guangzhaoli commited on
Commit
4a3d698
·
1 Parent(s): 02bf03c
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. app.py +386 -0
  3. edit.py +486 -0
  4. generate.py +412 -0
  5. requirements.txt +19 -0
  6. video_list/bear_g.mp4 +3 -0
  7. video_list/blackswan.mp4 +3 -0
  8. video_list/cat_box.mp4 +3 -0
  9. video_list/cockatiel.mp4 +3 -0
  10. video_list/dog_flower_g.mp4 +3 -0
  11. video_list/girl_and_dog.mp4 +3 -0
  12. video_list/gym_woman.mp4 +3 -0
  13. video_list/jeep.mp4 +3 -0
  14. video_list/puppy.mp4 +3 -0
  15. video_list/rabbit.mp4 +3 -0
  16. video_list/sea_lion.mp4 +3 -0
  17. video_list/sea_turtle.mp4 +3 -0
  18. video_list/wolf.mp4 +3 -0
  19. video_list/woman.mp4 +3 -0
  20. wan/__init__.py +3 -0
  21. wan/__pycache__/__init__.cpython-310.pyc +0 -0
  22. wan/__pycache__/__init__.cpython-312.pyc +0 -0
  23. wan/__pycache__/image2video.cpython-310.pyc +0 -0
  24. wan/__pycache__/image2video.cpython-312.pyc +0 -0
  25. wan/__pycache__/text2video.cpython-310.pyc +0 -0
  26. wan/__pycache__/text2video.cpython-312.pyc +0 -0
  27. wan/configs/__init__.py +42 -0
  28. wan/configs/__pycache__/__init__.cpython-310.pyc +0 -0
  29. wan/configs/__pycache__/__init__.cpython-312.pyc +0 -0
  30. wan/configs/__pycache__/shared_config.cpython-310.pyc +0 -0
  31. wan/configs/__pycache__/shared_config.cpython-312.pyc +0 -0
  32. wan/configs/__pycache__/wan_i2v_14B.cpython-310.pyc +0 -0
  33. wan/configs/__pycache__/wan_i2v_14B.cpython-312.pyc +0 -0
  34. wan/configs/__pycache__/wan_t2v_14B.cpython-310.pyc +0 -0
  35. wan/configs/__pycache__/wan_t2v_14B.cpython-312.pyc +0 -0
  36. wan/configs/__pycache__/wan_t2v_1_3B.cpython-310.pyc +0 -0
  37. wan/configs/__pycache__/wan_t2v_1_3B.cpython-312.pyc +0 -0
  38. wan/configs/shared_config.py +19 -0
  39. wan/configs/wan_i2v_14B.py +35 -0
  40. wan/configs/wan_t2v_14B.py +29 -0
  41. wan/configs/wan_t2v_1_3B.py +29 -0
  42. wan/distributed/__init__.py +0 -0
  43. wan/distributed/__pycache__/__init__.cpython-310.pyc +0 -0
  44. wan/distributed/__pycache__/__init__.cpython-312.pyc +0 -0
  45. wan/distributed/__pycache__/fsdp.cpython-310.pyc +0 -0
  46. wan/distributed/__pycache__/fsdp.cpython-312.pyc +0 -0
  47. wan/distributed/__pycache__/xdit_context_parallel.cpython-310.pyc +0 -0
  48. wan/distributed/__pycache__/xdit_context_parallel.cpython-312.pyc +0 -0
  49. wan/distributed/fsdp.py +32 -0
  50. wan/distributed/xdit_context_parallel.py +420 -0
.gitattributes CHANGED
@@ -30,6 +30,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
  *.wasm filter=lfs diff=lfs merge=lfs -text
32
  *.xz filter=lfs diff=lfs merge=lfs -text
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
  *.wasm filter=lfs diff=lfs merge=lfs -text
32
  *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
34
  *.zip filter=lfs diff=lfs merge=lfs -text
35
  *.zst filter=lfs diff=lfs merge=lfs -text
36
  *tfevents* filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,386 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # app.py
2
+ import gradio as gr
3
+ import subprocess
4
+ import os
5
+ import sys
6
+ import datetime
7
+ import shutil
8
+ import time # Moved import time to the top for global access
9
+ import argparse
10
+
11
+ # --- Configuration ---
12
+ # !!! IMPORTANT: Ensure this path is correct for your environment !!!
13
+ CKPT_DIR = "./checkpoints/Wan2.1-T2V-1.3B"
14
+ EDIT_SCRIPT_PATH = "edit.py" # Assumes edit.py is in the same directory
15
+ OUTPUT_DIR = "gradio_outputs"
16
+ PYTHON_EXECUTABLE = sys.executable # Uses the same python that runs gradio
17
+ VIDEO_EXAMPLES_DIR = "video_list" # Directory for example videos
18
+
19
+ # Create output directory if it doesn't exist
20
+ os.makedirs(OUTPUT_DIR, exist_ok=True)
21
+ os.makedirs(VIDEO_EXAMPLES_DIR, exist_ok=True) # Ensure video_list exists for clarity
22
+
23
+ def _parse_args():
24
+ parser = argparse.ArgumentParser(
25
+ description="Generate a image or video from a text prompt or image using Wan"
26
+ )
27
+ parser.add_argument(
28
+ "--ckpt",
29
+ type=str,
30
+ default="./checkpoints/Wan2.1-T2V-1.3B",
31
+ help="The path to the checkpoint directory.")
32
+
33
+ return parser.parse_args()
34
+
35
+ def generate_safe_filename_part(text, max_len=20):
36
+ """Generates a filesystem-safe string from text."""
37
+ if not text:
38
+ return "untitled"
39
+ safe_text = "".join(c if c.isalnum() or c in [' ', '_'] else '_' for c in text).strip()
40
+ safe_text = "_".join(safe_text.split()) # Replace spaces with underscores
41
+ return safe_text[:max_len]
42
+
43
+ def run_video_edit(source_video_path, source_prompt, target_prompt, source_words, target_words,
44
+ omega_value, n_max_value, n_avg_value, progress=gr.Progress(track_tqdm=True)):
45
+ if not source_video_path:
46
+ raise gr.Error("Please upload a source video.")
47
+ if not source_prompt:
48
+ raise gr.Error("Please provide a source prompt.")
49
+ if not target_prompt:
50
+ raise gr.Error("Please provide a target prompt (the 'prompt' for edit.py).")
51
+ # Allow empty source_words for additive edits
52
+ if source_words is None: # Check for None, as empty string is valid
53
+ raise gr.Error("Please provide source words (can be empty string for additions).")
54
+ if not target_words:
55
+ raise gr.Error("Please provide target words.")
56
+
57
+ progress(0, desc="Preparing for video editing...")
58
+ print(f"Source video received at: {source_video_path}")
59
+ print(f"Omega value: {omega_value}")
60
+ print(f"N_max value: {n_max_value}")
61
+ print(f"N_avg value: {n_avg_value}")
62
+
63
+ worse_avg_value = n_avg_value // 2
64
+ print(f"Calculated Worse_avg value: {worse_avg_value}")
65
+
66
+ timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
67
+ src_words_fn = generate_safe_filename_part(source_words)
68
+ tar_words_fn = generate_safe_filename_part(target_words)
69
+
70
+ output_filename_base = f"{timestamp}_{src_words_fn}_to_{tar_words_fn}_omega{omega_value}_nmax{n_max_value}_navg{n_avg_value}"
71
+ output_video_path = os.path.join(OUTPUT_DIR, f"{output_filename_base}.mp4")
72
+
73
+ cmd = [
74
+ PYTHON_EXECUTABLE, EDIT_SCRIPT_PATH,
75
+ "--task", "t2v-1.3B",
76
+ "--size", "832*480",
77
+ "--base_seed", "42",
78
+ "--ckpt_dir", CKPT_DIR,
79
+ "--sample_solver", "unipc",
80
+ "--source_video_path", source_video_path,
81
+ "--source_prompt", source_prompt,
82
+ "--source_words", source_words, # Pass as is, even if empty
83
+ "--prompt", target_prompt,
84
+ "--target_words", target_words,
85
+ "--sample_guide_scale", "3.5",
86
+ "--tar_guide_scale", "10.5",
87
+ "--sample_shift", "12",
88
+ "--sample_steps", "50",
89
+ "--n_max", str(n_max_value),
90
+ "--n_min", "0",
91
+ "--n_avg", str(n_avg_value),
92
+ "--worse_avg", str(worse_avg_value),
93
+ "--omega", str(omega_value),
94
+ "--window_size", "11",
95
+ "--decay_factor", "0.25",
96
+ "--frame_num", "41",
97
+ "--save_file", output_video_path
98
+ ]
99
+
100
+ print(f"Executing command: {' '.join(cmd)}")
101
+ progress(0.1, desc="Starting video editing process...")
102
+
103
+ try:
104
+ process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1, universal_newlines=True)
105
+
106
+ # Simulate progress
107
+ for i in range(10):
108
+ if process.poll() is not None:
109
+ break
110
+ progress(0.1 + i * 0.08, desc=f"Editing in progress... (simulated step {i+1}/10)")
111
+ time.sleep(1)
112
+
113
+ stdout, stderr = process.communicate()
114
+
115
+ progress(0.9, desc="Finalizing video...")
116
+
117
+ if process.returncode != 0:
118
+ print(f"Error during video editing:\nStdout:\n{stdout}\nStderr:\n{stderr}")
119
+ raise gr.Error(f"Video editing failed. Stderr: {stderr[:500]}")
120
+
121
+ print(f"Video editing successful. Output at: {output_video_path}")
122
+ if not os.path.exists(output_video_path):
123
+ print(f"Error: Output file {output_video_path} was not created.")
124
+ raise gr.Error(f"Output file not found, though script reported success. Stdout: {stdout}")
125
+
126
+ progress(1, desc="Video ready!")
127
+ return output_video_path
128
+
129
+ except FileNotFoundError:
130
+ progress(1, desc="Error")
131
+ print(f"Error: The script '{EDIT_SCRIPT_PATH}' or python executable '{PYTHON_EXECUTABLE}' was not found.")
132
+ raise gr.Error(f"Execution error: Ensure '{EDIT_SCRIPT_PATH}' and Python are correctly pathed.")
133
+ except Exception as e:
134
+ progress(1, desc="Error")
135
+ print(f"An unexpected error occurred: {e}")
136
+ raise gr.Error(f"An unexpected error: {str(e)}")
137
+
138
+ # --- Gradio UI Definition ---
139
+
140
+ # Define all examples to be loaded
141
+ examples_to_load_definitions = [
142
+ { # Original bear_g example (corresponds to bear_g_03 in YAML)
143
+ "video_base_name": "bear_g",
144
+ "src_prompt": "A large brown bear is walking slowly across a rocky terrain in a zoo enclosure, surrounded by stone walls and scattered greenery. The camera remains fixed, capturing the bear's deliberate movements.",
145
+ "tar_prompt": "A large dinosaur is walking slowly across a rocky terrain in a zoo enclosure, surrounded by stone walls and scattered greenery. The camera remains fixed, capturing the dinosaur's deliberate movements.",
146
+ "src_words": "large brown bear",
147
+ "tar_words": "large dinosaur",
148
+ },
149
+ { # blackswan_02
150
+ "video_base_name": "blackswan",
151
+ "src_prompt": "A black swan with a red beak swimming in a river near a wall and bushes.",
152
+ "tar_prompt": "A white duck with a red beak swimming in a river near a wall and bushes.",
153
+ "src_words": "black swan",
154
+ "tar_words": "white duck",
155
+ },
156
+ { # jeep_01
157
+ "video_base_name": "jeep",
158
+ "src_prompt": "A silver jeep driving down a curvy road in the countryside.",
159
+ "tar_prompt": "A Porsche car driving down a curvy road in the countryside.",
160
+ "src_words": "silver jeep",
161
+ "tar_words": "Porsche car",
162
+ },
163
+ { # woman_02 (additive edit)
164
+ "video_base_name": "woman",
165
+ "src_prompt": "A woman in a black dress is walking along a paved path in a lush green park, with trees and a wooden bench in the background. The camera remains fixed, capturing her steady movement.",
166
+ "tar_prompt": "A woman in a black dress and a red baseball cap is walking along a paved path in a lush green park, with trees and a wooden bench in the background. The camera remains fixed, capturing her steady movement.",
167
+ "src_words": "", # Empty source words for addition
168
+ "tar_words": "a red baseball cap",
169
+ }
170
+ ]
171
+
172
+ examples_data = []
173
+ # Default advanced parameters for all examples
174
+ default_omega = 2.75
175
+ default_n_max = 40
176
+ default_n_avg = 4
177
+
178
+ for ex_def in examples_to_load_definitions:
179
+ # Assuming .mp4 extension for all videos
180
+ video_file_name = f"{ex_def['video_base_name']}.mp4"
181
+ example_video_path = os.path.join(VIDEO_EXAMPLES_DIR, video_file_name)
182
+
183
+ if os.path.exists(example_video_path):
184
+ examples_data.append([
185
+ example_video_path,
186
+ ex_def["src_prompt"],
187
+ ex_def["tar_prompt"],
188
+ ex_def["src_words"],
189
+ ex_def["tar_words"],
190
+ default_omega,
191
+ default_n_max,
192
+ default_n_avg
193
+ ])
194
+ else:
195
+ print(f"Warning: Example video {example_video_path} not found. Example for '{ex_def['video_base_name']}' will be skipped.")
196
+
197
+ if not examples_data:
198
+ print(f"Warning: No example videos found in '{VIDEO_EXAMPLES_DIR}'. Examples section will be empty or not show.")
199
+
200
+
201
+ with gr.Blocks(theme=gr.themes.Soft(), css="""
202
+ /* Main container - maximize width and improve spacing */
203
+ .gradio-container {
204
+ max-width: 98% !important;
205
+ width: 98% !important;
206
+ margin: 0 auto !important;
207
+ padding: 20px !important;
208
+ min-height: 100vh !important;
209
+ }
210
+
211
+ /* All containers should use full width */
212
+ .contain, .container {
213
+ max-width: 100% !important;
214
+ width: 100% !important;
215
+ padding: 0 !important;
216
+ }
217
+
218
+ /* Remove default padding from main wrapper */
219
+ .main, .wrap, .panel {
220
+ max-width: 100% !important;
221
+ width: 100% !important;
222
+ padding: 0 !important;
223
+ }
224
+
225
+ /* Improve spacing for components */
226
+ .gap, .form {
227
+ gap: 15px !important;
228
+ }
229
+
230
+ /* Make all components full width */
231
+ #component-0, .block {
232
+ max-width: 100% !important;
233
+ width: 100% !important;
234
+ }
235
+
236
+ /* Better padding for groups */
237
+ .group {
238
+ padding: 20px !important;
239
+ margin-bottom: 15px !important;
240
+ border-radius: 8px !important;
241
+ }
242
+
243
+ /* Make rows and columns use full space with better gaps */
244
+ .row {
245
+ gap: 30px !important;
246
+ margin-bottom: 20px !important;
247
+ }
248
+
249
+ /* Improve column spacing */
250
+ .column {
251
+ padding: 0 10px !important;
252
+ }
253
+
254
+ /* Better video component sizing */
255
+ .video-container {
256
+ width: 100% !important;
257
+ }
258
+
259
+ /* Textbox improvements */
260
+ .textbox, .input-field {
261
+ width: 100% !important;
262
+ }
263
+
264
+ /* Button styling */
265
+ .primary {
266
+ width: 100% !important;
267
+ padding: 12px !important;
268
+ font-size: 16px !important;
269
+ margin-top: 20px !important;
270
+ }
271
+
272
+ /* Examples section spacing */
273
+ .examples {
274
+ margin-top: 30px !important;
275
+ padding: 20px !important;
276
+ }
277
+
278
+ /* Accordion improvements */
279
+ .accordion {
280
+ margin: 15px 0 !important;
281
+ }
282
+ """) as demo:
283
+ gr.Markdown(
284
+ """
285
+ <h1 style="text-align: center; font-size: 2.5em;">🪄 FlowDirector Video Edit</h1>
286
+ <p style="text-align: center;">
287
+ Edit videos by providing a source video, descriptive prompts, and specifying words to change.<br>
288
+ Powered by FlowDirector.
289
+ </p>
290
+ """
291
+ )
292
+
293
+ with gr.Row():
294
+ with gr.Column(scale=5): # Input column - increased scale for better space usage
295
+ with gr.Group():
296
+ gr.Markdown("### 🎬 Source Material")
297
+ source_video_input = gr.Video(label="Upload Source Video", height=540)
298
+ source_prompt_input = gr.Textbox(
299
+ label="Source Prompt",
300
+ placeholder="Describe the original video content accurately.",
301
+ lines=3,
302
+ show_label=True
303
+ )
304
+ target_prompt_input = gr.Textbox(
305
+ label="Target Prompt (Desired Edit)",
306
+ placeholder="Describe how you want the video to be after editing.",
307
+ lines=3,
308
+ show_label=True
309
+ )
310
+
311
+ with gr.Group():
312
+ gr.Markdown("### ✍️ Editing Instructions")
313
+ source_words_input = gr.Textbox(
314
+ label="Source Words (to be replaced, or empty for addition)",
315
+ placeholder="e.g., large brown bear (leave empty to add target words globally)"
316
+ )
317
+ target_words_input = gr.Textbox(
318
+ label="Target Words (replacement or addition)",
319
+ placeholder="e.g., large dinosaur OR a red baseball cap"
320
+ )
321
+
322
+ with gr.Accordion("🔧 Advanced Parameters", open=False):
323
+ omega_slider = gr.Slider(
324
+ minimum=0.0, maximum=5.0, step=0.05, value=default_omega, label="Omega (ω)",
325
+ info="Controls the intensity/style of the edit. Higher values might lead to stronger edits."
326
+ )
327
+ n_max_slider = gr.Slider(
328
+ minimum=0, maximum=50, step=1, value=default_n_max, label="N_max",
329
+ info="Max value for an adaptive param. `n_min` is fixed at 0."
330
+ )
331
+ n_avg_slider = gr.Slider(
332
+ minimum=0, maximum=5, step=1, value=default_n_avg, label="N_avg",
333
+ info="Average value for an adaptive param. `worse_avg` will be N_avg // 2."
334
+ )
335
+
336
+ submit_button = gr.Button("✨ Generate Edited Video", variant="primary")
337
+
338
+ with gr.Column(scale=4): # Output column - increased scale for better proportion
339
+ gr.Markdown("### 🖼️ Edited Video Output")
340
+ output_video = gr.Video(label="Result", height=540, show_label=False)
341
+
342
+
343
+ if examples_data: # Only show examples if some were successfully loaded
344
+ gr.Examples(
345
+ examples=examples_data,
346
+ inputs=[
347
+ source_video_input,
348
+ source_prompt_input,
349
+ target_prompt_input,
350
+ source_words_input,
351
+ target_words_input,
352
+ omega_slider,
353
+ n_max_slider,
354
+ n_avg_slider
355
+ ],
356
+ outputs=output_video,
357
+ fn=run_video_edit,
358
+ cache_examples=False # For long processes, False is better
359
+ )
360
+
361
+ all_process_inputs = [
362
+ source_video_input,
363
+ source_prompt_input,
364
+ target_prompt_input,
365
+ source_words_input,
366
+ target_words_input,
367
+ omega_slider,
368
+ n_max_slider,
369
+ n_avg_slider
370
+ ]
371
+
372
+ submit_button.click(
373
+ fn=run_video_edit,
374
+ inputs=all_process_inputs,
375
+ outputs=output_video
376
+ )
377
+
378
+ if __name__ == "__main__":
379
+ # print(f"Make sure your checkpoint directory is correctly set to: {CKPT_DIR}")
380
+ # print(f"And that '{EDIT_SCRIPT_PATH}' is in the same directory as app.py or correctly pathed.")
381
+ # print(f"Outputs will be saved to: {os.path.abspath(OUTPUT_DIR)}")
382
+ # print(f"Place example videos (e.g., bear_g.mp4, blackswan.mp4, etc.) in: {os.path.abspath(VIDEO_EXAMPLES_DIR)}")
383
+
384
+ args = _parse_args()
385
+ CKPT_DIR = args.ckpt
386
+ demo.launch()
edit.py ADDED
@@ -0,0 +1,486 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ import argparse
3
+ from datetime import datetime
4
+ import logging
5
+ import os
6
+ import sys
7
+ import warnings
8
+
9
+ warnings.filterwarnings('ignore')
10
+
11
+ import torch, random
12
+ import torch.distributed as dist
13
+ from PIL import Image
14
+
15
+ import wan
16
+ from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
17
+ from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
18
+ from wan.utils.utils import cache_video, cache_image, str2bool
19
+
20
+ EXAMPLE_PROMPT = {
21
+ "t2v-1.3B": {
22
+ "prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
23
+ },
24
+ "t2v-14B": {
25
+ "prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
26
+ },
27
+ "t2i-14B": {
28
+ "prompt": "一个朴素端庄的美人",
29
+ },
30
+ "i2v-14B": {
31
+ "prompt":
32
+ "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.",
33
+ "image":
34
+ "examples/i2v_input.JPG",
35
+ },
36
+ }
37
+
38
+
39
+ def _validate_args(args):
40
+ # Basic check
41
+ assert args.ckpt_dir is not None, "Please specify the checkpoint directory."
42
+ assert args.task in WAN_CONFIGS, f"Unsupport task: {args.task}"
43
+ assert args.task in EXAMPLE_PROMPT, f"Unsupport task: {args.task}"
44
+
45
+ # The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks.
46
+ if args.sample_steps is None:
47
+ args.sample_steps = 40 if "i2v" in args.task else 50
48
+
49
+ if args.sample_shift is None:
50
+ args.sample_shift = 5.0
51
+ if "i2v" in args.task and args.size in ["832*480", "480*832"]:
52
+ args.sample_shift = 3.0
53
+
54
+ # The default number of frames are 1 for text-to-image tasks and 81 for other tasks.
55
+ if args.frame_num is None:
56
+ args.frame_num = 1 if "t2i" in args.task else 81
57
+
58
+ # T2I frame_num check
59
+ if "t2i" in args.task:
60
+ assert args.frame_num == 1, f"Unsupport frame_num {args.frame_num} for task {args.task}"
61
+
62
+ args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint(
63
+ 0, sys.maxsize)
64
+ # Size check
65
+ assert args.size in SUPPORTED_SIZES[
66
+ args.
67
+ task], f"Unsupport size {args.size} for task {args.task}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.task])}"
68
+
69
+
70
+ def _parse_args():
71
+ parser = argparse.ArgumentParser(
72
+ description="Generate a image or video from a text prompt or image using Wan"
73
+ )
74
+ parser.add_argument(
75
+ "--task",
76
+ type=str,
77
+ default="t2v-14B",
78
+ choices=list(WAN_CONFIGS.keys()),
79
+ help="The task to run.")
80
+ parser.add_argument(
81
+ "--size",
82
+ type=str,
83
+ default="1280*720",
84
+ choices=list(SIZE_CONFIGS.keys()),
85
+ help="The area (width*height) of the generated video. For the I2V task, the aspect ratio of the output video will follow that of the input image."
86
+ )
87
+ parser.add_argument(
88
+ "--frame_num",
89
+ type=int,
90
+ default=None,
91
+ help="How many frames to sample from a image or video. The number should be 4n+1"
92
+ )
93
+ parser.add_argument(
94
+ "--ckpt_dir",
95
+ type=str,
96
+ default=None,
97
+ help="The path to the checkpoint directory.")
98
+ parser.add_argument(
99
+ "--offload_model",
100
+ type=str2bool,
101
+ default=None,
102
+ help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage."
103
+ )
104
+ parser.add_argument(
105
+ "--ulysses_size",
106
+ type=int,
107
+ default=1,
108
+ help="The size of the ulysses parallelism in DiT.")
109
+ parser.add_argument(
110
+ "--ring_size",
111
+ type=int,
112
+ default=1,
113
+ help="The size of the ring attention parallelism in DiT.")
114
+ parser.add_argument(
115
+ "--t5_fsdp",
116
+ action="store_true",
117
+ default=False,
118
+ help="Whether to use FSDP for T5.")
119
+ parser.add_argument(
120
+ "--t5_cpu",
121
+ action="store_true",
122
+ default=False,
123
+ help="Whether to place T5 model on CPU.")
124
+ parser.add_argument(
125
+ "--dit_fsdp",
126
+ action="store_true",
127
+ default=False,
128
+ help="Whether to use FSDP for DiT.")
129
+ parser.add_argument(
130
+ "--save_file",
131
+ type=str,
132
+ default=None,
133
+ help="The file to save the generated image or video to.")
134
+ parser.add_argument(
135
+ "--prompt",
136
+ type=str,
137
+ default=None,
138
+ help="The prompt to generate the image or video from.")
139
+ parser.add_argument(
140
+ "--use_prompt_extend",
141
+ action="store_true",
142
+ default=False,
143
+ help="Whether to use prompt extend.")
144
+ parser.add_argument(
145
+ "--prompt_extend_method",
146
+ type=str,
147
+ default="local_qwen",
148
+ choices=["dashscope", "local_qwen"],
149
+ help="The prompt extend method to use.")
150
+ parser.add_argument(
151
+ "--prompt_extend_model",
152
+ type=str,
153
+ default=None,
154
+ help="The prompt extend model to use.")
155
+ parser.add_argument(
156
+ "--prompt_extend_target_lang",
157
+ type=str,
158
+ default="ch",
159
+ choices=["ch", "en"],
160
+ help="The target language of prompt extend.")
161
+ parser.add_argument(
162
+ "--base_seed",
163
+ type=int,
164
+ default=-1,
165
+ help="The seed to use for generating the image or video.")
166
+ parser.add_argument(
167
+ "--image",
168
+ type=str,
169
+ default=None,
170
+ help="The image to generate the video from.")
171
+ parser.add_argument(
172
+ "--sample_solver",
173
+ type=str,
174
+ default='unipc',
175
+ choices=['unipc', 'dpm++'],
176
+ help="The solver used to sample.")
177
+ parser.add_argument(
178
+ "--sample_steps", type=int, default=None, help="The sampling steps.")
179
+ parser.add_argument(
180
+ "--sample_shift",
181
+ type=float,
182
+ default=None,
183
+ help="Sampling shift factor for flow matching schedulers.")
184
+ parser.add_argument(
185
+ "--sample_guide_scale",
186
+ type=float,
187
+ default=5.0,
188
+ help="Classifier free guidance scale.")
189
+ parser.add_argument(
190
+ "--tar_guide_scale",
191
+ type=float,
192
+ default=10.0,
193
+ help="Classifier free guidance scale for target video.")
194
+ parser.add_argument(
195
+ "--source_video_path",
196
+ type=str,
197
+ default=None,
198
+ help="Path to the source video for editing.")
199
+ parser.add_argument(
200
+ "--source_prompt",
201
+ type=str,
202
+ default=None,
203
+ help="Text prompt describing the source video.")
204
+ parser.add_argument(
205
+ "--n_max",
206
+ type=int,
207
+ default=35,
208
+ help="Number of steps to start editing, controlling the editing intensity.")
209
+ parser.add_argument(
210
+ "--n_min",
211
+ type=int,
212
+ default=0,
213
+ help="Number of steps at the end of editing, using the vector from tar after completion to control the intensity of style transfer.")
214
+ parser.add_argument(
215
+ "--n_avg",
216
+ type=int,
217
+ default=5,
218
+ help="number of steps to average")
219
+ parser.add_argument(
220
+ "--worse_avg",
221
+ type=int,
222
+ default=3,
223
+ help="number of steps for worse average")
224
+ parser.add_argument(
225
+ "--omega",
226
+ type=float,
227
+ default=3,
228
+ help="omega")
229
+ parser.add_argument(
230
+ "--source_words",
231
+ type=str,
232
+ default=None,
233
+ help="Object edited in the source prompt.")
234
+ parser.add_argument(
235
+ "--target_words",
236
+ type=str,
237
+ default=None,
238
+ help="Object edited in the target prompt.")
239
+ parser.add_argument(
240
+ "--window_size",
241
+ type=int,
242
+ default=13,
243
+ help="window size")
244
+ parser.add_argument(
245
+ "--decay_factor",
246
+ type=float,
247
+ default=0.1,
248
+ help="Window decay factor")
249
+
250
+
251
+ args = parser.parse_args()
252
+
253
+ _validate_args(args)
254
+
255
+ return args
256
+
257
+
258
+ def _init_logging(rank):
259
+ # logging
260
+ if rank == 0:
261
+ # set format
262
+ logging.basicConfig(
263
+ level=logging.INFO,
264
+ format="[%(asctime)s] %(levelname)s: %(message)s",
265
+ handlers=[logging.StreamHandler(stream=sys.stdout)])
266
+ else:
267
+ logging.basicConfig(level=logging.ERROR)
268
+
269
+
270
+ def edit(args):
271
+ rank = int(os.getenv("RANK", 0))
272
+ world_size = int(os.getenv("WORLD_SIZE", 1))
273
+ local_rank = int(os.getenv("LOCAL_RANK", 0))
274
+ device = local_rank
275
+ _init_logging(rank)
276
+
277
+ if args.offload_model is None:
278
+ args.offload_model = False if world_size > 1 else True
279
+ logging.info(
280
+ f"offload_model is not specified, set to {args.offload_model}.")
281
+ if world_size > 1:
282
+ torch.cuda.set_device(local_rank)
283
+ dist.init_process_group(
284
+ backend="nccl",
285
+ init_method="env://",
286
+ rank=rank,
287
+ world_size=world_size)
288
+ else:
289
+ assert not (
290
+ args.t5_fsdp or args.dit_fsdp
291
+ ), f"t5_fsdp and dit_fsdp are not supported in non-distributed environments."
292
+ assert not (
293
+ args.ulysses_size > 1 or args.ring_size > 1
294
+ ), f"context parallel are not supported in non-distributed environments."
295
+
296
+ if args.ulysses_size > 1 or args.ring_size > 1:
297
+ assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size."
298
+ from xfuser.core.distributed import (initialize_model_parallel,
299
+ init_distributed_environment)
300
+ init_distributed_environment(
301
+ rank=dist.get_rank(), world_size=dist.get_world_size())
302
+
303
+ initialize_model_parallel(
304
+ sequence_parallel_degree=dist.get_world_size(),
305
+ ring_degree=args.ring_size,
306
+ ulysses_degree=args.ulysses_size,
307
+ )
308
+
309
+ if args.use_prompt_extend:
310
+ if args.prompt_extend_method == "dashscope":
311
+ prompt_expander = DashScopePromptExpander(
312
+ model_name=args.prompt_extend_model, is_vl="i2v" in args.task)
313
+ elif args.prompt_extend_method == "local_qwen":
314
+ prompt_expander = QwenPromptExpander(
315
+ model_name=args.prompt_extend_model,
316
+ is_vl="i2v" in args.task,
317
+ device=rank)
318
+ else:
319
+ raise NotImplementedError(
320
+ f"Unsupport prompt_extend_method: {args.prompt_extend_method}")
321
+
322
+ cfg = WAN_CONFIGS[args.task]
323
+ if args.ulysses_size > 1:
324
+ assert cfg.num_heads % args.ulysses_size == 0, f"`num_heads` must be divisible by `ulysses_size`."
325
+
326
+ logging.info(f"Generation job args: {args}")
327
+ logging.info(f"Generation model config: {cfg}")
328
+
329
+ if dist.is_initialized():
330
+ base_seed = [args.base_seed] if rank == 0 else [None]
331
+ dist.broadcast_object_list(base_seed, src=0)
332
+ args.base_seed = base_seed[0]
333
+
334
+ if "t2v" in args.task or "t2i" in args.task:
335
+ if args.prompt is None:
336
+ args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
337
+ logging.info(f"Input prompt: {args.prompt}")
338
+ if args.use_prompt_extend:
339
+ logging.info("Extending prompt ...")
340
+ if rank == 0:
341
+ prompt_output = prompt_expander(
342
+ args.prompt,
343
+ tar_lang=args.prompt_extend_target_lang,
344
+ seed=args.base_seed)
345
+ if prompt_output.status == False:
346
+ logging.info(
347
+ f"Extending prompt failed: {prompt_output.message}")
348
+ logging.info("Falling back to original prompt.")
349
+ input_prompt = args.prompt
350
+ else:
351
+ input_prompt = prompt_output.prompt
352
+ input_prompt = [input_prompt]
353
+ else:
354
+ input_prompt = [None]
355
+ if dist.is_initialized():
356
+ dist.broadcast_object_list(input_prompt, src=0)
357
+ args.prompt = input_prompt[0]
358
+ logging.info(f"Extended prompt: {args.prompt}")
359
+
360
+ logging.info("Creating WanT2V pipeline.")
361
+ wan_t2v = wan.WanT2V(
362
+ config=cfg,
363
+ checkpoint_dir=args.ckpt_dir,
364
+ device_id=device,
365
+ rank=rank,
366
+ t5_fsdp=args.t5_fsdp,
367
+ dit_fsdp=args.dit_fsdp,
368
+ # use_usp=False,
369
+ use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
370
+ t5_cpu=args.t5_cpu,
371
+ )
372
+
373
+ logging.info(
374
+ f"Generating {'image' if 't2i' in args.task else 'video'} ...")
375
+ video = wan_t2v.edit(
376
+ args.prompt,
377
+ size=SIZE_CONFIGS[args.size],
378
+ frame_num=args.frame_num,
379
+ shift=args.sample_shift,
380
+ sample_solver=args.sample_solver,
381
+ sampling_steps=args.sample_steps,
382
+ guide_scale=args.sample_guide_scale,
383
+ tar_guide_scale=args.tar_guide_scale,
384
+ seed=args.base_seed,
385
+ offload_model=args.offload_model,
386
+ source_video_path=args.source_video_path,
387
+ source_prompt=args.source_prompt,
388
+ nmax_step=args.n_max,
389
+ nmin_step=args.n_min,
390
+ n_avg=args.n_avg,
391
+ worse_avg=args.worse_avg,
392
+ omega=args.omega,
393
+ source_words=args.source_words,
394
+ target_words=args.target_words,
395
+ window_size=args.window_size,
396
+ decay_factor=args.decay_factor)
397
+
398
+ else:
399
+ if args.prompt is None:
400
+ args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
401
+ if args.image is None:
402
+ args.image = EXAMPLE_PROMPT[args.task]["image"]
403
+ logging.info(f"Input prompt: {args.prompt}")
404
+ logging.info(f"Input image: {args.image}")
405
+
406
+ img = Image.open(args.image).convert("RGB")
407
+ if args.use_prompt_extend:
408
+ logging.info("Extending prompt ...")
409
+ if rank == 0:
410
+ prompt_output = prompt_expander(
411
+ args.prompt,
412
+ tar_lang=args.prompt_extend_target_lang,
413
+ image=img,
414
+ seed=args.base_seed)
415
+ if prompt_output.status == False:
416
+ logging.info(
417
+ f"Extending prompt failed: {prompt_output.message}")
418
+ logging.info("Falling back to original prompt.")
419
+ input_prompt = args.prompt
420
+ else:
421
+ input_prompt = prompt_output.prompt
422
+ input_prompt = [input_prompt]
423
+ else:
424
+ input_prompt = [None]
425
+ if dist.is_initialized():
426
+ dist.broadcast_object_list(input_prompt, src=0)
427
+ args.prompt = input_prompt[0]
428
+ logging.info(f"Extended prompt: {args.prompt}")
429
+
430
+ logging.info("Creating WanI2V pipeline.")
431
+ wan_i2v = wan.WanI2V(
432
+ config=cfg,
433
+ checkpoint_dir=args.ckpt_dir,
434
+ device_id=device,
435
+ rank=rank,
436
+ t5_fsdp=args.t5_fsdp,
437
+ dit_fsdp=args.dit_fsdp,
438
+ use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
439
+ t5_cpu=args.t5_cpu,
440
+ )
441
+
442
+ logging.info("Generating video ...")
443
+ video = wan_i2v.edit(
444
+ args.prompt,
445
+ img,
446
+ max_area=MAX_AREA_CONFIGS[args.size],
447
+ frame_num=args.frame_num,
448
+ shift=args.sample_shift,
449
+ sample_solver=args.sample_solver,
450
+ sampling_steps=args.sample_steps,
451
+ guide_scale=args.sample_guide_scale,
452
+ seed=args.base_seed,
453
+ offload_model=args.offload_model)
454
+
455
+ if rank == 0:
456
+ if args.save_file is None:
457
+ formatted_time = datetime.now().strftime("%m%d_%H%M")
458
+ formatted_prompt = args.prompt.replace(" ", "_").replace("/",
459
+ "_")[:30]
460
+ suffix = '.png' if "t2i" in args.task else '.mp4'
461
+ args.save_file = f"videos/{formatted_time}_{args.source_words.replace(' ', '_').replace('/', '_')}_{args.target_words.replace(' ', '_').replace('/', '_')}_n{args.n_avg}_w{args.worse_avg}_omega{args.omega}_s{args.base_seed}" + suffix
462
+
463
+ if "t2i" in args.task:
464
+ logging.info(f"Saving generated image to {args.save_file}")
465
+ cache_image(
466
+ tensor=video.squeeze(1)[None],
467
+ save_file=args.save_file,
468
+ nrow=1,
469
+ normalize=True,
470
+ value_range=(-1, 1))
471
+ else:
472
+ logging.info(f"Saving generated video to {args.save_file}")
473
+ cache_video(
474
+ tensor=video[None],
475
+ save_file=args.save_file,
476
+ fps=cfg.sample_fps,
477
+ nrow=1,
478
+ normalize=True,
479
+ value_range=(-1, 1))
480
+ logging.info("Finished.")
481
+
482
+
483
+
484
+ if __name__ == "__main__":
485
+ args = _parse_args()
486
+ edit(args)
generate.py ADDED
@@ -0,0 +1,412 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ import argparse
3
+ from datetime import datetime
4
+ import logging
5
+ import os
6
+ import sys
7
+ import warnings
8
+
9
+ warnings.filterwarnings('ignore')
10
+
11
+ import torch, random
12
+ import torch.distributed as dist
13
+ from PIL import Image
14
+
15
+ import wan
16
+ from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
17
+ from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
18
+ from wan.utils.utils import cache_video, cache_image, str2bool
19
+
20
+ EXAMPLE_PROMPT = {
21
+ "t2v-1.3B": {
22
+ "prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
23
+ },
24
+ "t2v-14B": {
25
+ "prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
26
+ },
27
+ "t2i-14B": {
28
+ "prompt": "一个朴素端庄的美人",
29
+ },
30
+ "i2v-14B": {
31
+ "prompt":
32
+ "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.",
33
+ "image":
34
+ "examples/i2v_input.JPG",
35
+ },
36
+ }
37
+
38
+
39
+ def _validate_args(args):
40
+ # Basic check
41
+ assert args.ckpt_dir is not None, "Please specify the checkpoint directory."
42
+ assert args.task in WAN_CONFIGS, f"Unsupport task: {args.task}"
43
+ assert args.task in EXAMPLE_PROMPT, f"Unsupport task: {args.task}"
44
+
45
+ # The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks.
46
+ if args.sample_steps is None:
47
+ args.sample_steps = 40 if "i2v" in args.task else 50
48
+
49
+ if args.sample_shift is None:
50
+ args.sample_shift = 5.0
51
+ if "i2v" in args.task and args.size in ["832*480", "480*832"]:
52
+ args.sample_shift = 3.0
53
+
54
+ # The default number of frames are 1 for text-to-image tasks and 81 for other tasks.
55
+ if args.frame_num is None:
56
+ args.frame_num = 1 if "t2i" in args.task else 81
57
+
58
+ # T2I frame_num check
59
+ if "t2i" in args.task:
60
+ assert args.frame_num == 1, f"Unsupport frame_num {args.frame_num} for task {args.task}"
61
+
62
+ args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint(
63
+ 0, sys.maxsize)
64
+ # Size check
65
+ assert args.size in SUPPORTED_SIZES[
66
+ args.
67
+ task], f"Unsupport size {args.size} for task {args.task}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.task])}"
68
+
69
+
70
+ def _parse_args():
71
+ parser = argparse.ArgumentParser(
72
+ description="Generate a image or video from a text prompt or image using Wan"
73
+ )
74
+ parser.add_argument(
75
+ "--task",
76
+ type=str,
77
+ default="t2v-14B",
78
+ choices=list(WAN_CONFIGS.keys()),
79
+ help="The task to run.")
80
+ parser.add_argument(
81
+ "--size",
82
+ type=str,
83
+ default="1280*720",
84
+ choices=list(SIZE_CONFIGS.keys()),
85
+ help="The area (width*height) of the generated video. For the I2V task, the aspect ratio of the output video will follow that of the input image."
86
+ )
87
+ parser.add_argument(
88
+ "--frame_num",
89
+ type=int,
90
+ default=None,
91
+ help="How many frames to sample from a image or video. The number should be 4n+1"
92
+ )
93
+ parser.add_argument(
94
+ "--ckpt_dir",
95
+ type=str,
96
+ default=None,
97
+ help="The path to the checkpoint directory.")
98
+ parser.add_argument(
99
+ "--offload_model",
100
+ type=str2bool,
101
+ default=None,
102
+ help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage."
103
+ )
104
+ parser.add_argument(
105
+ "--ulysses_size",
106
+ type=int,
107
+ default=1,
108
+ help="The size of the ulysses parallelism in DiT.")
109
+ parser.add_argument(
110
+ "--ring_size",
111
+ type=int,
112
+ default=1,
113
+ help="The size of the ring attention parallelism in DiT.")
114
+ parser.add_argument(
115
+ "--t5_fsdp",
116
+ action="store_true",
117
+ default=False,
118
+ help="Whether to use FSDP for T5.")
119
+ parser.add_argument(
120
+ "--t5_cpu",
121
+ action="store_true",
122
+ default=False,
123
+ help="Whether to place T5 model on CPU.")
124
+ parser.add_argument(
125
+ "--dit_fsdp",
126
+ action="store_true",
127
+ default=False,
128
+ help="Whether to use FSDP for DiT.")
129
+ parser.add_argument(
130
+ "--save_file",
131
+ type=str,
132
+ default=None,
133
+ help="The file to save the generated image or video to.")
134
+ parser.add_argument(
135
+ "--prompt",
136
+ type=str,
137
+ default=None,
138
+ help="The prompt to generate the image or video from.")
139
+ parser.add_argument(
140
+ "--use_prompt_extend",
141
+ action="store_true",
142
+ default=False,
143
+ help="Whether to use prompt extend.")
144
+ parser.add_argument(
145
+ "--prompt_extend_method",
146
+ type=str,
147
+ default="local_qwen",
148
+ choices=["dashscope", "local_qwen"],
149
+ help="The prompt extend method to use.")
150
+ parser.add_argument(
151
+ "--prompt_extend_model",
152
+ type=str,
153
+ default=None,
154
+ help="The prompt extend model to use.")
155
+ parser.add_argument(
156
+ "--prompt_extend_target_lang",
157
+ type=str,
158
+ default="ch",
159
+ choices=["ch", "en"],
160
+ help="The target language of prompt extend.")
161
+ parser.add_argument(
162
+ "--base_seed",
163
+ type=int,
164
+ default=-1,
165
+ help="The seed to use for generating the image or video.")
166
+ parser.add_argument(
167
+ "--image",
168
+ type=str,
169
+ default=None,
170
+ help="The image to generate the video from.")
171
+ parser.add_argument(
172
+ "--sample_solver",
173
+ type=str,
174
+ default='unipc',
175
+ choices=['unipc', 'dpm++'],
176
+ help="The solver used to sample.")
177
+ parser.add_argument(
178
+ "--sample_steps", type=int, default=None, help="The sampling steps.")
179
+ parser.add_argument(
180
+ "--sample_shift",
181
+ type=float,
182
+ default=None,
183
+ help="Sampling shift factor for flow matching schedulers.")
184
+ parser.add_argument(
185
+ "--sample_guide_scale",
186
+ type=float,
187
+ default=5.0,
188
+ help="Classifier free guidance scale.")
189
+
190
+ args = parser.parse_args()
191
+
192
+ _validate_args(args)
193
+
194
+ return args
195
+
196
+
197
+ def _init_logging(rank):
198
+ # logging
199
+ if rank == 0:
200
+ # set format
201
+ logging.basicConfig(
202
+ level=logging.INFO,
203
+ format="[%(asctime)s] %(levelname)s: %(message)s",
204
+ handlers=[logging.StreamHandler(stream=sys.stdout)])
205
+ else:
206
+ logging.basicConfig(level=logging.ERROR)
207
+
208
+
209
+ def generate(args):
210
+ rank = int(os.getenv("RANK", 0))
211
+ world_size = int(os.getenv("WORLD_SIZE", 1))
212
+ local_rank = int(os.getenv("LOCAL_RANK", 0))
213
+ device = local_rank
214
+ _init_logging(rank)
215
+
216
+ if args.offload_model is None:
217
+ args.offload_model = False if world_size > 1 else True
218
+ logging.info(
219
+ f"offload_model is not specified, set to {args.offload_model}.")
220
+ if world_size > 1:
221
+ torch.cuda.set_device(local_rank)
222
+ dist.init_process_group(
223
+ backend="nccl",
224
+ init_method="env://",
225
+ rank=rank,
226
+ world_size=world_size)
227
+ else:
228
+ assert not (
229
+ args.t5_fsdp or args.dit_fsdp
230
+ ), f"t5_fsdp and dit_fsdp are not supported in non-distributed environments."
231
+ assert not (
232
+ args.ulysses_size > 1 or args.ring_size > 1
233
+ ), f"context parallel are not supported in non-distributed environments."
234
+
235
+ if args.ulysses_size > 1 or args.ring_size > 1:
236
+ assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size."
237
+ from xfuser.core.distributed import (initialize_model_parallel,
238
+ init_distributed_environment)
239
+ init_distributed_environment(
240
+ rank=dist.get_rank(), world_size=dist.get_world_size())
241
+
242
+ initialize_model_parallel(
243
+ sequence_parallel_degree=dist.get_world_size(),
244
+ ring_degree=args.ring_size,
245
+ ulysses_degree=args.ulysses_size,
246
+ )
247
+
248
+ if args.use_prompt_extend:
249
+ if args.prompt_extend_method == "dashscope":
250
+ prompt_expander = DashScopePromptExpander(
251
+ model_name=args.prompt_extend_model, is_vl="i2v" in args.task)
252
+ elif args.prompt_extend_method == "local_qwen":
253
+ prompt_expander = QwenPromptExpander(
254
+ model_name=args.prompt_extend_model,
255
+ is_vl="i2v" in args.task,
256
+ device=rank)
257
+ else:
258
+ raise NotImplementedError(
259
+ f"Unsupport prompt_extend_method: {args.prompt_extend_method}")
260
+
261
+ cfg = WAN_CONFIGS[args.task]
262
+ if args.ulysses_size > 1:
263
+ assert cfg.num_heads % args.ulysses_size == 0, f"`num_heads` must be divisible by `ulysses_size`."
264
+
265
+ logging.info(f"Generation job args: {args}")
266
+ logging.info(f"Generation model config: {cfg}")
267
+
268
+ if dist.is_initialized():
269
+ base_seed = [args.base_seed] if rank == 0 else [None]
270
+ dist.broadcast_object_list(base_seed, src=0)
271
+ args.base_seed = base_seed[0]
272
+
273
+ if "t2v" in args.task or "t2i" in args.task:
274
+ if args.prompt is None:
275
+ args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
276
+ logging.info(f"Input prompt: {args.prompt}")
277
+ if args.use_prompt_extend:
278
+ logging.info("Extending prompt ...")
279
+ if rank == 0:
280
+ prompt_output = prompt_expander(
281
+ args.prompt,
282
+ tar_lang=args.prompt_extend_target_lang,
283
+ seed=args.base_seed)
284
+ if prompt_output.status == False:
285
+ logging.info(
286
+ f"Extending prompt failed: {prompt_output.message}")
287
+ logging.info("Falling back to original prompt.")
288
+ input_prompt = args.prompt
289
+ else:
290
+ input_prompt = prompt_output.prompt
291
+ input_prompt = [input_prompt]
292
+ else:
293
+ input_prompt = [None]
294
+ if dist.is_initialized():
295
+ dist.broadcast_object_list(input_prompt, src=0)
296
+ args.prompt = input_prompt[0]
297
+ logging.info(f"Extended prompt: {args.prompt}")
298
+
299
+ logging.info("Creating WanT2V pipeline.")
300
+ wan_t2v = wan.WanT2V(
301
+ config=cfg,
302
+ checkpoint_dir=args.ckpt_dir,
303
+ device_id=device,
304
+ rank=rank,
305
+ t5_fsdp=args.t5_fsdp,
306
+ dit_fsdp=args.dit_fsdp,
307
+ use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
308
+ t5_cpu=args.t5_cpu,
309
+ )
310
+
311
+ logging.info(
312
+ f"Generating {'image' if 't2i' in args.task else 'video'} ...")
313
+ video = wan_t2v.generate(
314
+ args.prompt,
315
+ size=SIZE_CONFIGS[args.size],
316
+ frame_num=args.frame_num,
317
+ shift=args.sample_shift,
318
+ sample_solver=args.sample_solver,
319
+ sampling_steps=args.sample_steps,
320
+ guide_scale=args.sample_guide_scale,
321
+ seed=args.base_seed,
322
+ offload_model=args.offload_model)
323
+
324
+ else:
325
+ if args.prompt is None:
326
+ args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
327
+ if args.image is None:
328
+ args.image = EXAMPLE_PROMPT[args.task]["image"]
329
+ logging.info(f"Input prompt: {args.prompt}")
330
+ logging.info(f"Input image: {args.image}")
331
+
332
+ img = Image.open(args.image).convert("RGB")
333
+ if args.use_prompt_extend:
334
+ logging.info("Extending prompt ...")
335
+ if rank == 0:
336
+ prompt_output = prompt_expander(
337
+ args.prompt,
338
+ tar_lang=args.prompt_extend_target_lang,
339
+ image=img,
340
+ seed=args.base_seed)
341
+ if prompt_output.status == False:
342
+ logging.info(
343
+ f"Extending prompt failed: {prompt_output.message}")
344
+ logging.info("Falling back to original prompt.")
345
+ input_prompt = args.prompt
346
+ else:
347
+ input_prompt = prompt_output.prompt
348
+ input_prompt = [input_prompt]
349
+ else:
350
+ input_prompt = [None]
351
+ if dist.is_initialized():
352
+ dist.broadcast_object_list(input_prompt, src=0)
353
+ args.prompt = input_prompt[0]
354
+ logging.info(f"Extended prompt: {args.prompt}")
355
+
356
+ logging.info("Creating WanI2V pipeline.")
357
+ wan_i2v = wan.WanI2V(
358
+ config=cfg,
359
+ checkpoint_dir=args.ckpt_dir,
360
+ device_id=device,
361
+ rank=rank,
362
+ t5_fsdp=args.t5_fsdp,
363
+ dit_fsdp=args.dit_fsdp,
364
+ use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
365
+ t5_cpu=args.t5_cpu,
366
+ )
367
+
368
+ logging.info("Generating video ...")
369
+ video = wan_i2v.generate(
370
+ args.prompt,
371
+ img,
372
+ max_area=MAX_AREA_CONFIGS[args.size],
373
+ frame_num=args.frame_num,
374
+ shift=args.sample_shift,
375
+ sample_solver=args.sample_solver,
376
+ sampling_steps=args.sample_steps,
377
+ guide_scale=args.sample_guide_scale,
378
+ seed=args.base_seed,
379
+ offload_model=args.offload_model)
380
+
381
+ if rank == 0:
382
+ if args.save_file is None:
383
+ formatted_time = datetime.now().strftime("%Y%m%d_%H%M%S")
384
+ formatted_prompt = args.prompt.replace(" ", "_").replace("/",
385
+ "_")[:50]
386
+ suffix = '.png' if "t2i" in args.task else '.mp4'
387
+ args.save_file = f"videos/{args.task}_{args.size}_{args.ulysses_size}_{args.ring_size}_{formatted_prompt}_{formatted_time}" + suffix
388
+
389
+ if "t2i" in args.task:
390
+ logging.info(f"Saving generated image to {args.save_file}")
391
+ cache_image(
392
+ tensor=video.squeeze(1)[None],
393
+ save_file=args.save_file,
394
+ nrow=1,
395
+ normalize=True,
396
+ value_range=(-1, 1))
397
+ else:
398
+ logging.info(f"Saving generated video to {args.save_file}")
399
+ cache_video(
400
+ tensor=video[None],
401
+ save_file=args.save_file,
402
+ fps=cfg.sample_fps,
403
+ nrow=1,
404
+ normalize=True,
405
+ value_range=(-1, 1))
406
+ logging.info("Finished.")
407
+
408
+
409
+
410
+ if __name__ == "__main__":
411
+ args = _parse_args()
412
+ generate(args)
requirements.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torch>=2.4.0
2
+ torchvision>=0.19.0
3
+ opencv-python>=4.9.0.80
4
+ diffusers>=0.31.0
5
+ transformers>=4.49.0
6
+ tokenizers>=0.20.3
7
+ accelerate>=1.1.1
8
+ tqdm
9
+ imageio
10
+ easydict
11
+ ftfy
12
+ dashscope
13
+ imageio-ffmpeg
14
+ # flash_attn
15
+ gradio>=5.0.0
16
+ kornia
17
+ scikit-image==0.25.2
18
+ scipy==1.15.2
19
+ xfuser==0.4.3.post3
video_list/bear_g.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ac72d17e79d3d4bbe047725f1c8ed86de7cc09d2d19dc6b80158f77967c9d12
3
+ size 677684
video_list/blackswan.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d79222bae7552dff46dc9cccd4117595a4e2d419c3129383649b37b76116f512
3
+ size 718245
video_list/cat_box.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:081c4604f94766e1f984e0748d842470e5bf547e174bfe0dd9e6f7b2bb521e28
3
+ size 473103
video_list/cockatiel.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfd0bbe2cb8785addde99965d33e23c03e7795426120decd419c87968a2e2248
3
+ size 739609
video_list/dog_flower_g.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a89adfe04aba2fdda8ba9dc701edc97936c6840893424af1c780ae21854ee60
3
+ size 264406
video_list/girl_and_dog.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a9fdd6c2621e82a52236703b60211fe6b5d9bf26aba256742bae795aa37f65c
3
+ size 560330
video_list/gym_woman.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95f324cd4cc528600a88a76c2d176fa2efbb825d9c67166a61d3d27e8ff9bdf1
3
+ size 326086
video_list/jeep.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba0a4604c475c4b9e9ed0af4e2c087186c73b5f7ec32757c6ae1fa13c3023cd5
3
+ size 605012
video_list/puppy.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:640841865905d8185583f77ea687544ca98861d8a84b30088de4dfa0d170b6aa
3
+ size 160233
video_list/rabbit.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b537200243ef47033a3ca1b69aa2eac988eb547f330dbc319d9acc493db56fe9
3
+ size 212112
video_list/sea_lion.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac0786d7565882956c8000b470c38837144d0211ed380e2b4169040778da016c
3
+ size 695222
video_list/sea_turtle.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0759b3562748c13d4fdf92d3f596de9b3f8786a7d7431c09ad3f8df24ca0d2d
3
+ size 917310
video_list/wolf.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90879c594eb4ca1133144f07a96138396c49dcb0732c37a7816c657c3f451cae
3
+ size 382231
video_list/woman.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80e8f0bdbab6aa26b510f5a90be3f6e689901d8837e2e69cd4163bba0e8de72e
3
+ size 949087
wan/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from . import configs, distributed, modules
2
+ from .image2video import WanI2V
3
+ from .text2video import WanT2V
wan/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (276 Bytes). View file
 
wan/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (288 Bytes). View file
 
wan/__pycache__/image2video.cpython-310.pyc ADDED
Binary file (9.73 kB). View file
 
wan/__pycache__/image2video.cpython-312.pyc ADDED
Binary file (16.7 kB). View file
 
wan/__pycache__/text2video.cpython-310.pyc ADDED
Binary file (25 kB). View file
 
wan/__pycache__/text2video.cpython-312.pyc ADDED
Binary file (76.5 kB). View file
 
wan/configs/__init__.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ import copy
3
+ import os
4
+
5
+ os.environ['TOKENIZERS_PARALLELISM'] = 'false'
6
+
7
+ from .wan_i2v_14B import i2v_14B
8
+ from .wan_t2v_1_3B import t2v_1_3B
9
+ from .wan_t2v_14B import t2v_14B
10
+
11
+ # the config of t2i_14B is the same as t2v_14B
12
+ t2i_14B = copy.deepcopy(t2v_14B)
13
+ t2i_14B.__name__ = 'Config: Wan T2I 14B'
14
+
15
+ WAN_CONFIGS = {
16
+ 't2v-14B': t2v_14B,
17
+ 't2v-1.3B': t2v_1_3B,
18
+ 'i2v-14B': i2v_14B,
19
+ 't2i-14B': t2i_14B,
20
+ }
21
+
22
+ SIZE_CONFIGS = {
23
+ '720*1280': (720, 1280),
24
+ '1280*720': (1280, 720),
25
+ '480*832': (480, 832),
26
+ '832*480': (832, 480),
27
+ '1024*1024': (1024, 1024),
28
+ }
29
+
30
+ MAX_AREA_CONFIGS = {
31
+ '720*1280': 720 * 1280,
32
+ '1280*720': 1280 * 720,
33
+ '480*832': 480 * 832,
34
+ '832*480': 832 * 480,
35
+ }
36
+
37
+ SUPPORTED_SIZES = {
38
+ 't2v-14B': ('720*1280', '1280*720', '480*832', '832*480'),
39
+ 't2v-1.3B': ('480*832', '832*480'),
40
+ 'i2v-14B': ('720*1280', '1280*720', '480*832', '832*480'),
41
+ 't2i-14B': tuple(SIZE_CONFIGS.keys()),
42
+ }
wan/configs/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (794 Bytes). View file
 
wan/configs/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (986 Bytes). View file
 
wan/configs/__pycache__/shared_config.cpython-310.pyc ADDED
Binary file (814 Bytes). View file
 
wan/configs/__pycache__/shared_config.cpython-312.pyc ADDED
Binary file (988 Bytes). View file
 
wan/configs/__pycache__/wan_i2v_14B.cpython-310.pyc ADDED
Binary file (938 Bytes). View file
 
wan/configs/__pycache__/wan_i2v_14B.cpython-312.pyc ADDED
Binary file (1.28 kB). View file
 
wan/configs/__pycache__/wan_t2v_14B.cpython-310.pyc ADDED
Binary file (718 Bytes). View file
 
wan/configs/__pycache__/wan_t2v_14B.cpython-312.pyc ADDED
Binary file (977 Bytes). View file
 
wan/configs/__pycache__/wan_t2v_1_3B.cpython-310.pyc ADDED
Binary file (726 Bytes). View file
 
wan/configs/__pycache__/wan_t2v_1_3B.cpython-312.pyc ADDED
Binary file (987 Bytes). View file
 
wan/configs/shared_config.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ import torch
3
+ from easydict import EasyDict
4
+
5
+ #------------------------ Wan shared config ------------------------#
6
+ wan_shared_cfg = EasyDict()
7
+
8
+ # t5
9
+ wan_shared_cfg.t5_model = 'umt5_xxl'
10
+ wan_shared_cfg.t5_dtype = torch.bfloat16
11
+ wan_shared_cfg.text_len = 512
12
+
13
+ # transformer
14
+ wan_shared_cfg.param_dtype = torch.bfloat16
15
+
16
+ # inference
17
+ wan_shared_cfg.num_train_timesteps = 1000
18
+ wan_shared_cfg.sample_fps = 16
19
+ wan_shared_cfg.sample_neg_prompt = '色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走'
wan/configs/wan_i2v_14B.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ import torch
3
+ from easydict import EasyDict
4
+
5
+ from .shared_config import wan_shared_cfg
6
+
7
+ #------------------------ Wan I2V 14B ------------------------#
8
+
9
+ i2v_14B = EasyDict(__name__='Config: Wan I2V 14B')
10
+ i2v_14B.update(wan_shared_cfg)
11
+
12
+ i2v_14B.t5_checkpoint = 'models_t5_umt5-xxl-enc-bf16.pth'
13
+ i2v_14B.t5_tokenizer = 'google/umt5-xxl'
14
+
15
+ # clip
16
+ i2v_14B.clip_model = 'clip_xlm_roberta_vit_h_14'
17
+ i2v_14B.clip_dtype = torch.float16
18
+ i2v_14B.clip_checkpoint = 'models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth'
19
+ i2v_14B.clip_tokenizer = 'xlm-roberta-large'
20
+
21
+ # vae
22
+ i2v_14B.vae_checkpoint = 'Wan2.1_VAE.pth'
23
+ i2v_14B.vae_stride = (4, 8, 8)
24
+
25
+ # transformer
26
+ i2v_14B.patch_size = (1, 2, 2)
27
+ i2v_14B.dim = 5120
28
+ i2v_14B.ffn_dim = 13824
29
+ i2v_14B.freq_dim = 256
30
+ i2v_14B.num_heads = 40
31
+ i2v_14B.num_layers = 40
32
+ i2v_14B.window_size = (-1, -1)
33
+ i2v_14B.qk_norm = True
34
+ i2v_14B.cross_attn_norm = True
35
+ i2v_14B.eps = 1e-6
wan/configs/wan_t2v_14B.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ from easydict import EasyDict
3
+
4
+ from .shared_config import wan_shared_cfg
5
+
6
+ #------------------------ Wan T2V 14B ------------------------#
7
+
8
+ t2v_14B = EasyDict(__name__='Config: Wan T2V 14B')
9
+ t2v_14B.update(wan_shared_cfg)
10
+
11
+ # t5
12
+ t2v_14B.t5_checkpoint = 'models_t5_umt5-xxl-enc-bf16.pth'
13
+ t2v_14B.t5_tokenizer = 'google/umt5-xxl'
14
+
15
+ # vae
16
+ t2v_14B.vae_checkpoint = 'Wan2.1_VAE.pth'
17
+ t2v_14B.vae_stride = (4, 8, 8)
18
+
19
+ # transformer
20
+ t2v_14B.patch_size = (1, 2, 2)
21
+ t2v_14B.dim = 5120
22
+ t2v_14B.ffn_dim = 13824
23
+ t2v_14B.freq_dim = 256
24
+ t2v_14B.num_heads = 40
25
+ t2v_14B.num_layers = 40
26
+ t2v_14B.window_size = (-1, -1)
27
+ t2v_14B.qk_norm = True
28
+ t2v_14B.cross_attn_norm = True
29
+ t2v_14B.eps = 1e-6
wan/configs/wan_t2v_1_3B.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ from easydict import EasyDict
3
+
4
+ from .shared_config import wan_shared_cfg
5
+
6
+ #------------------------ Wan T2V 1.3B ------------------------#
7
+
8
+ t2v_1_3B = EasyDict(__name__='Config: Wan T2V 1.3B')
9
+ t2v_1_3B.update(wan_shared_cfg)
10
+
11
+ # t5
12
+ t2v_1_3B.t5_checkpoint = 'models_t5_umt5-xxl-enc-bf16.pth'
13
+ t2v_1_3B.t5_tokenizer = 'google/umt5-xxl'
14
+
15
+ # vae
16
+ t2v_1_3B.vae_checkpoint = 'Wan2.1_VAE.pth'
17
+ t2v_1_3B.vae_stride = (4, 8, 8)
18
+
19
+ # transformer
20
+ t2v_1_3B.patch_size = (1, 2, 2)
21
+ t2v_1_3B.dim = 1536
22
+ t2v_1_3B.ffn_dim = 8960
23
+ t2v_1_3B.freq_dim = 256
24
+ t2v_1_3B.num_heads = 12
25
+ t2v_1_3B.num_layers = 30
26
+ t2v_1_3B.window_size = (-1, -1)
27
+ t2v_1_3B.qk_norm = True
28
+ t2v_1_3B.cross_attn_norm = True
29
+ t2v_1_3B.eps = 1e-6
wan/distributed/__init__.py ADDED
File without changes
wan/distributed/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (133 Bytes). View file
 
wan/distributed/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (137 Bytes). View file
 
wan/distributed/__pycache__/fsdp.cpython-310.pyc ADDED
Binary file (1 kB). View file
 
wan/distributed/__pycache__/fsdp.cpython-312.pyc ADDED
Binary file (1.24 kB). View file
 
wan/distributed/__pycache__/xdit_context_parallel.cpython-310.pyc ADDED
Binary file (5.29 kB). View file
 
wan/distributed/__pycache__/xdit_context_parallel.cpython-312.pyc ADDED
Binary file (27.2 kB). View file
 
wan/distributed/fsdp.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ from functools import partial
3
+
4
+ import torch
5
+ from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
6
+ from torch.distributed.fsdp import MixedPrecision, ShardingStrategy
7
+ from torch.distributed.fsdp.wrap import lambda_auto_wrap_policy
8
+
9
+
10
+ def shard_model(
11
+ model,
12
+ device_id,
13
+ param_dtype=torch.bfloat16,
14
+ reduce_dtype=torch.float32,
15
+ buffer_dtype=torch.float32,
16
+ process_group=None,
17
+ sharding_strategy=ShardingStrategy.FULL_SHARD,
18
+ sync_module_states=True,
19
+ ):
20
+ model = FSDP(
21
+ module=model,
22
+ process_group=process_group,
23
+ sharding_strategy=sharding_strategy,
24
+ auto_wrap_policy=partial(
25
+ lambda_auto_wrap_policy, lambda_fn=lambda m: m in model.blocks),
26
+ mixed_precision=MixedPrecision(
27
+ param_dtype=param_dtype,
28
+ reduce_dtype=reduce_dtype,
29
+ buffer_dtype=buffer_dtype),
30
+ device_id=device_id,
31
+ sync_module_states=sync_module_states)
32
+ return model
wan/distributed/xdit_context_parallel.py ADDED
@@ -0,0 +1,420 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ from time import time
3
+ import torch
4
+ import torch.cuda.amp as amp
5
+ from xfuser.core.distributed import (get_sequence_parallel_rank,
6
+ get_sequence_parallel_world_size,
7
+ get_sp_group)
8
+ from xfuser.core.long_ctx_attention import xFuserLongContextAttention
9
+
10
+ from ..modules.model import sinusoidal_embedding_1d
11
+ from typing import List, Union, Optional, Tuple
12
+ import torch.nn.functional as F
13
+ import torch
14
+
15
+
16
+ def pad_freqs(original_tensor, target_len):
17
+ seq_len, s1, s2 = original_tensor.shape
18
+ pad_size = target_len - seq_len
19
+ padding_tensor = torch.ones(
20
+ pad_size,
21
+ s1,
22
+ s2,
23
+ dtype=original_tensor.dtype,
24
+ device=original_tensor.device)
25
+ padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0)
26
+ return padded_tensor
27
+
28
+
29
+ @amp.autocast(enabled=False)
30
+ def rope_apply(x, grid_sizes, freqs):
31
+ """
32
+ x: [B, L, N, C].
33
+ grid_sizes: [B, 3].
34
+ freqs: [M, C // 2].
35
+ """
36
+ s, n, c = x.size(1), x.size(2), x.size(3) // 2
37
+ # split freqs
38
+ freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
39
+
40
+ # loop over samples
41
+ output = []
42
+ for i, (f, h, w) in enumerate(grid_sizes.tolist()):
43
+ seq_len = f * h * w
44
+
45
+ # precompute multipliers
46
+ x_i = torch.view_as_complex(x[i, :s].to(torch.float64).reshape(
47
+ s, n, -1, 2))
48
+ freqs_i = torch.cat([
49
+ freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
50
+ freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
51
+ freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
52
+ ],
53
+ dim=-1).reshape(seq_len, 1, -1)
54
+
55
+ # apply rotary embedding
56
+ sp_size = get_sequence_parallel_world_size()
57
+ sp_rank = get_sequence_parallel_rank()
58
+ freqs_i = pad_freqs(freqs_i, s * sp_size)
59
+ s_per_rank = s
60
+ freqs_i_rank = freqs_i[(sp_rank * s_per_rank):((sp_rank + 1) *
61
+ s_per_rank), :, :]
62
+ x_i = torch.view_as_real(x_i * freqs_i_rank).flatten(2)
63
+ x_i = torch.cat([x_i, x[i, s:]])
64
+
65
+ # append to collection
66
+ output.append(x_i)
67
+ return torch.stack(output).float()
68
+
69
+
70
+ @torch.no_grad() # Usually don't need gradients for mask generation
71
+ def generate_attention_mask(
72
+ attention_map: torch.Tensor,
73
+ grid_sizes: torch.Tensor,
74
+ target_x_shape: Tuple[int, int, int, int], # Target shape: (C, T, H, W)
75
+ batch_index: int = 0,
76
+ target_word_indices: Union[List[int], slice] = None,
77
+ head_index: Optional[int] = None, # Process single head or average
78
+ word_aggregation_method: str = 'mean', # How to combine scores for multiple words
79
+ upsample_mode_spatial: str = 'nearest', # 'nearest', 'bilinear'
80
+ upsample_mode_temporal: str = 'nearest', # 'nearest', 'linear'
81
+ output_dtype: torch.dtype = torch.float32 # or torch.bool for soft mask before threshold
82
+ ) -> torch.Tensor:
83
+ """
84
+ Generates a binary mask from an attention map based on attention towards target words.
85
+
86
+ The mask identifies regions in the video (x) that attend strongly to the specified
87
+ context words, exceeding a given threshold. The mask has the same dimensions as x.
88
+
89
+ Args:
90
+ attention_map (torch.Tensor): Attention weights [B, Head_num, Lx, Lctx].
91
+ Lx = flattened video tokens (patches),
92
+ Lctx = context tokens (words).
93
+ target_word_indices (Union[List[int], slice]): Indices or slice for the target
94
+ word(s) in the Lctx dimension.
95
+ grid_sizes (torch.Tensor): Patch grid dimensions [B, 3] -> (F, H_patch, W_patch)
96
+ for each batch item, corresponding to Lx.
97
+ F, H_patch, W_patch should be integers.
98
+ target_x_shape (Tuple[int, int, int, int]): The desired output shape [C, T, H, W],
99
+ matching the original video tensor x.
100
+ threshold (float): Value between 0 and 1. Attention scores >= threshold become 1 (True),
101
+ otherwise 0 (False).
102
+ batch_index (int, optional): Batch item to process. Defaults to 0.
103
+ head_index (Optional[int], optional): Specific head to use. If None, average
104
+ attention across all heads. Defaults to None.
105
+ word_aggregation_method (str, optional): How to aggregate scores if multiple
106
+ target_word_indices are given ('mean',
107
+ 'sum', 'max'). Defaults to 'mean'.
108
+ upsample_mode_spatial (str, optional): PyTorch interpolate mode for H, W dimensions.
109
+ Defaults to 'nearest'.
110
+ upsample_mode_temporal (str, optional): PyTorch interpolate mode for T dimension.
111
+ Defaults to 'nearest'.
112
+ output_dtype (torch.dtype, optional): Data type of the output mask.
113
+ Defaults to torch.bool.
114
+
115
+ Returns:
116
+ torch.Tensor: A binary mask tensor of shape target_x_shape [C, T, H, W].
117
+
118
+ Raises:
119
+ TypeError: If inputs are not torch.Tensors.
120
+ ValueError: If tensor dimensions or indices are invalid, or if
121
+ aggregation/upsample modes are unknown.
122
+ IndexError: If batch_index or head_index are out of bounds.
123
+ """
124
+ # --- Input Validation ---
125
+ if not isinstance(attention_map, torch.Tensor):
126
+ raise TypeError("attention_map must be a torch.Tensor")
127
+ if not isinstance(grid_sizes, torch.Tensor):
128
+ raise TypeError("grid_sizes must be a torch.Tensor")
129
+ if attention_map.dim() != 4:
130
+ raise ValueError(f"attention_map must be [B, H, Lx, Lctx], got {attention_map.dim()} dims")
131
+ if grid_sizes.dim() != 2 or grid_sizes.shape[1] != 3:
132
+ raise ValueError(f"grid_sizes must be [B, 3], got {grid_sizes.shape}")
133
+ if len(target_x_shape) != 4:
134
+ raise ValueError(f"target_x_shape must be [C, T, H, W], got length {len(target_x_shape)}")
135
+
136
+ B, H, Lx, Lctx = attention_map.shape
137
+ C_out, T_out, H_out, W_out = target_x_shape
138
+
139
+ if not 0 <= batch_index < B:
140
+ raise IndexError(f"batch_index {batch_index} out of range for batch size {B}")
141
+ if head_index is not None and not 0 <= head_index < H:
142
+ raise IndexError(f"head_index {head_index} out of range for head count {H}")
143
+ if word_aggregation_method not in ['mean', 'sum', 'max']:
144
+ raise ValueError(f"Unknown word_aggregation_method: {word_aggregation_method}")
145
+ if upsample_mode_spatial not in ['nearest', 'bilinear']:
146
+ raise ValueError(f"Unknown upsample_mode_spatial: {upsample_mode_spatial}")
147
+ if upsample_mode_temporal not in ['nearest', 'linear']:
148
+ raise ValueError(f"Unknown upsample_mode_temporal: {upsample_mode_temporal}")
149
+
150
+
151
+ # --- Select Head(s) ---
152
+ if head_index is None:
153
+ # Average across heads. Shape -> [Lx, Lctx]
154
+ attn_map_processed = attention_map[batch_index].mean(dim=0)
155
+ else:
156
+ # Select specific head. Shape -> [Lx, Lctx]
157
+ attn_map_processed = attention_map[batch_index, head_index]
158
+
159
+ # --- Select and Aggregate Word Attention ---
160
+ # Ensure target_word_indices are valid before slicing
161
+ if isinstance(target_word_indices, slice):
162
+ _slice_indices = range(*target_word_indices.indices(Lctx))
163
+ if not _slice_indices: # Empty slice
164
+ num_words = 0
165
+ elif _slice_indices.start >= Lctx or _slice_indices.stop < -Lctx : # Basic out of bounds check
166
+ num_words = len(_slice_indices) # Proceed cautiously or add stricter check
167
+ else:
168
+ num_words = len(_slice_indices)
169
+ word_indices_str = f"slice({_slice_indices.start}:{_slice_indices.stop}:{_slice_indices.step})"
170
+ word_attn_scores = attn_map_processed[:, target_word_indices] # Shape -> [Lx, num_words]
171
+ elif isinstance(target_word_indices, list):
172
+ # Check indices are within bounds
173
+ valid_indices = [idx for idx in target_word_indices if -Lctx <= idx < Lctx]
174
+ if not valid_indices:
175
+ num_words = 0
176
+ word_attn_scores = torch.empty((Lx, 0), device=attention_map.device, dtype=attention_map.dtype) # Handle empty case
177
+ else:
178
+ word_attn_scores = attn_map_processed[:, valid_indices] # Shape -> [Lx, num_words]
179
+ num_words = len(valid_indices)
180
+ word_indices_str = str(valid_indices) # Report used indices
181
+ else:
182
+ raise TypeError(f"target_word_indices must be list or slice, got {type(target_word_indices)}")
183
+
184
+ if num_words > 1:
185
+ if word_aggregation_method == 'mean':
186
+ aggregated_scores = word_attn_scores.mean(dim=-1)
187
+ elif word_aggregation_method == 'sum':
188
+ aggregated_scores = word_attn_scores.sum(dim=-1)
189
+ elif word_aggregation_method == 'max':
190
+ aggregated_scores = word_attn_scores.max(dim=-1).values
191
+ # aggregated_scores shape -> [Lx]
192
+ elif num_words == 1:
193
+ aggregated_scores = word_attn_scores.squeeze(-1) # Shape -> [Lx]
194
+ else: # No valid words selected
195
+ return torch.zeros(target_x_shape, dtype=output_dtype, device=attention_map.device)
196
+
197
+ # --- Reshape to Video Patch Grid ---
198
+ # Ensure grid sizes are integers
199
+ f_patch, h_patch, w_patch = map(int, grid_sizes[batch_index].tolist())
200
+ actual_num_tokens = f_patch * h_patch * w_patch
201
+
202
+ if actual_num_tokens == 0:
203
+ return torch.zeros(target_x_shape, dtype=output_dtype, device=attention_map.device)
204
+
205
+ # Handle mismatch between expected tokens (from grid) and actual attention length (Lx)
206
+ if actual_num_tokens > Lx:
207
+ # Pad aggregated_scores to actual_num_tokens size
208
+ padding_size = actual_num_tokens - aggregated_scores.numel()
209
+ scores_padded = F.pad(aggregated_scores, (0, padding_size), "constant", 0)
210
+ scores_unpadded = scores_padded # Use the padded version for reshaping
211
+ # This scenario is less common than Lx > actual_num_tokens
212
+ elif actual_num_tokens < Lx:
213
+ scores_unpadded = aggregated_scores[:actual_num_tokens]
214
+ else:
215
+ scores_unpadded = aggregated_scores # Shape [actual_num_tokens]
216
+
217
+ try:
218
+ # Reshape to [F_patch, H_patch, W_patch]
219
+ attention_patch_grid = scores_unpadded.reshape(f_patch, h_patch, w_patch)
220
+ except RuntimeError as e:
221
+ raise e
222
+
223
+ # --- Upsample to Original Video Resolution ---
224
+ # Add batch and channel dims for interpolation: [1, 1, F_patch, H_patch, W_patch]
225
+ # Note: Assuming attention is channel-agnostic here.
226
+ grid_for_upsample = attention_patch_grid.unsqueeze(0).unsqueeze(0).float() # Interpolate needs float
227
+
228
+
229
+ # --- SIMPLIFIED LOGIC: Always use 3D interpolation ---
230
+ target_size_3d = (T_out, H_out, W_out)
231
+
232
+ # Determine the 3D interpolation mode.
233
+ # Default to 'nearest' unless temporal dimension changes AND 'linear' is requested.
234
+ if upsample_mode_temporal == 'linear' and f_patch != T_out:
235
+ upsample_mode_3d = 'trilinear'
236
+ align_corners_3d = False # align_corners usually False for non-nearest modes
237
+ else:
238
+ # Use 'nearest' if T isn't changing, or if temporal mode is 'nearest'.
239
+ # 'nearest' is generally safer and handles spatial modes implicitly.
240
+ upsample_mode_3d = 'nearest'
241
+ align_corners_3d = None # align_corners=None for nearest
242
+
243
+ upsampled_scores_grid = F.interpolate(grid_for_upsample,
244
+ size=target_size_3d,
245
+ mode=upsample_mode_3d,
246
+ align_corners=align_corners_3d)
247
+ # Expected shape: [1, 1, T_out, H_out, W_out] == [1, 1, 21, 60, 104]
248
+
249
+ # --- END SIMPLIFIED LOGIC ---
250
+
251
+ # Remove batch and channel dims: [T_out, H_out, W_out]
252
+ upsampled_scores = upsampled_scores_grid.squeeze(0).squeeze(0)
253
+
254
+ # --- Thresholding ---
255
+ binary_mask_thw = (upsampled_scores / torch.max(upsampled_scores)) # Shape [T_out, H_out, W_out]
256
+
257
+ # --- Expand Channel Dimension ---
258
+ # Repeat the mask across the channel dimension C_out
259
+ # Input shape: [T_out, H_out, W_out]
260
+ # After unsqueeze(0): [1, T_out, H_out, W_out]
261
+ # Target shape: [C_out, T_out, H_out, W_out]
262
+ # This expand operation is valid as explained above.
263
+ final_mask = binary_mask_thw.unsqueeze(0).expand(C_out, T_out, H_out, W_out)
264
+
265
+ return final_mask.to(dtype=output_dtype)
266
+
267
+
268
+ def usp_dit_forward(
269
+ self,
270
+ x,
271
+ t,
272
+ context,
273
+ seq_len,
274
+ clip_fea=None,
275
+ y=None,
276
+ words_indices=None,
277
+ block_id=-1,
278
+ type=None,
279
+ timestep=None
280
+ ):
281
+ """
282
+ x: A list of videos each with shape [C, T, H, W].
283
+ t: [B].
284
+ context: A list of text embeddings each with shape [L, C].
285
+ """
286
+ if self.model_type == 'i2v':
287
+ assert clip_fea is not None and y is not None
288
+ # params
289
+ device = self.patch_embedding.weight.device
290
+ if self.freqs.device != device:
291
+ self.freqs = self.freqs.to(device)
292
+
293
+ if y is not None:
294
+ x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
295
+
296
+ # embeddings
297
+ x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
298
+ grid_sizes = torch.stack(
299
+ [torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
300
+
301
+ x = [u.flatten(2).transpose(1, 2) for u in x]
302
+ seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
303
+ assert seq_lens.max() <= seq_len
304
+ x = torch.cat([
305
+ torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1)
306
+ for u in x
307
+ ])
308
+
309
+ # time embeddings
310
+ with amp.autocast(dtype=torch.float32):
311
+ e = self.time_embedding(
312
+ sinusoidal_embedding_1d(self.freq_dim, t).float())
313
+ e0 = self.time_projection(e).unflatten(1, (6, self.dim))
314
+ assert e.dtype == torch.float32 and e0.dtype == torch.float32
315
+
316
+ # context
317
+ context_lens = None
318
+ context = self.text_embedding(
319
+ torch.stack([
320
+ torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
321
+ for u in context
322
+ ]))
323
+
324
+ if clip_fea is not None:
325
+ context_clip = self.img_emb(clip_fea) # bs x 257 x dim
326
+ context = torch.concat([context_clip, context], dim=1)
327
+
328
+ # arguments
329
+ kwargs = dict(
330
+ e=e0,
331
+ seq_lens=seq_lens,
332
+ grid_sizes=grid_sizes,
333
+ freqs=self.freqs,
334
+ context=context,
335
+ context_lens=context_lens,
336
+ collect_attn_map=False)
337
+
338
+ # Context Parallel
339
+ x = torch.chunk(
340
+ x, get_sequence_parallel_world_size(),
341
+ dim=1)[get_sequence_parallel_rank()]
342
+
343
+ save_block_id = block_id
344
+ attn_map = None
345
+ binary_mask = None
346
+ for i, block in enumerate(self.blocks):
347
+ kwargs["collect_attn_map"] = False
348
+ if i == save_block_id:
349
+ kwargs["collect_attn_map"] = True
350
+ x, attn_map = block(x, **kwargs)
351
+ else:
352
+ x = block(x, **kwargs)
353
+
354
+ # head
355
+ x = self.head(x, e)
356
+ # Context Parallel
357
+ x = get_sp_group().all_gather(x, dim=1)
358
+
359
+ # unpatchify
360
+ x = self.unpatchify(x, grid_sizes)
361
+
362
+ if save_block_id != -1 and words_indices is not None:
363
+ attention_map = get_sp_group().all_gather(attn_map, dim=2)
364
+ binary_mask = generate_attention_mask(
365
+ attention_map=attention_map, # [1, 12, 32760, 512] batchsize, head_num, l_x, l_context
366
+ target_word_indices=words_indices,
367
+ grid_sizes=grid_sizes, # Make sure grid_sizes covers the full batch
368
+ target_x_shape=x[0].shape, # channel, frames, h, W
369
+ batch_index=0, # Process the first item in the batch
370
+ head_index=None, # Average over heads
371
+ word_aggregation_method='mean'
372
+ )
373
+
374
+ return [u.float() for u in x], binary_mask
375
+
376
+
377
+
378
+ def usp_attn_forward(self,
379
+ x,
380
+ seq_lens,
381
+ grid_sizes,
382
+ freqs,
383
+ dtype=torch.bfloat16):
384
+ b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
385
+ half_dtypes = (torch.float16, torch.bfloat16)
386
+
387
+ def half(x):
388
+ return x if x.dtype in half_dtypes else x.to(dtype)
389
+
390
+ # query, key, value function
391
+ def qkv_fn(x):
392
+ q = self.norm_q(self.q(x)).view(b, s, n, d)
393
+ k = self.norm_k(self.k(x)).view(b, s, n, d)
394
+ v = self.v(x).view(b, s, n, d)
395
+ return q, k, v
396
+ q, k, v = qkv_fn(x)
397
+ q = rope_apply(q, grid_sizes, freqs)
398
+ k = rope_apply(k, grid_sizes, freqs)
399
+
400
+ # TODO: We should use unpaded q,k,v for attention.
401
+ # k_lens = seq_lens // get_sequence_parallel_world_size()
402
+ # if k_lens is not None:
403
+ # q = torch.cat([u[:l] for u, l in zip(q, k_lens)]).unsqueeze(0)
404
+ # k = torch.cat([u[:l] for u, l in zip(k, k_lens)]).unsqueeze(0)
405
+ # v = torch.cat([u[:l] for u, l in zip(v, k_lens)]).unsqueeze(0)
406
+
407
+ x = xFuserLongContextAttention()(
408
+ None,
409
+ query=half(q),
410
+ key=half(k),
411
+ value=half(v),
412
+ window_size=self.window_size)
413
+
414
+ # TODO: padding after attention.
415
+ # x = torch.cat([x, x.new_zeros(b, s - x.size(1), n, d)], dim=1)
416
+
417
+ # output
418
+ x = x.flatten(2)
419
+ x = self.o(x)
420
+ return x