Update app.py
Browse files
app.py
CHANGED
@@ -16,46 +16,42 @@ openai_key = os.environ.get("OPENAI_API_KEY")
|
|
16 |
search_tool = DuckDuckGoSearchTool()
|
17 |
|
18 |
##Tool 2
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
self.description = (
|
23 |
-
"Loads an Excel file from the GAIA dataset on Hugging Face and calculates "
|
24 |
-
"the total sales for items labeled as 'food', excluding drinks. "
|
25 |
-
"Provide input as a string with the filename, e.g., 'sales_data.xlsx'."
|
26 |
-
)
|
27 |
-
self.repo_id = "gaia-benchmark/GAIA"
|
28 |
-
|
29 |
-
def __call__(self, filename: str) -> str:
|
30 |
-
"""
|
31 |
-
Loads and processes the Excel file.
|
32 |
-
|
33 |
-
Args:
|
34 |
-
filename (str): The name of the Excel file (e.g., 'sales_data.xlsx').
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
try:
|
40 |
-
# Download the file from Hugging Face Hub
|
41 |
file_path = hf_hub_download(
|
42 |
repo_id=self.repo_id,
|
43 |
filename=filename,
|
44 |
repo_type="dataset"
|
45 |
)
|
46 |
-
|
47 |
-
# Load the Excel file into a DataFrame
|
48 |
df = pd.read_excel(file_path)
|
49 |
-
|
50 |
-
# Filter rows: category == 'food' and item != 'drinks'
|
51 |
food_sales = df[
|
52 |
(df['category'].str.lower() == 'food') &
|
53 |
(df['item'].str.lower() != 'drinks')
|
54 |
]
|
55 |
-
|
56 |
total_sales = food_sales['sales'].sum()
|
57 |
return f"Total sales for food items: ${total_sales:.2f}"
|
58 |
-
|
59 |
except FileNotFoundError:
|
60 |
return "Error: The specified file was not found."
|
61 |
except KeyError as e:
|
@@ -64,48 +60,57 @@ class ExcelAnalysisTool:
|
|
64 |
return f"An unexpected error occurred: {str(e)}"
|
65 |
|
66 |
##Tool 3
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
def fetch_summary(self, topic: str) -> str:
|
78 |
try:
|
79 |
-
|
80 |
-
return summary
|
81 |
except wikipedia.DisambiguationError as e:
|
82 |
-
return f"Disambiguation
|
83 |
except wikipedia.PageError:
|
84 |
-
return
|
85 |
except Exception as e:
|
86 |
-
return f"
|
87 |
|
88 |
-
def is_historical_country(self,
|
89 |
try:
|
90 |
-
summary = wikipedia.summary(
|
91 |
keywords = [
|
92 |
"former country", "no longer exists", "historical country",
|
93 |
"was a country", "defunct", "dissolved", "existed until",
|
94 |
"disestablished", "merged into"
|
95 |
]
|
96 |
-
return any(
|
97 |
-
except
|
98 |
-
return
|
99 |
-
|
100 |
-
def __call__(self, args: dict):
|
101 |
-
action = args.get("action")
|
102 |
-
|
103 |
-
if action == "summary":
|
104 |
-
return self.fetch_summary(args.get("topic", ""))
|
105 |
-
elif action == "is_historical_country":
|
106 |
-
return self.is_historical_country(args.get("country_name", ""))
|
107 |
-
else:
|
108 |
-
return "Error: Unknown action. Use 'summary' or 'is_historical_country'."
|
109 |
|
110 |
wiki_tool = WikiTool()
|
111 |
excel_tool = ExcelAnalysisTool()
|
@@ -118,7 +123,7 @@ async def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
118 |
agent = ToolCallingAgent(
|
119 |
tools=[search_tool, wiki_tool, excel_tool],
|
120 |
model=OpenAIServerModel(
|
121 |
-
model_id="gpt-
|
122 |
api_key=os.environ["OPENAI_API_KEY"] # ✅ securely load from environment
|
123 |
),
|
124 |
max_steps=20,
|
|
|
16 |
search_tool = DuckDuckGoSearchTool()
|
17 |
|
18 |
##Tool 2
|
19 |
+
from smolagents import Tool
|
20 |
+
from huggingface_hub import hf_hub_download
|
21 |
+
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
class ExcelAnalysisTool(Tool):
|
24 |
+
name = "excel_analysis"
|
25 |
+
description = (
|
26 |
+
"Loads an Excel file from the GAIA dataset on Hugging Face and calculates "
|
27 |
+
"the total sales for items labeled as 'food', excluding drinks. "
|
28 |
+
"Provide input as a string with the filename, e.g., 'sales_data.xlsx'."
|
29 |
+
)
|
30 |
+
|
31 |
+
inputs = {
|
32 |
+
"filename": {
|
33 |
+
"type": "string",
|
34 |
+
"description": "The name of the Excel file (e.g., 'sales_data.xlsx')"
|
35 |
+
}
|
36 |
+
}
|
37 |
+
|
38 |
+
output_type = "string"
|
39 |
+
repo_id = "gaia-benchmark/GAIA"
|
40 |
+
|
41 |
+
def forward(self, filename: str) -> str:
|
42 |
try:
|
|
|
43 |
file_path = hf_hub_download(
|
44 |
repo_id=self.repo_id,
|
45 |
filename=filename,
|
46 |
repo_type="dataset"
|
47 |
)
|
|
|
|
|
48 |
df = pd.read_excel(file_path)
|
|
|
|
|
49 |
food_sales = df[
|
50 |
(df['category'].str.lower() == 'food') &
|
51 |
(df['item'].str.lower() != 'drinks')
|
52 |
]
|
|
|
53 |
total_sales = food_sales['sales'].sum()
|
54 |
return f"Total sales for food items: ${total_sales:.2f}"
|
|
|
55 |
except FileNotFoundError:
|
56 |
return "Error: The specified file was not found."
|
57 |
except KeyError as e:
|
|
|
60 |
return f"An unexpected error occurred: {str(e)}"
|
61 |
|
62 |
##Tool 3
|
63 |
+
import wikipedia
|
64 |
+
from smolagents import Tool
|
65 |
+
|
66 |
+
class WikiTool(Tool):
|
67 |
+
name = "wiki_tool"
|
68 |
+
description = (
|
69 |
+
"Performs Wikipedia lookups. Actions supported: 'summary' and 'is_historical_country'."
|
70 |
+
)
|
71 |
+
|
72 |
+
inputs = {
|
73 |
+
"action": {
|
74 |
+
"type": "string",
|
75 |
+
"description": "The action to perform: 'summary' or 'is_historical_country'"
|
76 |
+
},
|
77 |
+
"topic": {
|
78 |
+
"type": "string",
|
79 |
+
"description": "The topic or country name to look up"
|
80 |
+
}
|
81 |
+
}
|
82 |
+
|
83 |
+
output_type = "string"
|
84 |
+
|
85 |
+
def forward(self, action: str, topic: str) -> str:
|
86 |
+
if action == "summary":
|
87 |
+
return self.fetch_summary(topic)
|
88 |
+
elif action == "is_historical_country":
|
89 |
+
return self.is_historical_country(topic)
|
90 |
+
else:
|
91 |
+
return "Error: Unknown action. Use 'summary' or 'is_historical_country'."
|
92 |
|
93 |
def fetch_summary(self, topic: str) -> str:
|
94 |
try:
|
95 |
+
return wikipedia.summary(topic, sentences=3)
|
|
|
96 |
except wikipedia.DisambiguationError as e:
|
97 |
+
return f"Disambiguation: {e.options[:5]}"
|
98 |
except wikipedia.PageError:
|
99 |
+
return "No page found."
|
100 |
except Exception as e:
|
101 |
+
return f"Unexpected error: {str(e)}"
|
102 |
|
103 |
+
def is_historical_country(self, topic: str) -> str:
|
104 |
try:
|
105 |
+
summary = wikipedia.summary(topic, sentences=2).lower()
|
106 |
keywords = [
|
107 |
"former country", "no longer exists", "historical country",
|
108 |
"was a country", "defunct", "dissolved", "existed until",
|
109 |
"disestablished", "merged into"
|
110 |
]
|
111 |
+
return "yes" if any(k in summary for k in keywords) else "no"
|
112 |
+
except:
|
113 |
+
return "no"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
wiki_tool = WikiTool()
|
116 |
excel_tool = ExcelAnalysisTool()
|
|
|
123 |
agent = ToolCallingAgent(
|
124 |
tools=[search_tool, wiki_tool, excel_tool],
|
125 |
model=OpenAIServerModel(
|
126 |
+
model_id="gpt-4o", # ✅ valid OpenAI model name
|
127 |
api_key=os.environ["OPENAI_API_KEY"] # ✅ securely load from environment
|
128 |
),
|
129 |
max_steps=20,
|