Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
from time import time | |
import torch | |
import torch.cuda.amp as amp | |
from xfuser.core.distributed import (get_sequence_parallel_rank, | |
get_sequence_parallel_world_size, | |
get_sp_group) | |
from xfuser.core.long_ctx_attention import xFuserLongContextAttention | |
from ..modules.model import sinusoidal_embedding_1d | |
from typing import List, Union, Optional, Tuple | |
import torch.nn.functional as F | |
import torch | |
def pad_freqs(original_tensor, target_len): | |
seq_len, s1, s2 = original_tensor.shape | |
pad_size = target_len - seq_len | |
padding_tensor = torch.ones( | |
pad_size, | |
s1, | |
s2, | |
dtype=original_tensor.dtype, | |
device=original_tensor.device) | |
padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0) | |
return padded_tensor | |
def rope_apply(x, grid_sizes, freqs): | |
""" | |
x: [B, L, N, C]. | |
grid_sizes: [B, 3]. | |
freqs: [M, C // 2]. | |
""" | |
s, n, c = x.size(1), x.size(2), x.size(3) // 2 | |
# split freqs | |
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1) | |
# loop over samples | |
output = [] | |
for i, (f, h, w) in enumerate(grid_sizes.tolist()): | |
seq_len = f * h * w | |
# precompute multipliers | |
x_i = torch.view_as_complex(x[i, :s].to(torch.float64).reshape( | |
s, n, -1, 2)) | |
freqs_i = torch.cat([ | |
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), | |
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), | |
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) | |
], | |
dim=-1).reshape(seq_len, 1, -1) | |
# apply rotary embedding | |
sp_size = get_sequence_parallel_world_size() | |
sp_rank = get_sequence_parallel_rank() | |
freqs_i = pad_freqs(freqs_i, s * sp_size) | |
s_per_rank = s | |
freqs_i_rank = freqs_i[(sp_rank * s_per_rank):((sp_rank + 1) * | |
s_per_rank), :, :] | |
x_i = torch.view_as_real(x_i * freqs_i_rank).flatten(2) | |
x_i = torch.cat([x_i, x[i, s:]]) | |
# append to collection | |
output.append(x_i) | |
return torch.stack(output).float() | |
# Usually don't need gradients for mask generation | |
def generate_attention_mask( | |
attention_map: torch.Tensor, | |
grid_sizes: torch.Tensor, | |
target_x_shape: Tuple[int, int, int, int], # Target shape: (C, T, H, W) | |
batch_index: int = 0, | |
target_word_indices: Union[List[int], slice] = None, | |
head_index: Optional[int] = None, # Process single head or average | |
word_aggregation_method: str = 'mean', # How to combine scores for multiple words | |
upsample_mode_spatial: str = 'nearest', # 'nearest', 'bilinear' | |
upsample_mode_temporal: str = 'nearest', # 'nearest', 'linear' | |
output_dtype: torch.dtype = torch.float32 # or torch.bool for soft mask before threshold | |
) -> torch.Tensor: | |
""" | |
Generates a binary mask from an attention map based on attention towards target words. | |
The mask identifies regions in the video (x) that attend strongly to the specified | |
context words, exceeding a given threshold. The mask has the same dimensions as x. | |
Args: | |
attention_map (torch.Tensor): Attention weights [B, Head_num, Lx, Lctx]. | |
Lx = flattened video tokens (patches), | |
Lctx = context tokens (words). | |
target_word_indices (Union[List[int], slice]): Indices or slice for the target | |
word(s) in the Lctx dimension. | |
grid_sizes (torch.Tensor): Patch grid dimensions [B, 3] -> (F, H_patch, W_patch) | |
for each batch item, corresponding to Lx. | |
F, H_patch, W_patch should be integers. | |
target_x_shape (Tuple[int, int, int, int]): The desired output shape [C, T, H, W], | |
matching the original video tensor x. | |
threshold (float): Value between 0 and 1. Attention scores >= threshold become 1 (True), | |
otherwise 0 (False). | |
batch_index (int, optional): Batch item to process. Defaults to 0. | |
head_index (Optional[int], optional): Specific head to use. If None, average | |
attention across all heads. Defaults to None. | |
word_aggregation_method (str, optional): How to aggregate scores if multiple | |
target_word_indices are given ('mean', | |
'sum', 'max'). Defaults to 'mean'. | |
upsample_mode_spatial (str, optional): PyTorch interpolate mode for H, W dimensions. | |
Defaults to 'nearest'. | |
upsample_mode_temporal (str, optional): PyTorch interpolate mode for T dimension. | |
Defaults to 'nearest'. | |
output_dtype (torch.dtype, optional): Data type of the output mask. | |
Defaults to torch.bool. | |
Returns: | |
torch.Tensor: A binary mask tensor of shape target_x_shape [C, T, H, W]. | |
Raises: | |
TypeError: If inputs are not torch.Tensors. | |
ValueError: If tensor dimensions or indices are invalid, or if | |
aggregation/upsample modes are unknown. | |
IndexError: If batch_index or head_index are out of bounds. | |
""" | |
# --- Input Validation --- | |
if not isinstance(attention_map, torch.Tensor): | |
raise TypeError("attention_map must be a torch.Tensor") | |
if not isinstance(grid_sizes, torch.Tensor): | |
raise TypeError("grid_sizes must be a torch.Tensor") | |
if attention_map.dim() != 4: | |
raise ValueError(f"attention_map must be [B, H, Lx, Lctx], got {attention_map.dim()} dims") | |
if grid_sizes.dim() != 2 or grid_sizes.shape[1] != 3: | |
raise ValueError(f"grid_sizes must be [B, 3], got {grid_sizes.shape}") | |
if len(target_x_shape) != 4: | |
raise ValueError(f"target_x_shape must be [C, T, H, W], got length {len(target_x_shape)}") | |
B, H, Lx, Lctx = attention_map.shape | |
C_out, T_out, H_out, W_out = target_x_shape | |
if not 0 <= batch_index < B: | |
raise IndexError(f"batch_index {batch_index} out of range for batch size {B}") | |
if head_index is not None and not 0 <= head_index < H: | |
raise IndexError(f"head_index {head_index} out of range for head count {H}") | |
if word_aggregation_method not in ['mean', 'sum', 'max']: | |
raise ValueError(f"Unknown word_aggregation_method: {word_aggregation_method}") | |
if upsample_mode_spatial not in ['nearest', 'bilinear']: | |
raise ValueError(f"Unknown upsample_mode_spatial: {upsample_mode_spatial}") | |
if upsample_mode_temporal not in ['nearest', 'linear']: | |
raise ValueError(f"Unknown upsample_mode_temporal: {upsample_mode_temporal}") | |
# --- Select Head(s) --- | |
if head_index is None: | |
# Average across heads. Shape -> [Lx, Lctx] | |
attn_map_processed = attention_map[batch_index].mean(dim=0) | |
else: | |
# Select specific head. Shape -> [Lx, Lctx] | |
attn_map_processed = attention_map[batch_index, head_index] | |
# --- Select and Aggregate Word Attention --- | |
# Ensure target_word_indices are valid before slicing | |
if isinstance(target_word_indices, slice): | |
_slice_indices = range(*target_word_indices.indices(Lctx)) | |
if not _slice_indices: # Empty slice | |
num_words = 0 | |
elif _slice_indices.start >= Lctx or _slice_indices.stop < -Lctx : # Basic out of bounds check | |
num_words = len(_slice_indices) # Proceed cautiously or add stricter check | |
else: | |
num_words = len(_slice_indices) | |
word_indices_str = f"slice({_slice_indices.start}:{_slice_indices.stop}:{_slice_indices.step})" | |
word_attn_scores = attn_map_processed[:, target_word_indices] # Shape -> [Lx, num_words] | |
elif isinstance(target_word_indices, list): | |
# Check indices are within bounds | |
valid_indices = [idx for idx in target_word_indices if -Lctx <= idx < Lctx] | |
if not valid_indices: | |
num_words = 0 | |
word_attn_scores = torch.empty((Lx, 0), device=attention_map.device, dtype=attention_map.dtype) # Handle empty case | |
else: | |
word_attn_scores = attn_map_processed[:, valid_indices] # Shape -> [Lx, num_words] | |
num_words = len(valid_indices) | |
word_indices_str = str(valid_indices) # Report used indices | |
else: | |
raise TypeError(f"target_word_indices must be list or slice, got {type(target_word_indices)}") | |
if num_words > 1: | |
if word_aggregation_method == 'mean': | |
aggregated_scores = word_attn_scores.mean(dim=-1) | |
elif word_aggregation_method == 'sum': | |
aggregated_scores = word_attn_scores.sum(dim=-1) | |
elif word_aggregation_method == 'max': | |
aggregated_scores = word_attn_scores.max(dim=-1).values | |
# aggregated_scores shape -> [Lx] | |
elif num_words == 1: | |
aggregated_scores = word_attn_scores.squeeze(-1) # Shape -> [Lx] | |
else: # No valid words selected | |
return torch.zeros(target_x_shape, dtype=output_dtype, device=attention_map.device) | |
# --- Reshape to Video Patch Grid --- | |
# Ensure grid sizes are integers | |
f_patch, h_patch, w_patch = map(int, grid_sizes[batch_index].tolist()) | |
actual_num_tokens = f_patch * h_patch * w_patch | |
if actual_num_tokens == 0: | |
return torch.zeros(target_x_shape, dtype=output_dtype, device=attention_map.device) | |
# Handle mismatch between expected tokens (from grid) and actual attention length (Lx) | |
if actual_num_tokens > Lx: | |
# Pad aggregated_scores to actual_num_tokens size | |
padding_size = actual_num_tokens - aggregated_scores.numel() | |
scores_padded = F.pad(aggregated_scores, (0, padding_size), "constant", 0) | |
scores_unpadded = scores_padded # Use the padded version for reshaping | |
# This scenario is less common than Lx > actual_num_tokens | |
elif actual_num_tokens < Lx: | |
scores_unpadded = aggregated_scores[:actual_num_tokens] | |
else: | |
scores_unpadded = aggregated_scores # Shape [actual_num_tokens] | |
try: | |
# Reshape to [F_patch, H_patch, W_patch] | |
attention_patch_grid = scores_unpadded.reshape(f_patch, h_patch, w_patch) | |
except RuntimeError as e: | |
raise e | |
# --- Upsample to Original Video Resolution --- | |
# Add batch and channel dims for interpolation: [1, 1, F_patch, H_patch, W_patch] | |
# Note: Assuming attention is channel-agnostic here. | |
grid_for_upsample = attention_patch_grid.unsqueeze(0).unsqueeze(0).float() # Interpolate needs float | |
# --- SIMPLIFIED LOGIC: Always use 3D interpolation --- | |
target_size_3d = (T_out, H_out, W_out) | |
# Determine the 3D interpolation mode. | |
# Default to 'nearest' unless temporal dimension changes AND 'linear' is requested. | |
if upsample_mode_temporal == 'linear' and f_patch != T_out: | |
upsample_mode_3d = 'trilinear' | |
align_corners_3d = False # align_corners usually False for non-nearest modes | |
else: | |
# Use 'nearest' if T isn't changing, or if temporal mode is 'nearest'. | |
# 'nearest' is generally safer and handles spatial modes implicitly. | |
upsample_mode_3d = 'nearest' | |
align_corners_3d = None # align_corners=None for nearest | |
upsampled_scores_grid = F.interpolate(grid_for_upsample, | |
size=target_size_3d, | |
mode=upsample_mode_3d, | |
align_corners=align_corners_3d) | |
# Expected shape: [1, 1, T_out, H_out, W_out] == [1, 1, 21, 60, 104] | |
# --- END SIMPLIFIED LOGIC --- | |
# Remove batch and channel dims: [T_out, H_out, W_out] | |
upsampled_scores = upsampled_scores_grid.squeeze(0).squeeze(0) | |
# --- Thresholding --- | |
binary_mask_thw = (upsampled_scores / torch.max(upsampled_scores)) # Shape [T_out, H_out, W_out] | |
# --- Expand Channel Dimension --- | |
# Repeat the mask across the channel dimension C_out | |
# Input shape: [T_out, H_out, W_out] | |
# After unsqueeze(0): [1, T_out, H_out, W_out] | |
# Target shape: [C_out, T_out, H_out, W_out] | |
# This expand operation is valid as explained above. | |
final_mask = binary_mask_thw.unsqueeze(0).expand(C_out, T_out, H_out, W_out) | |
return final_mask.to(dtype=output_dtype) | |
def usp_dit_forward( | |
self, | |
x, | |
t, | |
context, | |
seq_len, | |
clip_fea=None, | |
y=None, | |
words_indices=None, | |
block_id=-1, | |
type=None, | |
timestep=None | |
): | |
""" | |
x: A list of videos each with shape [C, T, H, W]. | |
t: [B]. | |
context: A list of text embeddings each with shape [L, C]. | |
""" | |
if self.model_type == 'i2v': | |
assert clip_fea is not None and y is not None | |
# params | |
device = self.patch_embedding.weight.device | |
if self.freqs.device != device: | |
self.freqs = self.freqs.to(device) | |
if y is not None: | |
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)] | |
# embeddings | |
x = [self.patch_embedding(u.unsqueeze(0)) for u in x] | |
grid_sizes = torch.stack( | |
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x]) | |
x = [u.flatten(2).transpose(1, 2) for u in x] | |
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long) | |
assert seq_lens.max() <= seq_len | |
x = torch.cat([ | |
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1) | |
for u in x | |
]) | |
# time embeddings | |
with amp.autocast(dtype=torch.float32): | |
e = self.time_embedding( | |
sinusoidal_embedding_1d(self.freq_dim, t).float()) | |
e0 = self.time_projection(e).unflatten(1, (6, self.dim)) | |
assert e.dtype == torch.float32 and e0.dtype == torch.float32 | |
# context | |
context_lens = None | |
context = self.text_embedding( | |
torch.stack([ | |
torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) | |
for u in context | |
])) | |
if clip_fea is not None: | |
context_clip = self.img_emb(clip_fea) # bs x 257 x dim | |
context = torch.concat([context_clip, context], dim=1) | |
# arguments | |
kwargs = dict( | |
e=e0, | |
seq_lens=seq_lens, | |
grid_sizes=grid_sizes, | |
freqs=self.freqs, | |
context=context, | |
context_lens=context_lens, | |
collect_attn_map=False) | |
# Context Parallel | |
x = torch.chunk( | |
x, get_sequence_parallel_world_size(), | |
dim=1)[get_sequence_parallel_rank()] | |
save_block_id = block_id | |
attn_map = None | |
binary_mask = None | |
for i, block in enumerate(self.blocks): | |
kwargs["collect_attn_map"] = False | |
if i == save_block_id: | |
kwargs["collect_attn_map"] = True | |
x, attn_map = block(x, **kwargs) | |
else: | |
x = block(x, **kwargs) | |
# head | |
x = self.head(x, e) | |
# Context Parallel | |
x = get_sp_group().all_gather(x, dim=1) | |
# unpatchify | |
x = self.unpatchify(x, grid_sizes) | |
if save_block_id != -1 and words_indices is not None: | |
attention_map = get_sp_group().all_gather(attn_map, dim=2) | |
binary_mask = generate_attention_mask( | |
attention_map=attention_map, # [1, 12, 32760, 512] batchsize, head_num, l_x, l_context | |
target_word_indices=words_indices, | |
grid_sizes=grid_sizes, # Make sure grid_sizes covers the full batch | |
target_x_shape=x[0].shape, # channel, frames, h, W | |
batch_index=0, # Process the first item in the batch | |
head_index=None, # Average over heads | |
word_aggregation_method='mean' | |
) | |
return [u.float() for u in x], binary_mask | |
def usp_attn_forward(self, | |
x, | |
seq_lens, | |
grid_sizes, | |
freqs, | |
dtype=torch.bfloat16): | |
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim | |
half_dtypes = (torch.float16, torch.bfloat16) | |
def half(x): | |
return x if x.dtype in half_dtypes else x.to(dtype) | |
# query, key, value function | |
def qkv_fn(x): | |
q = self.norm_q(self.q(x)).view(b, s, n, d) | |
k = self.norm_k(self.k(x)).view(b, s, n, d) | |
v = self.v(x).view(b, s, n, d) | |
return q, k, v | |
q, k, v = qkv_fn(x) | |
q = rope_apply(q, grid_sizes, freqs) | |
k = rope_apply(k, grid_sizes, freqs) | |
# TODO: We should use unpaded q,k,v for attention. | |
# k_lens = seq_lens // get_sequence_parallel_world_size() | |
# if k_lens is not None: | |
# q = torch.cat([u[:l] for u, l in zip(q, k_lens)]).unsqueeze(0) | |
# k = torch.cat([u[:l] for u, l in zip(k, k_lens)]).unsqueeze(0) | |
# v = torch.cat([u[:l] for u, l in zip(v, k_lens)]).unsqueeze(0) | |
x = xFuserLongContextAttention()( | |
None, | |
query=half(q), | |
key=half(k), | |
value=half(v), | |
window_size=self.window_size) | |
# TODO: padding after attention. | |
# x = torch.cat([x, x.new_zeros(b, s - x.size(1), n, d)], dim=1) | |
# output | |
x = x.flatten(2) | |
x = self.o(x) | |
return x | |