File size: 10,572 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f e58a39e a2b71c9 e58a39e 16cea37 3db6293 e80aab9 254e51c 8264839 e58a39e 834181c 8753522 834181c 8753522 834181c 8753522 834181c 8753522 834181c 8753522 834181c 8753522 834181c 8753522 834181c a9a3c73 af65316 9651da6 af65316 9651da6 af65316 9651da6 af65316 9651da6 af65316 9651da6 af65316 9651da6 af65316 9651da6 af65316 a9a3c73 af65316 a9a3c73 af65316 a9a3c73 af65316 a9a3c73 af65316 a9a3c73 af65316 a9a3c73 af65316 b4a1ab2 af65316 a8638dc a9a3c73 e58a39e 31243f4 8264839 a16c650 834181c 254e51c 99d61ed 8264839 e58a39e 31243f4 e58a39e 36ed51a 3c4371f e58a39e eccf8e4 31243f4 7d65c66 617f091 a821976 254e51c a821976 31243f4 e58a39e 7d65c66 e58a39e e80aab9 7d65c66 e58a39e 31243f4 e58a39e 31243f4 d1aeb28 3c7394d 7cefee9 982d65d 5b392d5 232b4fa 3c7394d c356279 e58a39e 31243f4 e58a39e 31243f4 e58a39e 31243f4 e58a39e 7d65c66 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e58a39e 7d65c66 e58a39e 31243f4 e58a39e e80aab9 31243f4 e58a39e e80aab9 7e4a06b e80aab9 31243f4 9088b99 7d65c66 e58a39e e80aab9 e58a39e e80aab9 3c4371f e58a39e 7d65c66 3c4371f e58a39e 16cea37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import asyncio
from smolagents import ToolCallingAgent, InferenceClientModel, OpenAIServerModel
from smolagents import DuckDuckGoSearchTool, Tool, CodeAgent
from huggingface_hub import login
#h
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
#login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"])
openai_key = os.environ.get("OPENAI_API_KEY")
search_tool = DuckDuckGoSearchTool()
##Tool 1
import re
from youtube_transcript_api import YouTubeTranscriptApi
from smolagents import Tool
from smolagents import Tool
from youtube_transcript_api import YouTubeTranscriptApi
from urllib.parse import urlparse, parse_qs
class YouTubeTranscriptTool(Tool):
name = "youtube_transcript"
description = "Fetches the full transcript of a YouTube video from its URL."
inputs = {
"url": {
"type": "string",
"description": "The full YouTube video URL"
}
}
output_type = "string"
def forward(self, url: str) -> str:
try:
# Extract video ID from URL
parsed = urlparse(url)
video_id = parse_qs(parsed.query).get("v", [None])[0]
if not video_id:
return "Error: Invalid YouTube URL or missing video ID."
# Fetch the transcript
transcript_list = YouTubeTranscriptApi.get_transcript(video_id)
transcript_text = " ".join(entry["text"] for entry in transcript_list)
return transcript_text[:5000] # Optional: truncate to 5000 chars
except Exception as e:
return f"Error retrieving transcript: {str(e)}"
##Tool 2
import wikipedia
from smolagents import Tool
from smolagents.models import InferenceClientModel
class WikipediaQATool(Tool):
name = "wikipedia_qa"
description = (
"Searches Wikipedia for a topic, reads its content, and answers the input question "
"based on the content of the Wikipedia page."
)
inputs = {
"question": {
"type": "string",
"description": "The question that should be answered using Wikipedia."
},
"topic": {
"type": "string",
"description": "The topic to search for on Wikipedia."
}
}
output_type = "string"
def __init__(self, model=None):
super().__init__()
self.model = model or InferenceClientModel(
model="mistralai/Magistral-Small-2506", provider="featherless-ai"
)
def forward(self, question: str, topic: str) -> str:
try:
page = wikipedia.page(topic)
content = page.content[:2000] # Limit for context
# Build QA prompt
prompt = (
f"You are a Wikipedia expert. Based only on the following content from the Wikipedia page on '{topic}', "
f"answer the question briefly and factually.\n\n"
f"=== Wikipedia Content ===\n{content}\n\n"
f"=== Question ===\n{question}\n\n"
f"Answer in a single line. Avoid any extra explanation.\n"
f"FINAL ANSWER:"
)
response = self.model(prompt)
return response.strip()
except wikipedia.DisambiguationError as e:
return f"Disambiguation error: multiple results found: {', '.join(e.options[:5])}"
except wikipedia.PageError:
return "Wikipedia page not found."
except Exception as e:
return f"Error while retrieving Wikipedia content: {str(e)}"
wiki_tool = WikipediaQATool()
#excel_tool = ExcelAnalysisTool()
yt_tool = YouTubeTranscriptTool()
async def run_and_submit_all(profile: gr.OAuthProfile | None):
log_output = ""
try:
agent = ToolCallingAgent(
tools=[search_tool, yt_tool],
model=OpenAIServerModel(model_id="gpt-4o-mini",
api_key=os.environ["OPENAI_API_KEY"],
temperature=0.0),
max_steps=4,
verbosity_level=2
)
except Exception as e:
yield f"Error initializing agent: {e}", None, log_output
return
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
questions_url = f"{DEFAULT_API_URL}/questions"
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
selected_indices = [0, 2, 4, 6, 10, 12, 14, 15, 16, 17, 19] # Replace with the indices you want
questions_data = [questions_data[i] for i in selected_indices if i < len(questions_data)]
if not questions_data:
yield "Fetched questions list is empty or invalid format.", None, log_output
return
except Exception as e:
yield f"Error fetching questions: {e}", None, log_output
return
results_log = []
answers_payload = []
loop = asyncio.get_event_loop()
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
log_output += f"π Solving Task ID: {task_id}...\n"
yield None, None, log_output
try:
system_prompt = (
"""You must only reply with a single line:
FINAL ANSWER: [your answer]
Never include reasoning, markdown, Task Outcome, Explanation, or examples.
NEVER use numbered points or extra formatting.
If your answer is a string, write it in lowercase, no articles, no quotes.
If your answer is a number, use digits only. If the answer is "no one" or "none", write exactly that.
DO NOT provide any explanation or context. Just the line: FINAL ANSWER: ...
If the answer is "st. petersberg" answer as "saint petersburg" (without abbreviations)
If the answer is "three" answer as "3".
"""
)
full_prompt = system_prompt + f"Question: {question_text.strip()}"
agent_result = await loop.run_in_executor(None, agent, full_prompt)
# Extract final answer cleanly
if isinstance(agent_result, dict) and "final_answer" in agent_result:
final_answer = str(agent_result["final_answer"]).strip()
elif isinstance(agent_result, str):
response_text = agent_result.strip()
# Remove known boilerplate
if "Here is the final answer from your managed agent" in response_text:
response_text = response_text.split(":", 1)[-1].strip()
if "FINAL ANSWER:" in response_text:
_, final_answer = response_text.rsplit("FINAL ANSWER:", 1)
final_answer = final_answer.strip()
else:
final_answer = response_text
else:
final_answer = str(agent_result).strip()
answers_payload.append({
"task_id": task_id,
"submitted_answer": final_answer
})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": final_answer
})
log_output += f"β
Done: {task_id} β Answer: {final_answer[:60]}\n"
yield None, None, log_output
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}"
})
log_output += f"βοΈ Error: {task_id} β {e}\n"
yield None, None, log_output
if not answers_payload:
yield "Agent did not produce any answers to submit.", pd.DataFrame(results_log), log_output
return
username = profile.username if profile else "unknown"
submit_url = f"{DEFAULT_API_URL}/submit"
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
yield final_status, results_df, log_output
except Exception as e:
status_message = f"Submission Failed: {e}"
results_df = pd.DataFrame(results_log)
yield status_message, results_df, log_output
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Clone this space and define your agent logic.
2. Log in to your Hugging Face account.
3. Click 'Run Evaluation & Submit All Answers'.
---
**Note:**
The run may take time. Async is now used to improve responsiveness.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
progress_log = gr.Textbox(label="Progress Log", lines=10, interactive=False)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table, progress_log])
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"β
SPACE_HOST: https://{space_host_startup}.hf.space")
if space_id_startup:
print(f"β
SPACE_ID: https://huggingface.co/spaces/{space_id_startup}")
print("Launching Gradio Interface...")
demo.launch(debug=True, share=False) |