Sonu313131 commited on
Commit
e58a39e
Β·
verified Β·
1 Parent(s): 5ad7d1d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +111 -136
app.py CHANGED
@@ -3,101 +3,121 @@ import gradio as gr
3
  import requests
4
  import inspect
5
  import pandas as pd
6
-
7
- # (Keep Constants as is)
8
- # --- Constants ---
 
 
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
- def __init__(self):
15
- print("BasicAgent initialized.")
16
- def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
- """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
- and displays the results.
26
- """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
-
30
- if profile:
31
- username= f"{profile.username}"
32
- print(f"User logged in: {username}")
33
- else:
34
- print("User not logged in.")
35
- return "Please Login to Hugging Face with the button.", None
36
-
37
- api_url = DEFAULT_API_URL
38
- questions_url = f"{api_url}/questions"
39
- submit_url = f"{api_url}/submit"
40
-
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
  try:
43
- agent = BasicAgent()
 
 
 
 
 
44
  except Exception as e:
45
- print(f"Error instantiating agent: {e}")
46
- return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
 
48
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
 
51
- # 2. Fetch Questions
52
- print(f"Fetching questions from: {questions_url}")
53
  try:
54
  response = requests.get(questions_url, timeout=15)
55
  response.raise_for_status()
56
- questions_data = response.json()
57
  if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
- print(f"Fetched {len(questions_data)} questions.")
61
- except requests.exceptions.RequestException as e:
62
- print(f"Error fetching questions: {e}")
63
- return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
  except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
 
72
- # 3. Run your Agent
73
  results_log = []
74
  answers_payload = []
75
- print(f"Running agent on {len(questions_data)} questions...")
 
76
  for item in questions_data:
77
  task_id = item.get("task_id")
78
  question_text = item.get("question")
79
  if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
  continue
 
 
 
 
82
  try:
83
- submitted_answer = agent(question_text)
84
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
  except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
 
 
 
 
 
 
89
 
90
  if not answers_payload:
91
- print("Agent did not produce any answers to submit.")
92
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
 
94
- # 4. Prepare Submission
 
95
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
98
-
99
- # 5. Submit
100
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
  try:
102
  response = requests.post(submit_url, json=submission_data, timeout=60)
103
  response.raise_for_status()
@@ -109,88 +129,43 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
109
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
  f"Message: {result_data.get('message', 'No message received.')}"
111
  )
112
- print("Submission successful.")
113
- results_df = pd.DataFrame(results_log)
114
- return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
- try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
- except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
  results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
  except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
- print(status_message)
139
  results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
 
142
-
143
- # --- Build Gradio Interface using Blocks ---
144
  with gr.Blocks() as demo:
145
  gr.Markdown("# Basic Agent Evaluation Runner")
146
- gr.Markdown(
147
- """
148
- **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
- ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
- """
159
- )
160
 
161
  gr.LoginButton()
162
 
163
  run_button = gr.Button("Run Evaluation & Submit All Answers")
164
-
165
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
 
168
 
169
- run_button.click(
170
- fn=run_and_submit_all,
171
- outputs=[status_output, results_table]
172
- )
173
 
174
  if __name__ == "__main__":
175
  print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
  space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
 
180
  if space_host_startup:
181
- print(f"βœ… SPACE_HOST found: {space_host_startup}")
182
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
- else:
184
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
-
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
- print(f"βœ… SPACE_ID found: {space_id_startup}")
188
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
- else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
-
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
-
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
3
  import requests
4
  import inspect
5
  import pandas as pd
6
+ import asyncio
7
+ from smolagents import ToolCallingAgent, InferenceClientModel, HfApiModel
8
+ from smolagents import DuckDuckGoSearchTool, Tool, CodeAgent
9
+ from huggingface_hub import login
10
+ #h
11
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
12
 
13
+ login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"])
14
+
15
+ search_tool = DuckDuckGoSearchTool()
16
+
17
+ async def run_and_submit_all(profile: gr.OAuthProfile | None):
18
+ log_output = ""
19
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  try:
21
+ agent = CodeAgent(
22
+ tools=[search_tool],
23
+ model=HfApiModel(model="MiniMaxAI/MiniMax-M1-80k"),
24
+ max_steps=5,
25
+ verbosity_level=2
26
+ )
27
  except Exception as e:
28
+ yield f"Error initializing agent: {e}", None, log_output
29
+ return
30
+
31
+ space_id = os.getenv("SPACE_ID")
32
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
 
33
 
34
+ questions_url = f"{DEFAULT_API_URL}/questions"
 
35
  try:
36
  response = requests.get(questions_url, timeout=15)
37
  response.raise_for_status()
38
+ questions_data = response.json()[:5]
39
  if not questions_data:
40
+ yield "Fetched questions list is empty or invalid format.", None, log_output
41
+ return
 
 
 
 
 
 
 
 
42
  except Exception as e:
43
+ yield f"Error fetching questions: {e}", None, log_output
44
+ return
45
 
 
46
  results_log = []
47
  answers_payload = []
48
+ loop = asyncio.get_event_loop()
49
+
50
  for item in questions_data:
51
  task_id = item.get("task_id")
52
  question_text = item.get("question")
53
  if not task_id or question_text is None:
 
54
  continue
55
+
56
+ log_output += f"πŸ” Solving Task ID: {task_id}...\n"
57
+ yield None, None, log_output
58
+
59
  try:
60
+ system_prompt = (
61
+ "You are a general AI assistant. I will ask you a question. "
62
+ "Report your thoughts, and finish your answer with the following template: "
63
+ "FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. "
64
+ "If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. "
65
+ "If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. "
66
+ "If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.\n\n"
67
+ )
68
+ full_prompt = system_prompt + f"Question: {question_text.strip()}"
69
+
70
+ agent_result = await loop.run_in_executor(None, agent, full_prompt)
71
+
72
+ # Extract final answer cleanly
73
+ if isinstance(agent_result, dict) and "final_answer" in agent_result:
74
+ final_answer = str(agent_result["final_answer"]).strip()
75
+ elif isinstance(agent_result, str):
76
+ response_text = agent_result.strip()
77
+
78
+ # Remove known boilerplate
79
+ if "Here is the final answer from your managed agent" in response_text:
80
+ response_text = response_text.split(":", 1)[-1].strip()
81
+
82
+ if "FINAL ANSWER:" in response_text:
83
+ _, final_answer = response_text.rsplit("FINAL ANSWER:", 1)
84
+ final_answer = final_answer.strip()
85
+ else:
86
+ final_answer = response_text
87
+ else:
88
+ final_answer = str(agent_result).strip()
89
+
90
+ answers_payload.append({
91
+ "task_id": task_id,
92
+ "submitted_answer": final_answer
93
+ })
94
+
95
+ results_log.append({
96
+ "Task ID": task_id,
97
+ "Question": question_text,
98
+ "Submitted Answer": final_answer
99
+ })
100
+
101
+ log_output += f"βœ… Done: {task_id} β€” Answer: {final_answer[:60]}\n"
102
+ yield None, None, log_output
103
+
104
  except Exception as e:
105
+ print(f"Error running agent on task {task_id}: {e}")
106
+ results_log.append({
107
+ "Task ID": task_id,
108
+ "Question": question_text,
109
+ "Submitted Answer": f"AGENT ERROR: {e}"
110
+ })
111
+ log_output += f"⛔️ Error: {task_id} β€” {e}\n"
112
+ yield None, None, log_output
113
 
114
  if not answers_payload:
115
+ yield "Agent did not produce any answers to submit.", pd.DataFrame(results_log), log_output
116
+ return
117
 
118
+ username = profile.username if profile else "unknown"
119
+ submit_url = f"{DEFAULT_API_URL}/submit"
120
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
 
 
 
 
 
121
  try:
122
  response = requests.post(submit_url, json=submission_data, timeout=60)
123
  response.raise_for_status()
 
129
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
130
  f"Message: {result_data.get('message', 'No message received.')}"
131
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
  results_df = pd.DataFrame(results_log)
133
+ yield final_status, results_df, log_output
134
  except Exception as e:
135
+ status_message = f"Submission Failed: {e}"
 
136
  results_df = pd.DataFrame(results_log)
137
+ yield status_message, results_df, log_output
138
 
 
 
139
  with gr.Blocks() as demo:
140
  gr.Markdown("# Basic Agent Evaluation Runner")
141
+ gr.Markdown("""
142
+ **Instructions:**
143
+ 1. Clone this space and define your agent logic.
144
+ 2. Log in to your Hugging Face account.
145
+ 3. Click 'Run Evaluation & Submit All Answers'.
146
+ ---
147
+ **Note:**
148
+ The run may take time. Async is now used to improve responsiveness.
149
+ """)
 
 
 
 
 
150
 
151
  gr.LoginButton()
152
 
153
  run_button = gr.Button("Run Evaluation & Submit All Answers")
 
154
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
155
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
156
+ progress_log = gr.Textbox(label="Progress Log", lines=10, interactive=False)
157
 
158
+ run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table, progress_log])
 
 
 
159
 
160
  if __name__ == "__main__":
161
  print("\n" + "-"*30 + " App Starting " + "-"*30)
 
162
  space_host_startup = os.getenv("SPACE_HOST")
163
+ space_id_startup = os.getenv("SPACE_ID")
164
 
165
  if space_host_startup:
166
+ print(f"βœ… SPACE_HOST: https://{space_host_startup}.hf.space")
167
+ if space_id_startup:
168
+ print(f"βœ… SPACE_ID: https://huggingface.co/spaces/{space_id_startup}")
169
+
170
+ print("Launching Gradio Interface...")
171
+ demo.launch(debug=True, share=False)