Spaces:
Running
Running
File size: 14,875 Bytes
ceaa691 42e73f2 ceaa691 42e73f2 ceaa691 42e73f2 ceaa691 ff09f64 42e73f2 ceaa691 42e73f2 ceaa691 42e73f2 ceaa691 42e73f2 47c5ad7 42e73f2 ceaa691 42e73f2 ceaa691 42e73f2 ceaa691 42e73f2 47c5ad7 42e73f2 47c5ad7 42e73f2 47c5ad7 42e73f2 47c5ad7 42e73f2 ceaa691 42e73f2 ceaa691 42e73f2 ceaa691 42e73f2 ceaa691 42e73f2 ceaa691 42e73f2 ceaa691 42e73f2 ceaa691 42e73f2 ceaa691 42e73f2 ceaa691 42e73f2 ceaa691 f6f145e 42e73f2 ceaa691 47c5ad7 42e73f2 b2ae2a5 42e73f2 47c5ad7 42e73f2 47c5ad7 42e73f2 ceaa691 42e73f2 ceaa691 42e73f2 ceaa691 42e73f2 ceaa691 42e73f2 04342e7 f795335 ceaa691 10400ea 47c5ad7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
#!/usr/bin/env python3
import os
import json
import logging
import re
from typing import Dict, Any
from pathlib import Path
from unstructured.partition.pdf import partition_pdf
from flask import Flask, request, jsonify
from flask_cors import CORS
from dotenv import load_dotenv
from bloatectomy import bloatectomy
from werkzeug.utils import secure_filename
from langchain_groq import ChatGroq
from typing_extensions import TypedDict, NotRequired
#
# --- Logging ---
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
logger = logging.getLogger("patient-assistant")
# --- Load environment ---
load_dotenv()
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
if not GROQ_API_KEY:
logger.error("GROQ_API_KEY not set in environment")
exit(1)
# --- Flask app setup ---
BASE_DIR = Path(__file__).resolve().parent
REPORTS_ROOT = Path(os.getenv("REPORTS_ROOT", str(BASE_DIR / "reports")))
static_folder = BASE_DIR / "static"
app = Flask(__name__, static_folder=str(static_folder), static_url_path="/static")
CORS(app)
# Ensure the reports directory exists
os.makedirs(REPORTS_ROOT, exist_ok=True)
# --- LLM setup ---
llm = ChatGroq(
model=os.getenv("LLM_MODEL", "meta-llama/llama-4-scout-17b-16e-instruct"),
temperature=0.0,
max_tokens=1024,
api_key=GROQ_API_KEY,
)
def clean_notes_with_bloatectomy(text: str, style: str = "remov") -> str:
"""Helper function to clean up text using the bloatectomy library."""
try:
b = bloatectomy(text, style=style, output="html")
tokens = getattr(b, "tokens", None)
if not tokens:
return text
return "\n".join(tokens)
except Exception:
logger.exception("Bloatectomy cleaning failed; returning original text")
return text
# --- Agent prompt instructions ---
PATIENT_ASSISTANT_PROMPT = """
You are a patient assistant helping to analyze medical records and reports. Your primary task is to get the patient ID (PID) from the user at the start of the conversation.
Once you have the PID, you will be provided with a summary of the patient's medical reports. Use this information, along with the conversation history, to provide a comprehensive response.
Your tasks include:
- **First, ask for the patient ID.** Do not proceed with any other task until you have the PID.
- Analyzing medical records and reports to detect anomalies, redundant tests, or misleading treatments.
- Suggesting preventive care based on the overall patient health history.
- Optimizing healthcare costs by comparing past visits and treatments.
- Offering personalized lifestyle recommendations.
- Generating a natural, helpful reply to the user.
STRICT OUTPUT FORMAT (JSON ONLY):
Return a single JSON object with the following keys:
- assistant_reply: string // a natural language reply to the user (short, helpful, always present)
- patientDetails: object // keys may include name, problem, pid (patient ID), city, contact (update if user shared info)
- conversationSummary: string (optional) // short summary of conversation + relevant patient docs
Rules:
- ALWAYS include `assistant_reply` as a non-empty string.
- Do NOT produce any text outside the JSON object.
- Be concise in `assistant_reply`. If you need more details, ask a targeted follow-up question.
- Do not make up information that is not present in the provided medical reports or conversation history.
"""
# --- JSON extraction helper ---
def extract_json_from_llm_response(raw_response: str) -> dict:
"""Safely extracts a JSON object from a string that might contain extra text or markdown."""
default = {
"assistant_reply": "I'm sorry — I couldn't understand that. Could you please rephrase?",
"patientDetails": {},
"conversationSummary": "",
}
if not raw_response or not isinstance(raw_response, str):
return default
# Find the JSON object, ignoring any markdown code fences
m = re.search(r"```(?:json)?\s*([\s\S]*?)\s*```", raw_response)
json_string = m.group(1).strip() if m else raw_response
# Find the first opening brace and the last closing brace
first = json_string.find('{')
last = json_string.rfind('}')
if first == -1 or last == -1 or first >= last:
try:
return json.loads(json_string)
except Exception:
logger.warning("Could not locate JSON braces in LLM output. Falling back to default.")
return default
candidate = json_string[first:last+1]
# Remove trailing commas that might cause parsing issues
candidate = re.sub(r',\s*(?=[}\]])', '', candidate)
try:
parsed = json.loads(candidate)
except Exception as e:
logger.warning("Failed to parse JSON from LLM output: %s", e)
return default
# Basic validation of the parsed JSON
if isinstance(parsed, dict) and "assistant_reply" in parsed and isinstance(parsed["assistant_reply"], str) and parsed["assistant_reply"].strip():
parsed.setdefault("patientDetails", {})
parsed.setdefault("conversationSummary", "")
return parsed
else:
logger.warning("Parsed JSON missing 'assistant_reply' or invalid format. Returning default.")
return default
# --- Flask routes ---
@app.route("/", methods=["GET"])
def serve_frontend():
"""Serves the frontend HTML file."""
try:
return app.send_static_file("frontend.html")
except Exception:
return "<h3>frontend2.html not found in static/ — please add your frontend2.html there.</h3>", 404
@app.route("/upload_report", methods=["POST"])
def upload_report():
"""Handles the upload of a new PDF report for a specific patient."""
if 'report' not in request.files:
return jsonify({"error": "No file part in the request"}), 400
file = request.files['report']
patient_id = request.form.get("patient_id")
if file.filename == '' or not patient_id:
return jsonify({"error": "No selected file or patient ID"}), 400
if file:
filename = secure_filename(file.filename)
patient_folder = REPORTS_ROOT / f"p_{patient_id}"
os.makedirs(patient_folder, exist_ok=True)
file_path = patient_folder / filename
file.save(file_path)
return jsonify({"message": f"File '{filename}' uploaded successfully for patient ID '{patient_id}'."}), 200
@app.route("/chat", methods=["POST"])
def chat():
"""Handles the chat conversation with the assistant."""
data = request.get_json(force=True)
if not isinstance(data, dict):
return jsonify({"error": "invalid request body"}), 400
chat_history = data.get("chat_history") or []
patient_state = data.get("patient_state") or {}
patient_id = patient_state.get("patientDetails", {}).get("pid")
# --- Prepare the state for the LLM ---
state = patient_state.copy()
state["lastUserMessage"] = ""
if chat_history:
# Find the last user message
for msg in reversed(chat_history):
if msg.get("role") == "user" and msg.get("content"):
state["lastUserMessage"] = msg["content"]
break
combined_text_parts = []
# If a PID is not yet known, prompt the agent to ask for it.
if not patient_id:
# A simple prompt to get the agent to ask for the PID.
user_prompt = "Hello. I need to get the patient's ID to proceed."
# Check if the user's last message contains a possible number for the PID
last_message = state.get("lastUserMessage", "")
# A very basic check to see if the user provided a number
if re.search(r'\d+', last_message):
inferred_pid = re.search(r'(\d+)', last_message).group(1)
state["patientDetails"] = {"pid": inferred_pid}
patient_id = inferred_pid
# Now that we have a PID, let the agent know to process the reports.
user_prompt = f"The user provided a patient ID: {inferred_pid}. Please access their reports and respond."
else:
# If no PID is found, the agent should ask for it.
user_prompt = "The patient has not provided a patient ID. Please ask them to provide it to proceed."
# If a PID is known, load the patient reports.
if patient_id:
patient_folder = REPORTS_ROOT / f"p_{patient_id}"
if patient_folder.exists() and patient_folder.is_dir():
for fname in sorted(os.listdir(patient_folder)):
file_path = patient_folder / fname
page_text = ""
if partition_pdf is not None and str(file_path).lower().endswith('.pdf'):
try:
elements = partition_pdf(filename=str(file_path))
page_text = "\n".join([el.text for el in elements if hasattr(el, 'text') and el.text])
except Exception:
logger.exception("Failed to parse PDF %s", file_path)
else:
try:
page_text = file_path.read_text(encoding='utf-8', errors='ignore')
except Exception:
page_text = ""
if page_text:
cleaned = clean_notes_with_bloatectomy(page_text, style="remov")
if cleaned:
combined_text_parts.append(cleaned)
# Update the conversation summary with the parsed documents
base_summary = state.get("conversationSummary", "") or ""
docs_summary = "\n\n".join(combined_text_parts)
if docs_summary:
state["conversationSummary"] = (base_summary + "\n\n" + docs_summary).strip()
else:
state["conversationSummary"] = base_summary
# --- Direct LLM Invocation ---
user_prompt = f"""
Current patientDetails: {json.dumps(state.get("patientDetails", {}))}
Current conversationSummary: {state.get("conversationSummary", "")}
Last user message: {state.get("lastUserMessage", "")}
Return ONLY valid JSON with keys: assistant_reply, patientDetails, conversationSummary.
"""
messages = [
{"role": "system", "content": PATIENT_ASSISTANT_PROMPT},
{"role": "user", "content": user_prompt}
]
try:
logger.info("Invoking LLM with prepared state and prompt...")
llm_response = llm.invoke(messages)
raw_response = ""
if hasattr(llm_response, "content"):
raw_response = llm_response.content
else:
raw_response = str(llm_response)
logger.info(f"Raw LLM response: {raw_response}")
parsed_result = extract_json_from_llm_response(raw_response)
except Exception as e:
logger.exception("LLM invocation failed")
return jsonify({"error": "LLM invocation failed", "detail": str(e)}), 500
updated_state = parsed_result or {}
assistant_reply = updated_state.get("assistant_reply")
if not assistant_reply or not isinstance(assistant_reply, str) or not assistant_reply.strip():
# Fallback to a polite message if the LLM response is invalid or empty
assistant_reply = "I'm here to help — could you tell me more about your symptoms?"
response_payload = {
"assistant_reply": assistant_reply,
"updated_state": updated_state,
}
return jsonify(response_payload)
@app.route("/upload_reports", methods=["POST"])
def upload_reports():
"""
Upload one or more files for a patient.
Expects multipart/form-data with:
- patient_id (form field)
- files (one or multiple files; use the same field name 'files' for each file)
Example curl:
curl -X POST http://localhost:7860/upload_reports \
-F "patient_id=12345" \
-F "files[]=@/path/to/report1.pdf" \
-F "files[]=@/path/to/report2.pdf"
"""
try:
# patient id can be in form or args (for convenience)
patient_id = request.form.get("patient_id") or request.args.get("patient_id")
if not patient_id:
return jsonify({"error": "patient_id form field required"}), 400
# get uploaded files (support both files and files[] naming)
uploaded_files = request.files.getlist("files")
if not uploaded_files:
# fallback: single file under name 'file'
single = request.files.get("file")
if single:
uploaded_files = [single]
if not uploaded_files:
return jsonify({"error": "no files uploaded (use form field 'files')"}), 400
# create patient folder under REPORTS_ROOT/<patient_id>
patient_folder = REPORTS_ROOT / str(patient_id)
patient_folder.mkdir(parents=True, exist_ok=True)
saved = []
skipped = []
for file_storage in uploaded_files:
orig_name = getattr(file_storage, "filename", "") or ""
filename = secure_filename(orig_name)
if not filename:
skipped.append({"filename": orig_name, "reason": "invalid filename"})
continue
# extension check
ext = filename.rsplit(".", 1)[1].lower() if "." in filename else ""
if ext not in ALLOWED_EXTENSIONS:
skipped.append({"filename": filename, "reason": f"extension '{ext}' not allowed"})
continue
# avoid overwriting: if collision, add numeric suffix
dest = patient_folder / filename
if dest.exists():
base, dot, extension = filename.rpartition(".")
# if no base (e.g. ".bashrc") fallback
base = base or filename
i = 1
while True:
candidate = f"{base}__{i}.{extension}" if extension else f"{base}__{i}"
dest = patient_folder / candidate
if not dest.exists():
filename = candidate
break
i += 1
try:
file_storage.save(str(dest))
saved.append(filename)
except Exception as e:
logger.exception("Failed to save uploaded file %s: %s", filename, e)
skipped.append({"filename": filename, "reason": f"save failed: {e}"})
return jsonify({
"patient_id": str(patient_id),
"saved": saved,
"skipped": skipped,
"patient_folder": str(patient_folder)
}), 200
except Exception as exc:
logger.exception("Upload failed: %s", exc)
return jsonify({"error": "upload failed", "detail": str(exc)}), 500
@app.route("/ping", methods=["GET"])
def ping():
return jsonify({"status": "ok"})
if __name__ == "__main__":
port = int(os.getenv("PORT", 7860))
app.run(host="0.0.0.0", port=port, debug=True) |