Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,528 Bytes
4a3d698 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
from time import time
import torch
import torch.cuda.amp as amp
from xfuser.core.distributed import (get_sequence_parallel_rank,
get_sequence_parallel_world_size,
get_sp_group)
from xfuser.core.long_ctx_attention import xFuserLongContextAttention
from ..modules.model import sinusoidal_embedding_1d
from typing import List, Union, Optional, Tuple
import torch.nn.functional as F
import torch
def pad_freqs(original_tensor, target_len):
seq_len, s1, s2 = original_tensor.shape
pad_size = target_len - seq_len
padding_tensor = torch.ones(
pad_size,
s1,
s2,
dtype=original_tensor.dtype,
device=original_tensor.device)
padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0)
return padded_tensor
@amp.autocast(enabled=False)
def rope_apply(x, grid_sizes, freqs):
"""
x: [B, L, N, C].
grid_sizes: [B, 3].
freqs: [M, C // 2].
"""
s, n, c = x.size(1), x.size(2), x.size(3) // 2
# split freqs
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
# loop over samples
output = []
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
seq_len = f * h * w
# precompute multipliers
x_i = torch.view_as_complex(x[i, :s].to(torch.float64).reshape(
s, n, -1, 2))
freqs_i = torch.cat([
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
],
dim=-1).reshape(seq_len, 1, -1)
# apply rotary embedding
sp_size = get_sequence_parallel_world_size()
sp_rank = get_sequence_parallel_rank()
freqs_i = pad_freqs(freqs_i, s * sp_size)
s_per_rank = s
freqs_i_rank = freqs_i[(sp_rank * s_per_rank):((sp_rank + 1) *
s_per_rank), :, :]
x_i = torch.view_as_real(x_i * freqs_i_rank).flatten(2)
x_i = torch.cat([x_i, x[i, s:]])
# append to collection
output.append(x_i)
return torch.stack(output).float()
@torch.no_grad() # Usually don't need gradients for mask generation
def generate_attention_mask(
attention_map: torch.Tensor,
grid_sizes: torch.Tensor,
target_x_shape: Tuple[int, int, int, int], # Target shape: (C, T, H, W)
batch_index: int = 0,
target_word_indices: Union[List[int], slice] = None,
head_index: Optional[int] = None, # Process single head or average
word_aggregation_method: str = 'mean', # How to combine scores for multiple words
upsample_mode_spatial: str = 'nearest', # 'nearest', 'bilinear'
upsample_mode_temporal: str = 'nearest', # 'nearest', 'linear'
output_dtype: torch.dtype = torch.float32 # or torch.bool for soft mask before threshold
) -> torch.Tensor:
"""
Generates a binary mask from an attention map based on attention towards target words.
The mask identifies regions in the video (x) that attend strongly to the specified
context words, exceeding a given threshold. The mask has the same dimensions as x.
Args:
attention_map (torch.Tensor): Attention weights [B, Head_num, Lx, Lctx].
Lx = flattened video tokens (patches),
Lctx = context tokens (words).
target_word_indices (Union[List[int], slice]): Indices or slice for the target
word(s) in the Lctx dimension.
grid_sizes (torch.Tensor): Patch grid dimensions [B, 3] -> (F, H_patch, W_patch)
for each batch item, corresponding to Lx.
F, H_patch, W_patch should be integers.
target_x_shape (Tuple[int, int, int, int]): The desired output shape [C, T, H, W],
matching the original video tensor x.
threshold (float): Value between 0 and 1. Attention scores >= threshold become 1 (True),
otherwise 0 (False).
batch_index (int, optional): Batch item to process. Defaults to 0.
head_index (Optional[int], optional): Specific head to use. If None, average
attention across all heads. Defaults to None.
word_aggregation_method (str, optional): How to aggregate scores if multiple
target_word_indices are given ('mean',
'sum', 'max'). Defaults to 'mean'.
upsample_mode_spatial (str, optional): PyTorch interpolate mode for H, W dimensions.
Defaults to 'nearest'.
upsample_mode_temporal (str, optional): PyTorch interpolate mode for T dimension.
Defaults to 'nearest'.
output_dtype (torch.dtype, optional): Data type of the output mask.
Defaults to torch.bool.
Returns:
torch.Tensor: A binary mask tensor of shape target_x_shape [C, T, H, W].
Raises:
TypeError: If inputs are not torch.Tensors.
ValueError: If tensor dimensions or indices are invalid, or if
aggregation/upsample modes are unknown.
IndexError: If batch_index or head_index are out of bounds.
"""
# --- Input Validation ---
if not isinstance(attention_map, torch.Tensor):
raise TypeError("attention_map must be a torch.Tensor")
if not isinstance(grid_sizes, torch.Tensor):
raise TypeError("grid_sizes must be a torch.Tensor")
if attention_map.dim() != 4:
raise ValueError(f"attention_map must be [B, H, Lx, Lctx], got {attention_map.dim()} dims")
if grid_sizes.dim() != 2 or grid_sizes.shape[1] != 3:
raise ValueError(f"grid_sizes must be [B, 3], got {grid_sizes.shape}")
if len(target_x_shape) != 4:
raise ValueError(f"target_x_shape must be [C, T, H, W], got length {len(target_x_shape)}")
B, H, Lx, Lctx = attention_map.shape
C_out, T_out, H_out, W_out = target_x_shape
if not 0 <= batch_index < B:
raise IndexError(f"batch_index {batch_index} out of range for batch size {B}")
if head_index is not None and not 0 <= head_index < H:
raise IndexError(f"head_index {head_index} out of range for head count {H}")
if word_aggregation_method not in ['mean', 'sum', 'max']:
raise ValueError(f"Unknown word_aggregation_method: {word_aggregation_method}")
if upsample_mode_spatial not in ['nearest', 'bilinear']:
raise ValueError(f"Unknown upsample_mode_spatial: {upsample_mode_spatial}")
if upsample_mode_temporal not in ['nearest', 'linear']:
raise ValueError(f"Unknown upsample_mode_temporal: {upsample_mode_temporal}")
# --- Select Head(s) ---
if head_index is None:
# Average across heads. Shape -> [Lx, Lctx]
attn_map_processed = attention_map[batch_index].mean(dim=0)
else:
# Select specific head. Shape -> [Lx, Lctx]
attn_map_processed = attention_map[batch_index, head_index]
# --- Select and Aggregate Word Attention ---
# Ensure target_word_indices are valid before slicing
if isinstance(target_word_indices, slice):
_slice_indices = range(*target_word_indices.indices(Lctx))
if not _slice_indices: # Empty slice
num_words = 0
elif _slice_indices.start >= Lctx or _slice_indices.stop < -Lctx : # Basic out of bounds check
num_words = len(_slice_indices) # Proceed cautiously or add stricter check
else:
num_words = len(_slice_indices)
word_indices_str = f"slice({_slice_indices.start}:{_slice_indices.stop}:{_slice_indices.step})"
word_attn_scores = attn_map_processed[:, target_word_indices] # Shape -> [Lx, num_words]
elif isinstance(target_word_indices, list):
# Check indices are within bounds
valid_indices = [idx for idx in target_word_indices if -Lctx <= idx < Lctx]
if not valid_indices:
num_words = 0
word_attn_scores = torch.empty((Lx, 0), device=attention_map.device, dtype=attention_map.dtype) # Handle empty case
else:
word_attn_scores = attn_map_processed[:, valid_indices] # Shape -> [Lx, num_words]
num_words = len(valid_indices)
word_indices_str = str(valid_indices) # Report used indices
else:
raise TypeError(f"target_word_indices must be list or slice, got {type(target_word_indices)}")
if num_words > 1:
if word_aggregation_method == 'mean':
aggregated_scores = word_attn_scores.mean(dim=-1)
elif word_aggregation_method == 'sum':
aggregated_scores = word_attn_scores.sum(dim=-1)
elif word_aggregation_method == 'max':
aggregated_scores = word_attn_scores.max(dim=-1).values
# aggregated_scores shape -> [Lx]
elif num_words == 1:
aggregated_scores = word_attn_scores.squeeze(-1) # Shape -> [Lx]
else: # No valid words selected
return torch.zeros(target_x_shape, dtype=output_dtype, device=attention_map.device)
# --- Reshape to Video Patch Grid ---
# Ensure grid sizes are integers
f_patch, h_patch, w_patch = map(int, grid_sizes[batch_index].tolist())
actual_num_tokens = f_patch * h_patch * w_patch
if actual_num_tokens == 0:
return torch.zeros(target_x_shape, dtype=output_dtype, device=attention_map.device)
# Handle mismatch between expected tokens (from grid) and actual attention length (Lx)
if actual_num_tokens > Lx:
# Pad aggregated_scores to actual_num_tokens size
padding_size = actual_num_tokens - aggregated_scores.numel()
scores_padded = F.pad(aggregated_scores, (0, padding_size), "constant", 0)
scores_unpadded = scores_padded # Use the padded version for reshaping
# This scenario is less common than Lx > actual_num_tokens
elif actual_num_tokens < Lx:
scores_unpadded = aggregated_scores[:actual_num_tokens]
else:
scores_unpadded = aggregated_scores # Shape [actual_num_tokens]
try:
# Reshape to [F_patch, H_patch, W_patch]
attention_patch_grid = scores_unpadded.reshape(f_patch, h_patch, w_patch)
except RuntimeError as e:
raise e
# --- Upsample to Original Video Resolution ---
# Add batch and channel dims for interpolation: [1, 1, F_patch, H_patch, W_patch]
# Note: Assuming attention is channel-agnostic here.
grid_for_upsample = attention_patch_grid.unsqueeze(0).unsqueeze(0).float() # Interpolate needs float
# --- SIMPLIFIED LOGIC: Always use 3D interpolation ---
target_size_3d = (T_out, H_out, W_out)
# Determine the 3D interpolation mode.
# Default to 'nearest' unless temporal dimension changes AND 'linear' is requested.
if upsample_mode_temporal == 'linear' and f_patch != T_out:
upsample_mode_3d = 'trilinear'
align_corners_3d = False # align_corners usually False for non-nearest modes
else:
# Use 'nearest' if T isn't changing, or if temporal mode is 'nearest'.
# 'nearest' is generally safer and handles spatial modes implicitly.
upsample_mode_3d = 'nearest'
align_corners_3d = None # align_corners=None for nearest
upsampled_scores_grid = F.interpolate(grid_for_upsample,
size=target_size_3d,
mode=upsample_mode_3d,
align_corners=align_corners_3d)
# Expected shape: [1, 1, T_out, H_out, W_out] == [1, 1, 21, 60, 104]
# --- END SIMPLIFIED LOGIC ---
# Remove batch and channel dims: [T_out, H_out, W_out]
upsampled_scores = upsampled_scores_grid.squeeze(0).squeeze(0)
# --- Thresholding ---
binary_mask_thw = (upsampled_scores / torch.max(upsampled_scores)) # Shape [T_out, H_out, W_out]
# --- Expand Channel Dimension ---
# Repeat the mask across the channel dimension C_out
# Input shape: [T_out, H_out, W_out]
# After unsqueeze(0): [1, T_out, H_out, W_out]
# Target shape: [C_out, T_out, H_out, W_out]
# This expand operation is valid as explained above.
final_mask = binary_mask_thw.unsqueeze(0).expand(C_out, T_out, H_out, W_out)
return final_mask.to(dtype=output_dtype)
def usp_dit_forward(
self,
x,
t,
context,
seq_len,
clip_fea=None,
y=None,
words_indices=None,
block_id=-1,
type=None,
timestep=None
):
"""
x: A list of videos each with shape [C, T, H, W].
t: [B].
context: A list of text embeddings each with shape [L, C].
"""
if self.model_type == 'i2v':
assert clip_fea is not None and y is not None
# params
device = self.patch_embedding.weight.device
if self.freqs.device != device:
self.freqs = self.freqs.to(device)
if y is not None:
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
# embeddings
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
grid_sizes = torch.stack(
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
x = [u.flatten(2).transpose(1, 2) for u in x]
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
assert seq_lens.max() <= seq_len
x = torch.cat([
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1)
for u in x
])
# time embeddings
with amp.autocast(dtype=torch.float32):
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t).float())
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
assert e.dtype == torch.float32 and e0.dtype == torch.float32
# context
context_lens = None
context = self.text_embedding(
torch.stack([
torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
for u in context
]))
if clip_fea is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
# arguments
kwargs = dict(
e=e0,
seq_lens=seq_lens,
grid_sizes=grid_sizes,
freqs=self.freqs,
context=context,
context_lens=context_lens,
collect_attn_map=False)
# Context Parallel
x = torch.chunk(
x, get_sequence_parallel_world_size(),
dim=1)[get_sequence_parallel_rank()]
save_block_id = block_id
attn_map = None
binary_mask = None
for i, block in enumerate(self.blocks):
kwargs["collect_attn_map"] = False
if i == save_block_id:
kwargs["collect_attn_map"] = True
x, attn_map = block(x, **kwargs)
else:
x = block(x, **kwargs)
# head
x = self.head(x, e)
# Context Parallel
x = get_sp_group().all_gather(x, dim=1)
# unpatchify
x = self.unpatchify(x, grid_sizes)
if save_block_id != -1 and words_indices is not None:
attention_map = get_sp_group().all_gather(attn_map, dim=2)
binary_mask = generate_attention_mask(
attention_map=attention_map, # [1, 12, 32760, 512] batchsize, head_num, l_x, l_context
target_word_indices=words_indices,
grid_sizes=grid_sizes, # Make sure grid_sizes covers the full batch
target_x_shape=x[0].shape, # channel, frames, h, W
batch_index=0, # Process the first item in the batch
head_index=None, # Average over heads
word_aggregation_method='mean'
)
return [u.float() for u in x], binary_mask
def usp_attn_forward(self,
x,
seq_lens,
grid_sizes,
freqs,
dtype=torch.bfloat16):
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
half_dtypes = (torch.float16, torch.bfloat16)
def half(x):
return x if x.dtype in half_dtypes else x.to(dtype)
# query, key, value function
def qkv_fn(x):
q = self.norm_q(self.q(x)).view(b, s, n, d)
k = self.norm_k(self.k(x)).view(b, s, n, d)
v = self.v(x).view(b, s, n, d)
return q, k, v
q, k, v = qkv_fn(x)
q = rope_apply(q, grid_sizes, freqs)
k = rope_apply(k, grid_sizes, freqs)
# TODO: We should use unpaded q,k,v for attention.
# k_lens = seq_lens // get_sequence_parallel_world_size()
# if k_lens is not None:
# q = torch.cat([u[:l] for u, l in zip(q, k_lens)]).unsqueeze(0)
# k = torch.cat([u[:l] for u, l in zip(k, k_lens)]).unsqueeze(0)
# v = torch.cat([u[:l] for u, l in zip(v, k_lens)]).unsqueeze(0)
x = xFuserLongContextAttention()(
None,
query=half(q),
key=half(k),
value=half(v),
window_size=self.window_size)
# TODO: padding after attention.
# x = torch.cat([x, x.new_zeros(b, s - x.size(1), n, d)], dim=1)
# output
x = x.flatten(2)
x = self.o(x)
return x
|