique(tgt_segmentation_mask, return_counts=True)))
            sorted_labels = sorted(segmentation_labels.keys(), key=lambda x: seg_id2count.get(segmentation_labels[x], 0), reverse=True)
            segmentation_labels = {k: segmentation_labels[k] for k in sorted_labels[:self.max_segments] if seg_id2count.get(segmentation_labels[k], 0) >= self.min_seg_area}

        instance.update({
            'image': torch.from_numpy(tgt_image.astype(np.float32) / 255.0).permute(2, 0, 1),
            'depth': torch.from_numpy(tgt_depth).float(),
            'depth_mask': torch.from_numpy(tgt_depth_mask).bool(),
            'intrinsics': torch.from_numpy(tgt_intrinsics).float(),
            'points': torch.from_numpy(tgt_pts).float(),
            'segmentation_mask': torch.from_numpy(tgt_segmentation_mask).long() if tgt_segmentation_mask is not None else None,
            'segmentation_labels': segmentation_labels,
            'is_metric': self.depth_unit is not None,
            'has_sharp_boundary': self.has_sharp_boundary,
        })
        
        instance = {k: v for k, v in instance.items() if v is not None}
        
        return instance

    def start(self):
        self.pipeline.start()
    
    def stop(self):
        self.pipeline.stop()
    
    def __enter__(self):
        self.start()
        return self
    
    def __exit__(self, exc_type, exc_value, traceback):
        self.stop()

    def get(self):
        return self.pipeline.get()